debra j. skene - european sleep research society · skene et al., pnas, 2018. pathways of...

109
Age-related changes in circadian factors and light interventions in healthy and pathological human ageing Debra J. SKENE Chronobiology University of Surrey, Guildford, UK [email protected]

Upload: others

Post on 14-Jul-2020

4 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: Debra J. SKENE - European Sleep Research Society · Skene et al., PNAS, 2018. Pathways of peripheral clock entrainment From Mohawk et al. Annu. Rev. Neurosci. 2012. Human circadian

Age-related changes in circadian factors and light interventions in healthy and pathological human ageing

Debra J. SKENE

ChronobiologyUniversity of Surrey, Guildford, UK

[email protected]

Page 2: Debra J. SKENE - European Sleep Research Society · Skene et al., PNAS, 2018. Pathways of peripheral clock entrainment From Mohawk et al. Annu. Rev. Neurosci. 2012. Human circadian

Metabolomics

• better understanding of circadian and sleep/wake regulation of metabolism

• Powerful tool to elucidate mechanisms linking sleep restriction, circadian misalignment and metabolic disturbances

- peripheral clock phase/function during circadian misalignment

- biomarkers to track sleep and circadian disruption; and monitor recovery

Page 3: Debra J. SKENE - European Sleep Research Society · Skene et al., PNAS, 2018. Pathways of peripheral clock entrainment From Mohawk et al. Annu. Rev. Neurosci. 2012. Human circadian

Age-related changes in circadian factors and light interventions in healthy and pathological human ageing

Debra J. SKENE

ChronobiologyUniversity of Surrey, Guildford, UK

[email protected]

Page 4: Debra J. SKENE - European Sleep Research Society · Skene et al., PNAS, 2018. Pathways of peripheral clock entrainment From Mohawk et al. Annu. Rev. Neurosci. 2012. Human circadian

2 process model

Borbély, A. A.Hum.Neurobiol., 1982Daan, S., Beersma, D. G. M. and Borbély, A.A. Am. J.Physiol., 1984

Page 5: Debra J. SKENE - European Sleep Research Society · Skene et al., PNAS, 2018. Pathways of peripheral clock entrainment From Mohawk et al. Annu. Rev. Neurosci. 2012. Human circadian

Human circadian timing system

Human circadian timing system Circadian rhythms Effect of ageing

Treatment strategies - melatonin, light - in ageing

Page 6: Debra J. SKENE - European Sleep Research Society · Skene et al., PNAS, 2018. Pathways of peripheral clock entrainment From Mohawk et al. Annu. Rev. Neurosci. 2012. Human circadian

Challenges Circadian rhythms and ageing research?

Only measure clock outputs (eg melatonin, rest/activity)

Confounded – field studies

Cross-sectional, rarely longitudinal

Older people - medication/mobility issues

Page 7: Debra J. SKENE - European Sleep Research Society · Skene et al., PNAS, 2018. Pathways of peripheral clock entrainment From Mohawk et al. Annu. Rev. Neurosci. 2012. Human circadian

Participant numbers7 care homes in south-east England

Total number of residents = 256

Not suitable = 125(49%)

Suitable = 131(51%)

No = 51(39%)

Yes = 80(61%)

Wearing AWL = 73(91%)

In analysis = 48(66%)

Hopkins, S. et al. Current Alz. Res 2017

Page 8: Debra J. SKENE - European Sleep Research Society · Skene et al., PNAS, 2018. Pathways of peripheral clock entrainment From Mohawk et al. Annu. Rev. Neurosci. 2012. Human circadian

Not a homogenous group n = 80

MobilityFully mobile 20% Walking stick 11%Walking frame 16%Wheelchair 53%

MMSE score 27 – 30, no impairment 13%21 – 26, mild 26%11 – 20, moderate 53%0 – 10, severe 8%

8 registered blind (2NLP; 6 LP) Hopkins, S. et al. Current Alz. Res 2017

Page 9: Debra J. SKENE - European Sleep Research Society · Skene et al., PNAS, 2018. Pathways of peripheral clock entrainment From Mohawk et al. Annu. Rev. Neurosci. 2012. Human circadian

(A)

(C)

(B)

(D)

(E)

Hourly activity counts mean ± SEMA + C = fully mobileB + D = wheelchairE = walking frame

24h activity profiles (7 days)

Hopkins, S. et al. Current Alz. Res 2017

Page 10: Debra J. SKENE - European Sleep Research Society · Skene et al., PNAS, 2018. Pathways of peripheral clock entrainment From Mohawk et al. Annu. Rev. Neurosci. 2012. Human circadian

Challenges Circadian rhythms and ageing research?

Only measure clock outputs (eg melatonin, rest/activity)

Confounded – field studies

Page 11: Debra J. SKENE - European Sleep Research Society · Skene et al., PNAS, 2018. Pathways of peripheral clock entrainment From Mohawk et al. Annu. Rev. Neurosci. 2012. Human circadian

The suprachiasmaticnuclei (SCN) of the hypothalamus

Site of circadian oscillator

Courtesy of Dr Michael Hastings

Page 12: Debra J. SKENE - European Sleep Research Society · Skene et al., PNAS, 2018. Pathways of peripheral clock entrainment From Mohawk et al. Annu. Rev. Neurosci. 2012. Human circadian

The Clock in the Brain

24 48 72

Time (hours)

A5

B7b

D1

G3b

3

4

2

0

0

0

4

0

Hz

Welsh, Logothetis, Meister & Reppert, Nature 1995

Courtesy of Till Roenneberg

Page 13: Debra J. SKENE - European Sleep Research Society · Skene et al., PNAS, 2018. Pathways of peripheral clock entrainment From Mohawk et al. Annu. Rev. Neurosci. 2012. Human circadian

