dc motor drives 2007 ppt

Upload: stubborn002

Post on 02-Jun-2018

300 views

Category:

Documents


9 download

TRANSCRIPT

  • 8/10/2019 Dc Motor Drives 2007 Ppt

    1/48

    DC MOTOR DRIVES(MEP 1422)

    Dr. Nik Rumzi Nik Idris

    Department of Energy Conversion

    FKE, UTM

  • 8/10/2019 Dc Motor Drives 2007 Ppt

    2/48

    Contents Introduction

    Trends in DC drives

    Principles of DC motor drives

    Modeling of Converters and DC motor

    Phase-controlled Rectifier

    DC-DC converter (Switch-mode) Modeling of DC motor

    Closed-loop speed control

    Cascade Control Structure

    Closed-loop speed control - an example Torque loop

    Speed loop

    Summary

  • 8/10/2019 Dc Motor Drives 2007 Ppt

    3/48

    INTRODUCTION

    DC DRIVES: Electric drives that use DC motorsas the prime movers

    Dominates variable speed applications beforePE converters were introduced

    DC motor: industry workhorse for decades

    Will AC drive replaces DC drive ?

    Predicted 30 years ago

    AC will eventually replace DCat a slow rate

    DC strong presenceeasy controlhuge numbers

  • 8/10/2019 Dc Motor Drives 2007 Ppt

    4/48

    Introduction

    DC Motors

    Several limitations:

    Advantage: Precise torque and speed controlwithout sophisticated electronics

    Regular Maintenance Expensive

    Heavy Speed limitations

    Sparking

  • 8/10/2019 Dc Motor Drives 2007 Ppt

    5/48

    Introduction

    DC Motors - 2 pole

    Stator

    Rotor

  • 8/10/2019 Dc Motor Drives 2007 Ppt

    6/48

    Introduction

    DC Motors - 2 pole

    Mechanical commutator to maintain armature current direction

    X

    X

    X

    X

    X

    Armature mmf produces

    flux which distorts main

    flux produce by field

    Armature reaction

  • 8/10/2019 Dc Motor Drives 2007 Ppt

    7/48

    Introduction

    Flux at one side of the pole may saturate

    Zero flux region shifted

    Flux saturation, effective flux per pole decreases

    Large machine employs compensation windings and interpoles

    Armature mmf distorts field flux

    Armature reaction

  • 8/10/2019 Dc Motor Drives 2007 Ppt

    8/48

    Introduction

    at ikTe Electric torque

    Ea ke Armature back e.m.f.

    Lf Rf

    if

    aa

    aat edt

    diLiRv

    +

    ea

    _

    LaRa

    ia+

    Vt

    _

    +

    Vf

    _

    dt

    diLiRv ffff

  • 8/10/2019 Dc Motor Drives 2007 Ppt

    9/48

    Introduction

    aaat EIRV In steady state,

    2Tea

    T

    t

    k

    TR

    k

    V

    Therefore steady state speed is given by,

    Three possible methods of speed control:

    Field flux

    Armature voltage VtArmature resistance Ra

    aaaat edt

    diLiRV

    Armature circuit:

