decay spectroscopy at fair with aida

36
Decay Spectroscopy at FAIR with AIDA presented by Tom Davinson on behalf of the AIDA collaboration (Edinburgh – Liverpool – STFC DL & RAL) Tom Davinson School of Physics & Astronomy The University of Edinburgh

Upload: mairi

Post on 11-Jan-2016

57 views

Category:

Documents


1 download

DESCRIPTION

Decay Spectroscopy at FAIR with AIDA. presented by Tom Davinson on behalf of the AIDA collaboration (Edinburgh – Liverpool – STFC DL & RAL). Tom Davinson School of Physics & Astronomy The University of Edinburgh. Presentation Outline. r-process Nuclear Physics Observables FAIR - PowerPoint PPT Presentation

TRANSCRIPT

Decay Spectroscopy at FAIR with AIDA

presented byTom Davinson

on behalf of the AIDA collaboration(Edinburgh – Liverpool – STFC DL & RAL)

Tom DavinsonSchool of Physics & AstronomyThe University of Edinburgh

Presentation Outline

• r-process• Nuclear Physics Observables• FAIR• SuperFRS• Decay Spectroscopy (DESPEC)• Advanced Implantation Detector Array (AIDA)

r-process

• seed nuclei (A≥70)• synthesis far from valley of stability • equilibrium (n,) and (,n) reactions• n-capture until binding energy becomes small• wait for decay to nuclei with higher binding energy

Kratz et al., ApJ 403 (1993) 216

r-process: Nuclear physics observables

Observable Effect

Sn path

T1/2 • abundance pattern

• timescale

Pn freezeout abundance pattern

Primary nuclear physics observables from studying the decay spectroscopy(principally and -delayed neutron emission) of r-process nuclei

•Cost

–Approx €1000M

–€650M central German government

–€100M German regional funding

–€250M from international partners

•Timescale

–Feb 2006- German funds in budget 2007-14

–2007 project start

–2016 phased start experiments

–2018 completion

NUSTAR

SuperFRS

Future facilityFuture facility100 m

GSI todayGSI today

SIS 100/300

UNILAC

ESR

SIS 18

HESR

RESR

NESR

FAIR: Facility for Antiproton and Ion Research

FAIR: SuperFRS layout

courtesy of Martin Winkler, GSI

Fast radioactive beams can be used to study r-process• chemistry independent• fast production• measure several nuclei simultaneously• measurements possible with low rates

FAIR: Production Rates

from FAIR CDR, section 2

Predicted Lifetimes > 100ns

DESPEC: Implantation DSSD Concept

• SuperFRS, Low Energy Branch (LEB)• Exotic nuclei – energies ~ 50 – 200MeV/u• Implanted into multi-plane, highly segmented DSSD array• Implant – decay correlations• Multi-GeV DSSD implantation events• Observe subsequent p, 2p, p, n … low energy (~MeV) decays• Measure half lives, branching ratios, decay energies …• Tag interesting events for gamma and neutron detector arrays

Implantation DSSD Configurations

Two configurations proposed:

a) 8cm x 24cm “cocktail” mode many isotopes measured simultaneously

b) 8cm x 8cm concentrate on particular isotope(s) high efficiency mode using:

total absorption spectrometermoderated neutron detector array

Implantation – Decay Correlation

• DSSD strips identify where (x,y) and when (t0) ions implanted

• Correlate with upstream detectors to identify implanted ion type

• Correlate with subsequent decay(s) at same position (x,y) at times t1(,t2, …)

• Observation of a series of correlations enables determination of energy distribution and half-life of radioactive decay

• Require average time between implants at position (x,y) >> decay half-lifedepends on DSSD segmentation and implantation rate/profile

• Implantation profilex ~ y ~ 2cm, z ~ 1mm

• Implantation rate (8cm x 24cm) ~ 10kHz, ~ kHz per isotope (say)

• Longest half life to be observed ~ seconds

Implies quasi-pixel dimensions ~ 0.5mm x 0.5mm

AIDA: DSSD Array Design

• 8cm x 8cm DSSDscommon wafer design for 8cm x 24cm and 8cm x 8cm configurations

• 8cm x 24cm3 adjacent wafers – horizontal strips series bonded

• 128 p+n junction strips, 128 n+n ohmic strips per wafer

• strip pitch 625m

• wafer thickness 1mm

• E, Veto and up to 6 intermediate planes4096 channels (8cm x 24cm)