Retina-SCN-PVN-SCG-pineal pathway

SCN rhythmicity drives melatonin rhythmEntrained to 24 h by light/dark via the retina-RHT pathway

Stehle, J.H., et al. 2011

Page 14: Debra J. SKENE - European Sleep Research Society · Skene et al., PNAS, 2018. Pathways of peripheral clock entrainment From Mohawk et al. Annu. Rev. Neurosci. 2012. Human circadian

(Retina)-SCN-PVN-HPA axis

Courtesy of Andries Kalsbeek

Page 15: Debra J. SKENE - European Sleep Research Society · Skene et al., PNAS, 2018. Pathways of peripheral clock entrainment From Mohawk et al. Annu. Rev. Neurosci. 2012. Human circadian

(Retina)-SCN-PVN-ANS

Courtesy of Andries Kalsbeek

Page 16: Debra J. SKENE - European Sleep Research Society · Skene et al., PNAS, 2018. Pathways of peripheral clock entrainment From Mohawk et al. Annu. Rev. Neurosci. 2012. Human circadian

SCN-driven melatonin and cortisol rhythms in constant routine conditions

Gunn et al., 2016

males n = 14

Page 17: Debra J. SKENE - European Sleep Research Society · Skene et al., PNAS, 2018. Pathways of peripheral clock entrainment From Mohawk et al. Annu. Rev. Neurosci. 2012. Human circadian

Confounders

• Light/dark cycle • Sleep/wake cycle• Activity/exercise• Drugs• Food• Posture• Stress• Menstrual cycle?

Page 18: Debra J. SKENE - European Sleep Research Society · Skene et al., PNAS, 2018. Pathways of peripheral clock entrainment From Mohawk et al. Annu. Rev. Neurosci. 2012. Human circadian

Challenges in measurement

Diurnal versus circadian rhythms

Diurnal – exogenous and endogenousRhythms may be influenced, or even driven, by environmental cycles

Circadian – endogenous Rhythms driven by endogenous timing mechanisms (“clocks”)

persist in constant conditions

Page 19: Debra J. SKENE - European Sleep Research Society · Skene et al., PNAS, 2018. Pathways of peripheral clock entrainment From Mohawk et al. Annu. Rev. Neurosci. 2012. Human circadian

Early “Clock” Experiments

DAYTIMELeaves are open

NIGHT TIMELeaves are closed

Mimosa pudica

de Marian, 1729

Page 20: Debra J. SKENE - European Sleep Research Society · Skene et al., PNAS, 2018. Pathways of peripheral clock entrainment From Mohawk et al. Annu. Rev. Neurosci. 2012. Human circadian

the constant routine protocol

• Designed to remove/minimise effects of external environment and behaviour (e.g. sleep)

• No knowledge of clock time• Constant dim light• Semi-recumbent posture• Minimal social interaction• Regular (e.g. hourly) small

isocaloric snacks

Diurnal versus circadian rhythms

Page 21: Debra J. SKENE - European Sleep Research Society · Skene et al., PNAS, 2018. Pathways of peripheral clock entrainment From Mohawk et al. Annu. Rev. Neurosci. 2012. Human circadian

Human circadian rhythms - endogenously generated

persist in constant conditions

• Melatonin• Cortisol• Rectal temperature• Activity• Sleep• Mood• Performance

Page 22: Debra J. SKENE - European Sleep Research Society · Skene et al., PNAS, 2018. Pathways of peripheral clock entrainment From Mohawk et al. Annu. Rev. Neurosci. 2012. Human circadian

Circadian rhythms

Rajaratnam &Arendt 2001

melatonin

core body temp

subjective alertness

task performance

triacylglycerol

Page 23: Debra J. SKENE - European Sleep Research Society · Skene et al., PNAS, 2018. Pathways of peripheral clock entrainment From Mohawk et al. Annu. Rev. Neurosci. 2012. Human circadian

Czeisler & Klerman 1999 Recent Prog Horm Res 54:97-132

Constant routine protocol versusentrained diurnal sleep/wake

Page 24: Debra J. SKENE - European Sleep Research Society · Skene et al., PNAS, 2018. Pathways of peripheral clock entrainment From Mohawk et al. Annu. Rev. Neurosci. 2012. Human circadian

Melatonin as a reliable marker of circadian phase

• unaffected by:meals, stress, bathing, sleep

• dim light conditions (< 8 lux)• exclude drugs• control posture, exercise

Page 25: Debra J. SKENE - European Sleep Research Society · Skene et al., PNAS, 2018. Pathways of peripheral clock entrainment From Mohawk et al. Annu. Rev. Neurosci. 2012. Human circadian

0

10

20

30

40

50

60

70

80

1500 1700 1900 2100 2300 100 300 500 700 900 1100 1300 1500 1700

clock time (h)

pla

sma

me

lato

nin

(p

g/m

l)

acrophase (calculated peak time)

mid-range crossing

25% rise/fall

onset/offset

*

**

* ** *

duration

‘biological night’

Markers of the melatonin rhythmused to characterise the timing of the circadian clock

Arendt & Skene, Sleep Medicine Reviews (2005) 9:25-39

Page 26: Debra J. SKENE - European Sleep Research Society · Skene et al., PNAS, 2018. Pathways of peripheral clock entrainment From Mohawk et al. Annu. Rev. Neurosci. 2012. Human circadian

Benloucif et al., 2007

Page 27: Debra J. SKENE - European Sleep Research Society · Skene et al., PNAS, 2018. Pathways of peripheral clock entrainment From Mohawk et al. Annu. Rev. Neurosci. 2012. Human circadian

SCN extra-SCN brain oscillators peripheral clocks

• synchrony between different internal rhythms• synchrony between internal rhythms and external cycles e.g. for diurnal animals: sleep at night, visual function and metabolic responses optimal in the day

Page 28: Debra J. SKENE - European Sleep Research Society · Skene et al., PNAS, 2018. Pathways of peripheral clock entrainment From Mohawk et al. Annu. Rev. Neurosci. 2012. Human circadian

DiagnosisMeasures used to assess - human circadian timing system

- SCN-driven rhythms (melatonin, cortisol)

- Markers of peripheral clocks?

