decoupling with random quantum circuits

16
Decoupling with random quantum circuits Omar Fawzi (ETH Zürich) Joint work with Winton Brown (University College London)

Upload: laddie

Post on 07-Jan-2016

28 views

Category:

Documents


0 download

DESCRIPTION

Decoupling with random quantum circuits. S. Omar Fawzi (ETH Zürich) Joint work with Winton Brown (University College London). Random unitaries. Encoding for almost any quantum information transmission problem Entanglement generation Thermalization Scrambling (black hole dynamics) - PowerPoint PPT Presentation

TRANSCRIPT

Page 1: Decoupling with random quantum circuits

Decoupling with random quantum

circuits

Omar Fawzi (ETH Zürich)

Joint work with Winton Brown (University College London)

Page 2: Decoupling with random quantum circuits

Random unitaries• Encoding for almost any quantum information

transmission problem • Entanglement generation• Thermalization• Scrambling (black hole dynamics) • Uncertainty relations / information locking• Data hiding• …

Decoupling

Page 3: Decoupling with random quantum circuits

Decoupling

S cannot see correlations between A and E

Decoupling theorem: how large can s be?

U S: s qubits

E

A: n qubits Sc: n-s qubits

Page 4: Decoupling with random quantum circuits

Decoupling theorem

[Schumacher, Westmoreland, 2001],…, [Abeyesinghe, Devetak, Hayden, Winter, 2009],…, [Dupuis, Berta, Wullschleger, Renner, 2012]

U S: s qubits

E

A: n qubits Sc: n-s qubits

Page 5: Decoupling with random quantum circuits

Decoupling theorem: examples

• A Pure:• Max. entanglement: • k EPR pairs:

In this talk

U S: s qubits

E

A: n qubits Sc: n-s qubits

Page 6: Decoupling with random quantum circuits

Computational efficiency

• A typical unitary needs exponential time!• Two-design is sufficient: O(n2) gates• O(n) gates possible?

• Physics motivation:o Time scale for thermalizationo Fast scramblers (black hole information)

• How fast can typical “local” dynamics decouple?

Page 7: Decoupling with random quantum circuits

Random quantum circuits

• Random gate on random pair of qubits • Complexity measures:

o Number of gateso Depth

Page 8: Decoupling with random quantum circuits

Random quantum circuits

• RQCs of size O(n2) are approximate two-designs [Harrow, Low, 2009]

• Approx two-designs decouple [Szehr, Dupuis, Tomamichel, Renner, 2013]

=> RQCs of size O(n2) decouple

Objective: Improve to O(n)

Page 9: Decoupling with random quantum circuits

Decoupling vs. approx. two-designs

• Approx. two design ≠ decoupling•[Szehr, Dupuis, Tomamichel, Renner, 2013]

• [Dankert, Cleve, Emerson, Livine, 2006]

o Random circuit model: e-approx two-design with O(n log(1/e)) gates

o Does NOT decouple unless Ω(n2)Cannot use route

More details [Brown, Poulin,

soon]

Page 10: Decoupling with random quantum circuits

Main result

RQC’s with O(n log2n) gates decouple

Depth: O(log3n)

U s

E

nn-s

Compare to Ω(log n)

Compare to Ω(n)

Almost tight

Page 11: Decoupling with random quantum circuits

Proof stepsRecall:

o Pure input ρ, no E systemo Study decoupling directly

U s

E

nn-s

S

Page 12: Decoupling with random quantum circuits

Proof setup

Total mass on strings with support on S

Fourier coefficient

Page 13: Decoupling with random quantum circuits

Evolution of mass dist.

IX IZ YI XX XZ YY ZX ZZ

Distribution of masses

Page 14: Decoupling with random quantum circuits

The Markov chain

Page 15: Decoupling with random quantum circuits

Putting things together

Main technical contribution

Initial mass at level l

Page 16: Decoupling with random quantum circuits

Conclusion• Summary

o Random quantum circuits with O(n log2 n) gates and depth O(log3 n) decouple

• Open questionso Depth improved to O(log n)?o Quantum analogue of randomness extractors• Explicit constructions of efficient unitaries?• Number of unitaries?

o Geometric locality, d-dimensional lattice?o Hamiltonian evolutions?