• overall package sizes (silicon, PCB, connectors, enclosure … )~ 10cm x 26cm x 4cm or ~ 10cm x 10cm x 4cm

ASIC Design Requirements

Selectable gain 20 1000 20000 MeV FSRLow noise 12 600 50000 keV FWHM

energy measurement of implantation and decay events

Selectable threshold < 0.25 – 10% FSRobserve and measure low energy detection efficiency

Integral non-linearity < 0.1% and differential non-linearity < 2% for > 95% FSRspectrum analysis, calibration, threshold determination

Autonomous overload detection & recovery ~ sobserve and measure fast implantation – decay correlations

Nominal signal processing time < 10sobserve and measure fast decay – decay correlations

Receive (transmit) timestamp datacorrelate events with data from other detector systems

Timing trigger for coincidences with other detector systemsDAQ rate management, neutron ToF

Schematic of Prototype ASIC Functionality

Note – ASIC will also evaluate use of digital signal processing

Potential advantages• decay – decay correlations to ~ 200ns• pulse shape analysis• ballistic deficit correction

• Analogue inputs left edge

• Control/outputs right edge

• Power/bias top and bottom

• 16 channels per ASIC

• Prototypes delivered May 2009MPW run100 dies delivered

• Functional tests at STFC RAL OK

Prototype AIDA ASIC: Top level design

AIDA ASIC simulation: example

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15I_LF fdbk=0

I_LF fdbk=6.4

I_LF fdbk=12.81.00E -041.10E -041.20E -041.30E -041.40E -041.50E -041.60E -041.70E -041.80E -041.90E -042.00E -04

Noise [V rm s]

S ha ping T ime (from 0.5us to 8us)

AIDA rms NOIS E : I_L F fdbk vs S haping T ime (C det=4.7pF , Ibias _preAmp=8)

1.90E -04-2.00E -04

1.80E -04-1.90E -04

1.70E -04-1.80E -04

1.60E -04-1.70E -04

1.50E -04-1.60E -04

1.40E -04-1.50E -04

1.30E -04-1.40E -04

1.20E -04-1.30E -04

1.10E -04-1.20E -04

1.00E -04-1.10E -04

Optimum ASIC parameters identified by simulation

Prototype AIDA ASIC

Fixed high-energy (HE) event (610pC) followed by three ME events (15pC, 30pC, 45pC): the ASIC recovers autonomously from the overload of the L-ME channel and the second event is read correctly.

Input signals (voltage step capacitive-coupled)

Preamp buffered output(Low-Medium Energy Channel)

“Range” signalHigh = high-energy channel active

“Data Ready” signal

3: High Energy (HE) + ME

First value (constant) given by the High-Energy channel, second by the Medium-Energy channel.

Input signals (voltage step capacitive-coupled)

“Range” signalHigh = high-energy channel active

“Data Ready” signal

Analog output (peak-hold multiplexed output)

3: High Energy (HE) + ME

FEE Assembly Sequence

AIDA: status• Systems integrated prototypes available

- prototype tests in progress• Production planned Q3/2010

Mezzanine: 4x 16 channel ASICs Cu cover EMI/RFI/light screen cooling

FEE: 4x 16-bit ADC MUX readout (not visible) 8x octal 50MSPS 14-bit ADCs Xilinx Virtex 5 FPGA PowerPC 40x CPU core – Linux OS

Gbit ethernet, clock, JTAG portsPower

FEE width: 8cmPrototype – air coolingProduction – recirculating coolant

ASIC Controls

Examples of prototype bench tests

1keV = 61V0.15mV rms ~ 2.5keV rms Si

Test range ~ 20k channels

Prototype AIDA Enclosure

- Design drawings (PDF) available http://www.eng.dl.ac.uk/secure/np-work/AIDA/

AIDA Enclosure

• Prototype mechanical design• Based on 8cm x 8cm DSSSD

evaluate prior to design for 24cm x 8cm DSSSD• Compatible with RISING, TAS, 4 neutron detector

• 12x 8cm x 8cm DSSSDs 24x AIDA FEE cards

• 3072 channels

• Design complete

• Mechanical assembly in progress

AIDA

AIDA: outlook

• DSSSD with sub-contractor (MSL)