Page 29: Debra J. SKENE - European Sleep Research Society · Skene et al., PNAS, 2018. Pathways of peripheral clock entrainment From Mohawk et al. Annu. Rev. Neurosci. 2012. Human circadian

Human peripheral clocks

• Buccal tissue (Cajochen et al., 2006)

• Blood cells (Archer et al., 2008; O’Neill and Reddy, 2011; Ackermann et al., 2013)

• Skin fibroblasts (Brown et al., 2005; 2008)

• Hair follicles (Akashi et al., 2010)

• Adipose tissue (Otway et al., 2011)

• Skeletal muscle (van Moorsel et al., 2016)

Page 30: Debra J. SKENE - European Sleep Research Society · Skene et al., PNAS, 2018. Pathways of peripheral clock entrainment From Mohawk et al. Annu. Rev. Neurosci. 2012. Human circadian

SCN extra-SCN brain oscillators peripheral clocks

Markers of human peripheral clocks? Plasma metabolomeBlood cells, buccal tissue, skin fibroblasts, hair follicles, adipose tissue, muscle

Page 31: Debra J. SKENE - European Sleep Research Society · Skene et al., PNAS, 2018. Pathways of peripheral clock entrainment From Mohawk et al. Annu. Rev. Neurosci. 2012. Human circadian

Skene et al., PNAS, 2018

Page 32: Debra J. SKENE - European Sleep Research Society · Skene et al., PNAS, 2018. Pathways of peripheral clock entrainment From Mohawk et al. Annu. Rev. Neurosci. 2012. Human circadian

Effects of Prior Simulated Shift Work on Metabolite Rhythms (Examples)

Sphingolipid SM C20:2

24/27 (89%) had significantly shifted (reversed) rhythms

Skene et al., PNAS, 2018

Page 33: Debra J. SKENE - European Sleep Research Society · Skene et al., PNAS, 2018. Pathways of peripheral clock entrainment From Mohawk et al. Annu. Rev. Neurosci. 2012. Human circadian

• Rhythms in most metabolites dissociated from the SCN pacemaker rhythm

• Vast majority aligning with the preceding sleep/wake and feeding/fasting cycles

• Metabolic profiling (metabolomics) in plasma may provide a window onto peripheral clocks and the biobehavioral factors orchestrating them

Conclusions

Skene et al., PNAS, 2018

Page 34: Debra J. SKENE - European Sleep Research Society · Skene et al., PNAS, 2018. Pathways of peripheral clock entrainment From Mohawk et al. Annu. Rev. Neurosci. 2012. Human circadian

Pathways of peripheral clock entrainment

From Mohawk et al. Annu. Rev. Neurosci. 2012

Page 35: Debra J. SKENE - European Sleep Research Society · Skene et al., PNAS, 2018. Pathways of peripheral clock entrainment From Mohawk et al. Annu. Rev. Neurosci. 2012. Human circadian

Human circadian timing system

Human circadian timing system Circadian rhythms Effect of ageing

Page 36: Debra J. SKENE - European Sleep Research Society · Skene et al., PNAS, 2018. Pathways of peripheral clock entrainment From Mohawk et al. Annu. Rev. Neurosci. 2012. Human circadian

Possible causes of age-related changes in circadian system

Page 37: Debra J. SKENE - European Sleep Research Society · Skene et al., PNAS, 2018. Pathways of peripheral clock entrainment From Mohawk et al. Annu. Rev. Neurosci. 2012. Human circadian

PinealGland

SCN PVN SCG

Output pathway

melatonin temperature sleep/wake

RHT

Input pathway

cortisol

Possible causes of age-related changes in circadian system

Page 38: Debra J. SKENE - European Sleep Research Society · Skene et al., PNAS, 2018. Pathways of peripheral clock entrainment From Mohawk et al. Annu. Rev. Neurosci. 2012. Human circadian

PinealGland

SCN PVN SCG

Output pathway

melatonin temperature sleep/wake

RHT

Input pathway

cortisol

? ?

??

Page 39: Debra J. SKENE - European Sleep Research Society · Skene et al., PNAS, 2018. Pathways of peripheral clock entrainment From Mohawk et al. Annu. Rev. Neurosci. 2012. Human circadian

Possible causes of age-related changes in circadian system

1. Clock disturbance

2. Entrainment abnormalities

3. Insufficient zeitgebers (time cues)

Page 40: Debra J. SKENE - European Sleep Research Society · Skene et al., PNAS, 2018. Pathways of peripheral clock entrainment From Mohawk et al. Annu. Rev. Neurosci. 2012. Human circadian

Biological rhythms

Amplitude

Period Phase

Page 41: Debra J. SKENE - European Sleep Research Society · Skene et al., PNAS, 2018. Pathways of peripheral clock entrainment From Mohawk et al. Annu. Rev. Neurosci. 2012. Human circadian

Mesor 

Courtesy Ken Wright

phase angle

0

3

6

9

12

15

18

21

TCircadian Terminology

Mean

bedtime

Amplitude

12 16 20 24 4 8 12 16 20 24 4 8 12

Sal

iva

ry M

ela

ton

in L

eve

ls (

pg

/ml)

Clock Hour

Page 42: Debra J. SKENE - European Sleep Research Society · Skene et al., PNAS, 2018. Pathways of peripheral clock entrainment From Mohawk et al. Annu. Rev. Neurosci. 2012. Human circadian