  • 8/10/2019 Dc Motor Drives 2007 Ppt

    10/48

    Introduction

    2Tea

    T

    t

    k

    TR

    k

    V

    Te

    TLT

    t

    k

    V

    Vt

    Varying Vt

    Requires variable DC supply

  • 8/10/2019 Dc Motor Drives 2007 Ppt

    11/48

    Introduction

    2Tea

    T

    t

    k

    TR

    k

    V

    Te

    TLT

    t

    k

    V

    Vt

    Varying Vt

    Requires variable DC supply

  • 8/10/2019 Dc Motor Drives 2007 Ppt

    12/48

    Te

    Varying Vt

    Requires variable DC supply

    TL

    T

    eaTt

    k

    TR)k(V

    Introduction

    Constant TL

  • 8/10/2019 Dc Motor Drives 2007 Ppt

    13/48

    Vt

    Introduction

    aaTt RI)k(V

    aaRI

    rated,tV

    base

    Varying Vt

    Constant TL

    T

    eaTt

    k

    TR)k(V

  • 8/10/2019 Dc Motor Drives 2007 Ppt

    14/48

    Introduction

    2Tea

    T

    t

    k

    TR

    k

    V

    Te

    Ra

    TL

    T

    t

    k

    V

    Varying Ra

    Simple control

    Losses in external resistor

  • 8/10/2019 Dc Motor Drives 2007 Ppt

    15/48

    Introduction

    2Tea

    T

    t

    k

    TR

    k

    V

    Te

    TL

    T

    t

    k

    V

    Varying

    Not possible for PM motor

    Maximum torque capability reduces

  • 8/10/2019 Dc Motor Drives 2007 Ppt

    16/48

    Introduction

    For wide range of speed control

    0 to base armature voltage, above basefield flux reduction

    Armature voltage control : retain maximum torque capability

    Field flux control (i.e. flux reduced) : reduce maximum torque capability

    Te

    Maximum

    Torque capability

    Armature voltage control

    Field flux control

    base

  • 8/10/2019 Dc Motor Drives 2007 Ppt

    17/48

    Introduction

    Te

    Maximum

    Torque capability

    base

  • 8/10/2019 Dc Motor Drives 2007 Ppt

    18/48

    Introduction

    Te

    Constant powerConstant torque

    base

    0 to base armature voltage, above basefield flux reduction

    P= EaIa,max= kaIa,max

    Pmax

    Pmax = EaIa,max= kabaseIa,max

    1/

    P

  • 8/10/2019 Dc Motor Drives 2007 Ppt

    19/48

    MODELING OF CONVERTERS

    AND DC MOTOR

    Used to obtain variable armature voltage

    POWER ELECTRONICS CONVERTERS

    Efficient

    Ideal : lossless

    Phase-controlled rectifiers (AC DC)

    DC-DC switch-mode converters(DC DC)

  • 8/10/2019 Dc Motor Drives 2007 Ppt

    20/48

    Modeling of Converters and DC motor

    Phase-controlled rectifier (ACDC)

    T

    Q1Q2

    Q3 Q4

    3-phase

    supply

    +

    Vt

    ia

  • 8/10/2019 Dc Motor Drives 2007 Ppt

    21/48

    Phase-controlled rectifier

    Q1Q2

    Q3 Q4

    T

    3-phase

    supply

    3-

    phase

    supply

    +

    Vt

    Modeling of Converters and DC motor

  • 8/10/2019 Dc Motor Drives 2007 Ppt

    22/48

    Phase-controlled rectifier

    Q1Q2

    Q3 Q4

    T

    F1

    F2

    R1

    R2

    + Va -

    3-phase

    supply

    Modeling of Converters and DC motor

  • 8/10/2019 Dc Motor Drives 2007 Ppt

    23/48

    Phase-controlled rectifier (continuous current)

    Firing circuitfiring angle control

    Establish relation between vcand Vt

    firing

    circuit

    current

    controller

    controlled

    rectifier

    +

    Vt

    vciref +

    -

    Modeling of Converters and DC motor

  • 8/10/2019 Dc Motor Drives 2007 Ppt

    24/48

    Phase-controlled rectifier (continuous current)

    Firing angle control

    180

    v

    vcos

    V2V

    t

    cm

    a

    ct v

    180

    v180

    v

    v

    t

    c

    linear firing angle control

    cosvv sc

    Cosine-wave crossing control

    s

    cm

    av

    vV2V

    Modeling of Converters and DC motor

    http://localhost/var/www/apps/conversion/tmp/scratch_6/cosine_crossing.jpghttp://localhost/var/www/apps/conversion/tmp/scratch_6/cosine_crossing.jpghttp://localhost/var/www/apps/conversion/tmp/scratch_6/cosine_crossing.jpghttp://localhost/var/www/apps/conversion/tmp/scratch_6/cosine_crossing.jpg
  • 8/10/2019 Dc Motor Drives 2007 Ppt

    25/48

    Phase-controlled rectifier (continuous current)

    Steady state: linear gain amplifier

    Cosine wavecrossing method

    Modeling of Converters and DC motor

    Transient: sampler with zero order hold

    T

    GH(s)

    converter

    T 10 ms for 1-phase 50 Hz system

    3.33 ms for 3-phase 50 Hz system

  • 8/10/2019 Dc Motor Drives 2007 Ppt

    26/48

    0.3 0.31 0.32 0.33 0.34 0.35 0.36-400

    -200

    0

    200

    400

    0.3 0.31 0.32 0.33 0.34 0.35 0.36-10

    -5

    0

    5

    10

    Phase-controlled rectifier (continuous current)

    Td

    Td Delay in average output voltage generation

    010 ms for 50 Hz single phase system

    Output

    voltage

    Cosine-wave

    crossing

    Control

    signal

    Modeling of Converters and DC motor

  • 8/10/2019 Dc Motor Drives 2007 Ppt

    27/48

    Phase-controlled rectifier (continuous current)