• ASIC submitted for wafer production run (AMS)– delivery January 2011

• FEE mezzanine PCB – will be submitted for manufacture Nov 2010– delivery January 2011

• FEE PCB with sub-contractor- delivery January 2011

• Mechanical design and infrastructure (HV, PSUs, cooling etc.)- STFC DL & University of Liverpool arranging manufacture/purchase

Production complete hardware now available for integration/initial tests

AIDA expected to be ready for commissioning/first experiments from 2011/Q3

Continuing development work in progress, e.g. MWD, integration with otherdetector systems

AIDA: Project Partners

• The University of Edinburgh (lead RO)Phil Woods et al.

• The University of LiverpoolRob Page et al.

• STFC DL & RALJohn Simpson et al.

Project Manager: Tom Davinson

Further information: http://www.ph.ed.ac.uk/~td/AIDA

Technical Specification:http://www.ph.ed.ac.uk/~td/AIDA/Design/AIDA_Draft_Technical_Specification_v1.pdf

Acknowledgements

My thanks to:

STFC DLPatrick Coleman-Smith, Ian Lazarus, Simon Letts, Paul Morrall, Vic Pucknell, John Simpson & Jon Strachan

STFC RALDavide Braga, Mark Prydderch & Steve Thomas

University of LiverpoolTuomas Grahn, Paul Nolan, Rob Page, Sami Ritta-Antila & Dave Seddon

University of EdinburghZhong Liu, Phil Woods

Prototype AIDA hardware tests at MARSLivius Trache et al., Cyclotron Institute, Texas A&M

Heavy Element Abundance: Solar System

from B.S.Meyer, Ann. Rev. Astron. Astrophys. 32 (1994) 153

Si=106

r-process produces roughly one-half of all elements heavier than iron

Heavy element nucleosynthesis

Process Environment Timescale Endpoint Site

s-process (n,)

T9~0.1

n>>n~1-1000a

n~108/cm3

<106a 209Bi AGB stars

r-process (n,)

T9~1-2

n<<n~s

n~1024-1030/cm3

<1s beyond U Type II supernovae?

NS-NS mergers?

p-process T9~2-3 ~1s Type II supernovae

r-process: What do observations tell us?

12log)(logH

NN

X xε

from Cowan & Sneden, Nature 440 (2006) 1151

CS22892-052• galactic halo star (intermediate population II)• red giant• ‘metal poor’ [Fe/H] = -3.0

solar

loglog]/[

Y

X

Y

X

NN

NN

YX

Matches relative elementalsolar abundance pattern

• common site/event type?• applies to ‘metal poor’ and ‘metal rich’ stars – rapid evolution of old stars?

r-process: U/Th Cosmo-chronology

from Cowan & Sneden, Nature 440 (2006) 1151

(13.8±4)Ga

(14.1±2.5)Ga

Cowan et al., ApJ 572 (2002) 861

Wanajo et al., ApJ 577 (2002) 853

• long half-lives• very similar mass• r-process production only

r-process: -delayed neutron emission

Effect of -delayed neutron emission:modification (smoothing) of final abundance pattern at freezeout

• Sn<Q

• increasing N → lower Sn,higher Q

Kratz et al., ApJ 403 (1993) 216

before -decay after -decay

Proposed layout August 2006(for illustrative purposes – way out of date!)

courtesy of Martin Winkler, GSI

FAIR: HISPEC/DESPEC

AIDA: ASIC schematic

High-speed bufferx10

DC fdbk

shaper

9R

R

Slowcomparator

Clamp comparator(for x10)

PeakHoldpositivePolarity

PeakHoldnegativePolarity

RC filter(with reset)

Fastcomparator

RC filter(with reset)

CM

OS

sw

itches

I thresholdR threshold

I thresholdR threshold

DC fdbk

shaperPeakHold

positivePolarity

PeakHoldnegativePolarity

Fastcomparator

RC filter(with reset)

I thresholdR threshold

4:1 MUX

1

2

2

3 4

4

5

6

6

7

8

9

9

10

10

10

10

1010

11

11

11

11

1111

12

13

14

14

15

16

17

18

18

1919

1919

19

19

19

19

19

19