Age-related changes

1. Amplitude2. Period3. Phase 4. Phase angle of

entrainment5. Response to light

Duffy et al., Sleep Med. Clin. , 2016

Phase angle of entrainment = phase relationship between a circadian rhythm and the environmental signal entraining the rhythm (e.g. light-dark cycle; sleep onset)

Page 43: Debra J. SKENE - European Sleep Research Society · Skene et al., PNAS, 2018. Pathways of peripheral clock entrainment From Mohawk et al. Annu. Rev. Neurosci. 2012. Human circadian

Possible causes of age-related changes in circadian system

1. Clock disturbance

Page 44: Debra J. SKENE - European Sleep Research Society · Skene et al., PNAS, 2018. Pathways of peripheral clock entrainment From Mohawk et al. Annu. Rev. Neurosci. 2012. Human circadian

PinealGland

SCN PVN SCG

Output pathway

melatonin temperature sleep/wake

RHT

Input pathway

cortisol

Reduced amplitude

Page 45: Debra J. SKENE - European Sleep Research Society · Skene et al., PNAS, 2018. Pathways of peripheral clock entrainment From Mohawk et al. Annu. Rev. Neurosci. 2012. Human circadian

1. Clock disturbance

Human SCN- reduced number of vasopressin neurons- reduced amplitude of rhythm

- alterations in the neural and temporal organization of the SCN

Hofman and Swaab, 1988; review 2006

Page 46: Debra J. SKENE - European Sleep Research Society · Skene et al., PNAS, 2018. Pathways of peripheral clock entrainment From Mohawk et al. Annu. Rev. Neurosci. 2012. Human circadian

Hofman and Swaab, 1988; review 2006

Page 47: Debra J. SKENE - European Sleep Research Society · Skene et al., PNAS, 2018. Pathways of peripheral clock entrainment From Mohawk et al. Annu. Rev. Neurosci. 2012. Human circadian

Age-related changes in melatonin

- reduced melatonin amplitude

Page 48: Debra J. SKENE - European Sleep Research Society · Skene et al., PNAS, 2018. Pathways of peripheral clock entrainment From Mohawk et al. Annu. Rev. Neurosci. 2012. Human circadian

Plasma melatonin

Waldhauser et al., 1988

Page 49: Debra J. SKENE - European Sleep Research Society · Skene et al., PNAS, 2018. Pathways of peripheral clock entrainment From Mohawk et al. Annu. Rev. Neurosci. 2012. Human circadian

Urinary 6-sulphatoxymelatonin (aMT6s)

Bojkowski and Arendt, 1990

Page 50: Debra J. SKENE - European Sleep Research Society · Skene et al., PNAS, 2018. Pathways of peripheral clock entrainment From Mohawk et al. Annu. Rev. Neurosci. 2012. Human circadian

Skene et al., 1990

Pre- and postmenopausal women (n=160)

Page 51: Debra J. SKENE - European Sleep Research Society · Skene et al., PNAS, 2018. Pathways of peripheral clock entrainment From Mohawk et al. Annu. Rev. Neurosci. 2012. Human circadian

Skene et al., 1990

Pineal melatonin - human postmortem tissue

Page 52: Debra J. SKENE - European Sleep Research Society · Skene et al., PNAS, 2018. Pathways of peripheral clock entrainment From Mohawk et al. Annu. Rev. Neurosci. 2012. Human circadian

Melatonin in CSF

Liu et al., 1999

Page 53: Debra J. SKENE - European Sleep Research Society · Skene et al., PNAS, 2018. Pathways of peripheral clock entrainment From Mohawk et al. Annu. Rev. Neurosci. 2012. Human circadian

PinealGland

SCN PVN SCG

Output pathway

melatonin temperature sleep/wake

RHT

Input pathway

cortisol

Possible causes of age-related changes in circadian system

Concretions, reduced sympathetic innervation, -receptor changes, reduced NAT

Page 54: Debra J. SKENE - European Sleep Research Society · Skene et al., PNAS, 2018. Pathways of peripheral clock entrainment From Mohawk et al. Annu. Rev. Neurosci. 2012. Human circadian

Age-related changes in melatonin

- reduced melatonin production/amplitude most studies (diurnal, entrained)

Page 55: Debra J. SKENE - European Sleep Research Society · Skene et al., PNAS, 2018. Pathways of peripheral clock entrainment From Mohawk et al. Annu. Rev. Neurosci. 2012. Human circadian

Zeitzer et al., 1999

65+ Elderly- disease and drug freeDim light, semi-recumbent, sleep deprived, isocaloric meals

Constant routine study

Page 56: Debra J. SKENE - European Sleep Research Society · Skene et al., PNAS, 2018. Pathways of peripheral clock entrainment From Mohawk et al. Annu. Rev. Neurosci. 2012. Human circadian

Possible causes of age-related changes in circadian system

1. Clock disturbance

2. Entrainment abnormalities

Page 57: Debra J. SKENE - European Sleep Research Society · Skene et al., PNAS, 2018. Pathways of peripheral clock entrainment From Mohawk et al. Annu. Rev. Neurosci. 2012. Human circadian

PinealGland

SCN PVN SCG

Output pathway

melatonin temperature sleep/wake

RHT

Input pathway

cortisol

Reduced amplitudePhase advance of circadian rhythms

Page 58: Debra J. SKENE - European Sleep Research Society · Skene et al., PNAS, 2018. Pathways of peripheral clock entrainment From Mohawk et al. Annu. Rev. Neurosci. 2012. Human circadian

Age-related change in circadian period?

Explain phase advance of circadian rhythmsi.e shorter period as age?