    Model simplified to linear gain if bandwidth

    (e.g. current loop) much lower than sampling

    frequency

    Low bandwidthlimited applications

    Low frequency voltage ripple high currentripple undesirable

    Modeling of Converters and DC motor

  • 8/10/2019 Dc Motor Drives 2007 Ppt

    28/48

    Switchmode converters

    Q1Q2

    Q3 Q4

    T

    +

    Vt-

    T1

    Modeling of Converters and DC motor

  • 8/10/2019 Dc Motor Drives 2007 Ppt

    29/48

    Switchmode converters

    +

    Vt

    -

    T1

    D1

    T2

    D2

    Q1Q2

    Q3 Q4

    T

    Q1 T1 and D2

    Q2 D1 and T2

    Modeling of Converters and DC motor

  • 8/10/2019 Dc Motor Drives 2007 Ppt

    30/48

    Switchmode converters

    Q1Q2

    Q3 Q4

    T

    + Vt

    -T1

    D1

    T2D2

    D3

    D4

    T3

    T4

    Modeling of Converters and DC motor

  • 8/10/2019 Dc Motor Drives 2007 Ppt

    31/48

    Switchmode converters

    Switching at high frequency

    Reduces current ripple

    Increases control bandwidth

    Suitable for high performance applications

    Modeling of Converters and DC motor

  • 8/10/2019 Dc Motor Drives 2007 Ppt

    32/48

    Switchmode converters - modeling

    +

    Vdc

    Vdc

    vc

    vtri

    q

    0

    1q

    when vc> vtri, upper switch ON

    when vc< vtri, lower switch ON

    Modeling of Converters and DC motor

  • 8/10/2019 Dc Motor Drives 2007 Ppt

    33/48

    tri

    onTt

    ttri T

    tdtq

    T

    1d

    tri

    vc

    q

    Ttri

    d

    Switchmode convertersaveraged model

    Modeling of Converters and DC motor

    dc

    dT

    0dc

    tri

    t dVdtVT

    1V

    tri

    Vdc Vt

  • 8/10/2019 Dc Motor Drives 2007 Ppt

    34/48

    Vtri,p-Vtri,pvc

    d

    1

    0

    0.5

    p,tri

    c

    V2

    v5.0d

    c

    p,tri

    dcdct v

    V2

    VV5.0V

    Switchmode convertersaveraged model

    Modeling of Converters and DC motor

  • 8/10/2019 Dc Motor Drives 2007 Ppt

    35/48

    Switchmode converterssmall signal model

    Modeling of Converters and DC motor

    )s(vV2

    V)s(V c

    p,tri

    dct

    )s(vV

    V)s(V c

    p,tri

    dct

    2-quadrant converter

    4-quadrant converter

  • 8/10/2019 Dc Motor Drives 2007 Ppt

    36/48

    DC motorseparately excited or permanent magnet

    Modeling of Converters and DC motor

    Extract the dc and ac components by introducing small

    perturbations in Vt, ia, ea, Te, TLand m

    aa

    aaat edt

    diLRiv

    Te= kt ia ee= kt

    dt

    dJTT mle

    a

    a

    aaat

    e~

    dt

    i~

    dLRi

    ~v~

    )i~

    (kT~

    aEe

    )~(ke~ Ee

    dt

    )~(dJ~BT

    ~T~

    Le

    ac components

    aaat ERIV

    aEe IkT

    Ee kE

    )(BTT Le

    dc components

  • 8/10/2019 Dc Motor Drives 2007 Ppt

    37/48

    DC motorsmall signal model

    Modeling of Converters and DC motor

    Perform Laplace Transformation on ac components

    aa

    aaat e~

    dt

    i~

    dLRi

    ~v~

    )i~

    (kT~

    aEe

    )~(ke~ Ee

    dt)~(dJ~BT~T~ Le

    Vt(s) = Ia(s)Ra+ LasIa + Ea(s)

    Te(s) = kEIa(s)

    Ea(s) = kE(s)

    Te(s) = TL(s) + B(s) + sJ(s)