Page 59: Debra J. SKENE - European Sleep Research Society · Skene et al., PNAS, 2018. Pathways of peripheral clock entrainment From Mohawk et al. Annu. Rev. Neurosci. 2012. Human circadian

Forced desynchrony

Sighted

Czeisler et al., Science, 1999

= 24.18 0.02 h

n = 11 youngn = 13 old

Human circadian period ()

Page 60: Debra J. SKENE - European Sleep Research Society · Skene et al., PNAS, 2018. Pathways of peripheral clock entrainment From Mohawk et al. Annu. Rev. Neurosci. 2012. Human circadian

23.9

24

24.1

24.2

24.3

24.4

24.5

24.6

24.7

24.8

24.9

25

0 10 20 30 40 50 60 70 80

aMT6stau (h)

Age (yrs)

aMT6s Period and Age

r = -0.02n = 23

Skene et al., unpublished

Totally blind

Real life

Page 61: Debra J. SKENE - European Sleep Research Society · Skene et al., PNAS, 2018. Pathways of peripheral clock entrainment From Mohawk et al. Annu. Rev. Neurosci. 2012. Human circadian

Age-related changes in melatonin

1. decreased melatonin production - decline in amplitude

2. phase advance of melatonin rhythm

Page 62: Debra J. SKENE - European Sleep Research Society · Skene et al., PNAS, 2018. Pathways of peripheral clock entrainment From Mohawk et al. Annu. Rev. Neurosci. 2012. Human circadian

16-20 21-30 31-40 41-50 51-60 61-70 71-81 16-810

1

2

3

4

5

6

7aM

T6s

acr

op

has

e m

ean

S

D

18 83 18 13 4 136 n

years

Earlier aMT6s peak time with ageing

English et al., unpublished

Page 63: Debra J. SKENE - European Sleep Research Society · Skene et al., PNAS, 2018. Pathways of peripheral clock entrainment From Mohawk et al. Annu. Rev. Neurosci. 2012. Human circadian

Duffy et al., Sleep Med. Clin. , 2016

solid line - older group

Earlier wrt clock time

Later wrt to biological timei.e. sleep/darkness

Older compared to young adults

Page 64: Debra J. SKENE - European Sleep Research Society · Skene et al., PNAS, 2018. Pathways of peripheral clock entrainment From Mohawk et al. Annu. Rev. Neurosci. 2012. Human circadian

Possible causes of age-related changes in circadian system

1. Clock disturbance

2. Entrainment abnormalities

Page 65: Debra J. SKENE - European Sleep Research Society · Skene et al., PNAS, 2018. Pathways of peripheral clock entrainment From Mohawk et al. Annu. Rev. Neurosci. 2012. Human circadian

PinealGland

SCN PVN SCG

Output pathway

melatonin temperature sleep/wake

RHT

Input pathway

cortisol

Age-related changes in the eye

Page 66: Debra J. SKENE - European Sleep Research Society · Skene et al., PNAS, 2018. Pathways of peripheral clock entrainment From Mohawk et al. Annu. Rev. Neurosci. 2012. Human circadian

Age-related changes in the eye

Adapted from Weale, 1988

pupil size

lens transmission

S-cones melanopsin RCGs

Page 67: Debra J. SKENE - European Sleep Research Society · Skene et al., PNAS, 2018. Pathways of peripheral clock entrainment From Mohawk et al. Annu. Rev. Neurosci. 2012. Human circadian

Lerman, 1980

25 years

91 years82 years70 years

60 years47 years

increased lens density reduced transmission of light

Age-related changes in the eye

Page 68: Debra J. SKENE - European Sleep Research Society · Skene et al., PNAS, 2018. Pathways of peripheral clock entrainment From Mohawk et al. Annu. Rev. Neurosci. 2012. Human circadian

Age-related changes in the lens reduce transmittance of short wavelength blue light

Average spectral density of the lens (adapted from Pokorny et al., 1987)

-0.5

0.5

1.5

2.5

380 420 460 500 540 580 620 660

Wavelength (nm)

Op

tica

l Den

sity

20 yrs

60 yrs

80 yrs

20 yrs

60 yrs

80 yrs

Page 69: Debra J. SKENE - European Sleep Research Society · Skene et al., PNAS, 2018. Pathways of peripheral clock entrainment From Mohawk et al. Annu. Rev. Neurosci. 2012. Human circadian

Spectral sensitivity?

Arendt, 1995

Page 70: Debra J. SKENE - European Sleep Research Society · Skene et al., PNAS, 2018. Pathways of peripheral clock entrainment From Mohawk et al. Annu. Rev. Neurosci. 2012. Human circadian

0

20

40

60

80

100

120

140

n

n

nn n

n

n

nnO

O

O

O O

O OO

Oo

o

o

o

o

o oo

o

23:00 23:30 0:00 0:30 1:00 1:30 2:00

Clock time (hours)

Pla

sma

mel

aton

in (

pg/m

l)Suppression by short wavelength light

o 424 nm 16 W/cm2

O 472 nm 36 W/cm2

Thapan, Arendt & Skene, J Physiol, 535, 261-67, 2001

Spectral sensitivity of light-induced melatonin suppression

Page 71: Debra J. SKENE - European Sleep Research Society · Skene et al., PNAS, 2018. Pathways of peripheral clock entrainment From Mohawk et al. Annu. Rev. Neurosci. 2012. Human circadian

Melatonin suppression as a function of wavelength and irradiance

Me

lato

nin

su

pp

res

sio

n (

%)

Photons/cm2/sec

548 nm£ 520 nm 496 nm 472 nml 456 nmn 424 nm

0

10

20

30

40

50

60

70

1E+11 1E+12 1E+13 1E+14 1E+15 5E+15

n

n

n

nn

l

l

l

l

t tt

t

t t t

u

u

u

u

uu

££

£

£

£

£

££

l

l

l

l l

Thapan, Arendt & Skene, J Physiol, 535, 261-267, 2001

Page 72: Debra J. SKENE - European Sleep Research Society · Skene et al., PNAS, 2018. Pathways of peripheral clock entrainment From Mohawk et al. Annu. Rev. Neurosci. 2012. Human circadian

Age-related changes in the eye

Effect on non-visual light responses?

Light-induced melatonin suppression

max 456 nm max 548 nm

Page 73: Debra J. SKENE - European Sleep Research Society · Skene et al., PNAS, 2018. Pathways of peripheral clock entrainment From Mohawk et al. Annu. Rev. Neurosci. 2012. Human circadian

1. A significantly reduced response to the short

wavelength light (456 nm) in the older group

2. No difference between age groups in response to

medium wavelength light (548 nm)

Hypotheses

- 0.5

0.5

1.5

2.5 20 yrs60 yrs80 yrs

- 0.5

0.5

1.5

2.5 20 yrs60 yrs80 yrs

- 0.5

0.5

1.5

2.5

380 420 460 500 540 580 620 660

20 yrs60 yrs80 yrs

Average spectral density of the lens (adapted from Pokorny et al., 1987)

- 0.5

0.5

1.5

2.5

Wavelength (nm)

Op

tica

l D

ensi

ty

20 yrs60 yrs80 yrs

Page 74: Debra J. SKENE - European Sleep Research Society · Skene et al., PNAS, 2018. Pathways of peripheral clock entrainment From Mohawk et al. Annu. Rev. Neurosci. 2012. Human circadian

Age-related changes in short wavelength blue light sensitivity

Reduced responsiveness in the elderly

Exp Gerontol 40, 237-242, 2005

Page 75: Debra J. SKENE - European Sleep Research Society · Skene et al., PNAS, 2018. Pathways of peripheral clock entrainment From Mohawk et al. Annu. Rev. Neurosci. 2012. Human circadian

Time: F = 4.68, p < 0.0001Age: F = 35.76, p < 0.0001

Increased alertness in young during and after blue (456 nm) light

morealert

Su

bje

cti

ve a

lert

ness

Time from start of light (h)

(norm

alised

to b

aselin

e)

moresleep

y

young (n = 11)

older (n = 15)

Sletten et al., J. Biol. Rhythms, 2009

0 1 2 3 4 5 6 7

-2

-1

0

1

2

3

4

5

Page 76: Debra J. SKENE - European Sleep Research Society · Skene et al., PNAS, 2018. Pathways of peripheral clock entrainment From Mohawk et al. Annu. Rev. Neurosci. 2012. Human circadian

No effect of age on alertness during and after green (548 nm) light

Time: F = 4.84, p < 0.0001

Time from start of light (h)

Su

bje

cti

ve a

lert

ness

(norm

alised

to b

aselin

e)

young (n = 11)

older (n = 10)morealert

moresleep

y0 1 2 3 4 5 6 7

-2

-1

0

1

2

3

4

5

Sletten et al., J. Biol. Rhythms, 2009

Page 77: Debra J. SKENE - European Sleep Research Society · Skene et al., PNAS, 2018. Pathways of peripheral clock entrainment From Mohawk et al. Annu. Rev. Neurosci. 2012. Human circadian

Conclusions

AGEING• Acute responses to blue light are impaired- melatonin suppression, alerting effect

• Phase advancing effects of blue light retained

• Acute and phase shifting responses: Differentially affected by age?

- Different photopigment contribution?- Different melanopsin RGCs (M1 and M2)?

Herljevic et al., 2005; Ackermann et al., 2009; Jud et al., 2009; Sletten et al., 2009

Page 78: Debra J. SKENE - European Sleep Research Society · Skene et al., PNAS, 2018. Pathways of peripheral clock entrainment From Mohawk et al. Annu. Rev. Neurosci. 2012. Human circadian

Age-related changes

1. Amplitude2. Period3. Phase 4. Phase angle of

entrainment5. Response to light

reducedshorter (faster)? Noearlier clock timesleep at earlier biological timereduced acute effectsphase shifting effects?

Duffy et al., Sleep Med. Clin. , 2016

Page 79: Debra J. SKENE - European Sleep Research Society · Skene et al., PNAS, 2018. Pathways of peripheral clock entrainment From Mohawk et al. Annu. Rev. Neurosci. 2012. Human circadian

Possible causes of age-related changes in circadian system

1. Clock disturbance

2. Entrainment abnormalities

3. Insufficient zeitgebersocular light, ↓ melatonin signalling

Page 80: Debra J. SKENE - European Sleep Research Society · Skene et al., PNAS, 2018. Pathways of peripheral clock entrainment From Mohawk et al. Annu. Rev. Neurosci. 2012. Human circadian

PinealGland

SCN PVN SCG

Output pathway

melatonin temperature sleep/wake

RHT

Input pathway

cortisol

LIGHT MELATONIN

Page 81: Debra J. SKENE - European Sleep Research Society · Skene et al., PNAS, 2018. Pathways of peripheral clock entrainment From Mohawk et al. Annu. Rev. Neurosci. 2012. Human circadian

LIGHT MELATONIN

Phase shift circadian rhythms

Chronotherapy to hasten adaptation

Page 82: Debra J. SKENE - European Sleep Research Society · Skene et al., PNAS, 2018. Pathways of peripheral clock entrainment From Mohawk et al. Annu. Rev. Neurosci. 2012. Human circadian

Light Melatonin

• shifts circadian rhythmssleep timing

melatonin

temperature

cortisol

Page 83: Debra J. SKENE - European Sleep Research Society · Skene et al., PNAS, 2018. Pathways of peripheral clock entrainment From Mohawk et al. Annu. Rev. Neurosci. 2012. Human circadian

Management/Treatment of

Circadian Rhythm Sleep-wake Disorders

Page 84: Debra J. SKENE - European Sleep Research Society · Skene et al., PNAS, 2018. Pathways of peripheral clock entrainment From Mohawk et al. Annu. Rev. Neurosci. 2012. Human circadian

Increase zeitgeber strength

Increase circadian amplitude

Light Melatoninsupplementation

Page 85: Debra J. SKENE - European Sleep Research Society · Skene et al., PNAS, 2018. Pathways of peripheral clock entrainment From Mohawk et al. Annu. Rev. Neurosci. 2012. Human circadian

Age-related ocular changes

Reduced sensitivity to blue light**

Reduced environmental light exposure

- reduced mobility

- homes poorly lit

Older people require 3-5 times more light

**Herljevic et al., 2005; Jud et al., 2009; Sletten et al., 2009

Why light supplementation for older people?