  • 8/10/2019 Dc Motor Drives 2007 Ppt

    38/48

    DC motorsmall signal model

    Modeling of Converters and DC motor

    Tkaa sLR

    1

    )s(Tl

    )s(Te

    sJB

    1

    Ek

    )s(Ia )s()s(Va+

    -

    -

    +

  • 8/10/2019 Dc Motor Drives 2007 Ppt

    39/48

    CLOSED-LOOP SPEED CONTROL

    Cascade control structure

    It is flexible outer loop can be readily added or removed

    depending on the control requirements

    The control variable of inner loop (e.g. torque) can be

    limited by limiting its reference value

    1/s

    convertertorque

    controllerspeed

    controller

    position

    controller+

    -

    +

    -

    +

    -

    tacho

    Motor* T**

    kT

  • 8/10/2019 Dc Motor Drives 2007 Ppt

    40/48

    CLOSED-LOOP SPEED CONTROL

    Design procedure in cascade control structure

    Inner loop (current or torque loop) the fastest

    largest bandwidth

    The outer most loop (position loop) the slowest

    smallest bandwidth

    Design starts from torque loop proceed towards

    outer loops

  • 8/10/2019 Dc Motor Drives 2007 Ppt

    41/48

    CLOSED-LOOP SPEED CONTROL

    Closed-loop speed controlan example

    OBJECTIVES: Fast responselarge bandwidth

    Minimum overshoot

    good phase margin (>65o)

    Zero steady state errorvery large DC gain

    BODE PLOTS

    Obtain linear small signal model

    METHOD

    Design controllers based on linear small signal model

    Perform large signal simulation for controllers verification

  • 8/10/2019 Dc Motor Drives 2007 Ppt

    42/48

    CLOSED-LOOP SPEED CONTROL

    Ra = 2 La = 5.2 mH

    J = 152 x 106kg.m2B = 1 x104kg.m2/sec

    kt = 0.1

    Nm/A

    ke = 0.1

    V/(rad/s)

    Vd= 60 V Vtri= 5 V

    fs= 33kHz

    Permanent magnet motors parameters

    Closed-loop speed controlan example

    PI controllers Switching signals from comparison

    of vcand triangular waveform

  • 8/10/2019 Dc Motor Drives 2007 Ppt

    43/48

    CLOSED-LOOP SPEED CONTROL

    Torque controller design

    Tc

    vtri

    +

    Vdc

    q

    q

    +

    kt

    Torque

    controller

    Tkaa sLR

    1

    )s(Tl

    )s(Te

    sJB

    1

    Ek

    )s(Ia )s()s(Va+

    -

    -

    +

    Torque

    controller

    Converter

    peak,tri

    dc

    V

    V)s(Te

    -

    +

    DC motor

  • 8/10/2019 Dc Motor Drives 2007 Ppt

    44/48

    Bode Diagram

    Frequency (rad/sec)

    -50

    0

    50

    100

    150From: Input Point To: Output Point

    M

    agnitude(dB)

    10-2

    10-1

    100

    101

    102

    103

    104

    105

    -90

    -45

    0

    45

    90

    Phas

    e(deg)

    CLOSED-LOOP SPEED CONTROL

    Torque controller design

    Open-loop gain

    compensated

    compensated

    kpT= 90

    kiT= 18000

  • 8/10/2019 Dc Motor Drives 2007 Ppt

    45/48

    CLOSED-LOOP SPEED CONTROL

    Speed controller design

    Assume torque loop unity gain for speed bandwidth

  • 8/10/2019 Dc Motor Drives 2007 Ppt

    46/48

    Bode Diagram

    Frequency (Hz)

    -50

    0

    50

    100

    150From: Input Point To: Output Point

    M

    agnitude(dB)

    10-2

    10-1

    100

    101

    102

    103

    104

    -180

    -135

    -90

    -45

    0

    Phase

    (deg)

    CLOSED-LOOP SPEED CONTROL

    Speed controller

    Open-loop gain

    compensated

    kps= 0.2

    kis= 0.14

    compensated

  • 8/10/2019 Dc Motor Drives 2007 Ppt

    47/48

    CLOSED-LOOP SPEED CONTROL

    Large Signal Simulation results

    0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45-40

    -20

    0

    20

    40

    0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45-2

    -1

    0

    1

    2

    Speed

    Torque

  • 8/10/2019 Dc Motor Drives 2007 Ppt

    48/48

    CLOSED-LOOP SPEED CONTROL DESIGN EXAMPLE

    SUMMARY

    Power electronics convertersto obtain variable armature voltage

    Phase controlled rectifiersmall bandwidthlarge rippleSwitch-mode DC-DC converterlarge bandwidthsmall ripple

    Controller design based on linear small signal model

    Power converters - averaged model

    DC motorseparately excited or permanent magnet

    Closed-loop speed control design based on Bode plots

    Verify with large signal simulation

    Speed control by: armature voltage (0 b) and field flux (b)