Page 86: Debra J. SKENE - European Sleep Research Society · Skene et al., PNAS, 2018. Pathways of peripheral clock entrainment From Mohawk et al. Annu. Rev. Neurosci. 2012. Human circadian

Optimisation of lighting for the elderly

increase blue light content

increase longer wavelengths - enhance any M- and L-cone input- melanopsin photoreversal

Revell and Skene, 2009

Page 87: Debra J. SKENE - European Sleep Research Society · Skene et al., PNAS, 2018. Pathways of peripheral clock entrainment From Mohawk et al. Annu. Rev. Neurosci. 2012. Human circadian

Light treatment shown some benefits

- older demented patients Van Someren et al., 1997; Fetveit et al., 2003; Riemersma-van der Lek et al., 2008

Blue-enriched 17000 K lights

- office workers; living environments Francis et al., 2008; Viola et al., 2008; van Hoof et al., 2008; Vetter et al., 2011

Why light supplementation for older people?

Page 88: Debra J. SKENE - European Sleep Research Society · Skene et al., PNAS, 2018. Pathways of peripheral clock entrainment From Mohawk et al. Annu. Rev. Neurosci. 2012. Human circadian

Spectral compositionBlue-enriched white light Control white light high colour temperature low colour temperature 17000 K 4000 K

400 450 500 550 600 650 700

-100

0

100

200

300

17000 K lights

4000 K lights

Wavelength (nm)

Re

lati

ve

sp

ec

tra

lp

ow

er

dis

trib

uti

on

Page 89: Debra J. SKENE - European Sleep Research Society · Skene et al., PNAS, 2018. Pathways of peripheral clock entrainment From Mohawk et al. Annu. Rev. Neurosci. 2012. Human circadian

Effect of blue-enriched and control white light

on sleep quality and daytime alertness

in older people?

- in the community

- in care homes

EU FP6 Marie Curie RTNESRC New Dynamics of Ageing/Philips Lighting

Field studies

Page 90: Debra J. SKENE - European Sleep Research Society · Skene et al., PNAS, 2018. Pathways of peripheral clock entrainment From Mohawk et al. Annu. Rev. Neurosci. 2012. Human circadian

week

week

Baseline

Light exposureA or B

Washout period

Light exposureA or B

Washout period

week

week

week

1

2

3

4

5

6

7

8

9

10

11

light exposure A or B

week

week

week

week

week

week

Community study - skeleton photoperiods

Page 91: Debra J. SKENE - European Sleep Research Society · Skene et al., PNAS, 2018. Pathways of peripheral clock entrainment From Mohawk et al. Annu. Rev. Neurosci. 2012. Human circadian

Effect of blue-enriched and control white light

on sleep quality and daytime alertness

in older people?

- in the community

- in care homes

EU FP6 Marie Curie RTNESRC New Dynamics of Ageing/Philips Lighting

Field studies

Page 92: Debra J. SKENE - European Sleep Research Society · Skene et al., PNAS, 2018. Pathways of peripheral clock entrainment From Mohawk et al. Annu. Rev. Neurosci. 2012. Human circadian

Weeks

1 2 3 4 5 6 7 8 9 10 11 12

Weeks

1 2 3 4 5 6 7 8 9 10 11 12

Care home study - protocol

base line care home lights ~ 60 lux

17000 K light ~ 900 lux

4000 K light ~ 200 lux

wash out period care home lights ~ 60 lux

12-week study, randomised, crossover design September - April in 2008/2009 and 2009/2010

Page 93: Debra J. SKENE - European Sleep Research Society · Skene et al., PNAS, 2018. Pathways of peripheral clock entrainment From Mohawk et al. Annu. Rev. Neurosci. 2012. Human circadian

Aims• To increase light levels and light exposure in

older people

• To test if increasing light levels will affect sleep, activity, alertness and mood

Hypothesis

high intensity blue-enriched (17000 K, 900 lux) > control (4000 K, 200 lux)

Page 94: Debra J. SKENE - European Sleep Research Society · Skene et al., PNAS, 2018. Pathways of peripheral clock entrainment From Mohawk et al. Annu. Rev. Neurosci. 2012. Human circadian

Care room original light conditions

Dimly lit, not uniform59 ± 52 lux (mean ± SD, n = 20 rooms)

Indoor lighting measured weekly (lux meter), after sunsetIn direction of gaze (vertical plane)

Page 95: Debra J. SKENE - European Sleep Research Society · Skene et al., PNAS, 2018. Pathways of peripheral clock entrainment From Mohawk et al. Annu. Rev. Neurosci. 2012. Human circadian

Supplementing light in care homes

Care home #1, 4000 K lights Care home #8, 17000 K light

More uniform, higher light levels

4000 K 195 ± 31 lux17000 K894 ± 129 luxCare home 59 ± 52 lux

Hopkins, S. et al. Current Alz. Res 2017

Page 96: Debra J. SKENE - European Sleep Research Society · Skene et al., PNAS, 2018. Pathways of peripheral clock entrainment From Mohawk et al. Annu. Rev. Neurosci. 2012. Human circadian

24 hour light profiles

17000 K vs washout

4000 K vs washout

17000 KWashout

4000 KWashout

0 4 8 12 16 20 240

500

1000

1500 17kWO

Time (Hours)

Mea

nlu

x le

vel

0 4 8 12 16 20 240

500

1000

1500 WO4K

Time (Hours)

Mea

nlu

x le

vel

Page 97: Debra J. SKENE - European Sleep Research Society · Skene et al., PNAS, 2018. Pathways of peripheral clock entrainment From Mohawk et al. Annu. Rev. Neurosci. 2012. Human circadian

Conclusions

Blue-enriched light supplementation - well tolerated - positive effects

reduced anxietyincreased daytime activityadvanced activity rhythm

- negative effects increased night-time activityreduced sleep efficiencyreduced sleep quality

Hopkins, S. et al. Current Alz. Res 2017

Page 98: Debra J. SKENE - European Sleep Research Society · Skene et al., PNAS, 2018. Pathways of peripheral clock entrainment From Mohawk et al. Annu. Rev. Neurosci. 2012. Human circadian

Using Light: ChallengesControlled laboratory studies

practical real life situations?

Need more large, randomised, placebo controlled studies for light optimisation

Adapt to specific subjects groups e.g. older people (shiftworkers etc)

Caution with high intensity “activating” blue-enriched light

Page 99: Debra J. SKENE - European Sleep Research Society · Skene et al., PNAS, 2018. Pathways of peripheral clock entrainment From Mohawk et al. Annu. Rev. Neurosci. 2012. Human circadian

Melatonin• shifts circadian rhythms

sleep timing

melatonin

temperature• acute effects

lowers temperature

lowers alertness, transient sleepiness

improves sleep (mood, performance)

Page 100: Debra J. SKENE - European Sleep Research Society · Skene et al., PNAS, 2018. Pathways of peripheral clock entrainment From Mohawk et al. Annu. Rev. Neurosci. 2012. Human circadian

Time (h)

Melatonin

36.2

36.4

36.6

36.8

37

37.2

20

40

60

80

100

Meal17:00 19:00 21:00 23:00 01:00

Core body temperature

Alertness

Acute effects of 5mg melatonin

100

PlaceboSubjective Alertness

(%)

Rectal Temperature

( C)

Deacon et al., 1994

Page 101: Debra J. SKENE - European Sleep Research Society · Skene et al., PNAS, 2018. Pathways of peripheral clock entrainment From Mohawk et al. Annu. Rev. Neurosci. 2012. Human circadian

Melatonin as a “sleep aid”• Not a classical sedative hypnotic

Reduces sleep latency

Increases total sleep time?

Reduces night awakenings?

• Older adults with sleep problems• (Children with neurodevelopmental disorders

autism, ADHD)

Page 102: Debra J. SKENE - European Sleep Research Society · Skene et al., PNAS, 2018. Pathways of peripheral clock entrainment From Mohawk et al. Annu. Rev. Neurosci. 2012. Human circadian

reducing sleep onset latency

in primary insomnia (p = 0.002)

in delayed sleep phase syndrome (p < 0.0001)

regulating the sleep-wake patterns in blind patients compared with placebo.

Auld et al., Sleep Med Rev. 2017

Page 103: Debra J. SKENE - European Sleep Research Society · Skene et al., PNAS, 2018. Pathways of peripheral clock entrainment From Mohawk et al. Annu. Rev. Neurosci. 2012. Human circadian

Melatonin receptor agonists

TASIMELTEON – HETLIOZ®

Selective MT1/MT2 agonist

FDA approved for non-24 h S/W disorder

Vanda Pharmaceuticalsmelatonin

Takeda

Sleep-onset insomnia

Valdoxan ®

ServierMajor depressive disorder

Page 104: Debra J. SKENE - European Sleep Research Society · Skene et al., PNAS, 2018. Pathways of peripheral clock entrainment From Mohawk et al. Annu. Rev. Neurosci. 2012. Human circadian

Acknowledgements

LIGHTKavita Thapan Victoria RevellMirela HerljevicTracey SlettenHelen ThorneKatharina Lederle

MELATONINSteven LockleyLisa HackJosephine Arendt

Benita Middleton

Lloyd Morgan

Samantha Hopkins

Daniel Barrett

Katrin Ackermann

Shelagh Hampton

FOODSophie Wehrens

Cheryl Isherwood

Skevoulla Christou

Simon Archer

Michelle Gibbs

Jonathan Johnston

Page 105: Debra J. SKENE - European Sleep Research Society · Skene et al., PNAS, 2018. Pathways of peripheral clock entrainment From Mohawk et al. Annu. Rev. Neurosci. 2012. Human circadian

AcknowledgementsCurrent and recent funding EU Marie Curie RTN EU FP6 IP

Past fundingBHF, EU Biomed, EU FP5, MRC, Pfizer, Servier R & D, Wellcome Trust

STOCKGRAND LTDSTOCKGRAND LTD

ESRC New Dynamics of Ageing

Page 106: Debra J. SKENE - European Sleep Research Society · Skene et al., PNAS, 2018. Pathways of peripheral clock entrainment From Mohawk et al. Annu. Rev. Neurosci. 2012. Human circadian

Thank you

[email protected]

@debrajskene

Page 107: Debra J. SKENE - European Sleep Research Society · Skene et al., PNAS, 2018. Pathways of peripheral clock entrainment From Mohawk et al. Annu. Rev. Neurosci. 2012. Human circadian

References - Reviews

Page 108: Debra J. SKENE - European Sleep Research Society · Skene et al., PNAS, 2018. Pathways of peripheral clock entrainment From Mohawk et al. Annu. Rev. Neurosci. 2012. Human circadian

References - Reviews

Page 109: Debra J. SKENE - European Sleep Research Society · Skene et al., PNAS, 2018. Pathways of peripheral clock entrainment From Mohawk et al. Annu. Rev. Neurosci. 2012. Human circadian

References - Reviews