day 1 part 1 lte technology overview v1

69
eNodeB Operation & Maintenance Basics Prepared by: Samsung Approved by: RJIL

Upload: tarun-chauhan

Post on 16-Jan-2016

26 views

Category:

Documents


1 download

DESCRIPTION

LTE trng

TRANSCRIPT

Page 1: Day 1 Part 1 LTE Technology Overview V1

eNodeB Operation & Maintenance Basics

Prepared by: Samsung

Approved by:RJIL

Page 2: Day 1 Part 1 LTE Technology Overview V1

Detailed Schedule

Day Course Topics

Day 1

LTE Basics

Introduction to LTE

LTE Network Architecture

LTE Air Interface

Samsung eNodeB System OverviewSamsung eNodeB Specs

Samsung eNodeB Hardware

Day 2 Introduction to LSM-R

LSM Basic Operations

FCAPS Basics

Call Tracing

Day 3 eNodeB Growth

eNodeB growth for PnP

System Checks

Neighbor Configurations

RET Operations

Day 4 Troubleshooting

eNodeB Environment Checks

eNodeB Connectivity Check

eNodeB Software Loading Issues

Page 3: Day 1 Part 1 LTE Technology Overview V1

Course Name: eNodeB O&M Basics

Course ObjectiveThis module will enable participants to understand high-level overview of Samsung eNodeB LSM-R operations

Who Should AttendO&M Engineers, RAN engineersPre-Requisite Basic understanding of LTE

Morning Session (11am to 1:30pm) Lunch break

Afternoon Session (2:30pm to 6pm)

Day 1

• Introduction to LTE• LTE Network Architecture• Node Functions & Specifications

• Samsung eNodeB System Overview• Lab Visit

Page 4: Day 1 Part 1 LTE Technology Overview V1

Good to Know

Keep your mobile phone in the silent mode during the session

Need to sign attendance sheet at the start and end of each day

At the end of each training pre and post test will be conducted

Stick to break timings

Your valuable feedback will be taken at the end to enhance training experience

Certificate will be issued to successful participant

For logistics support contact the coordinator

Page 5: Day 1 Part 1 LTE Technology Overview V1

Agenda: Day 1

Introduction to LTE Evolution of cellular networks Comparison of 2G, 3G and LTE LTE Targets

LTE Network Architecture Cellular Architecture (2G and 3G) LTE RAN & Core Philosophies LTE Air Interface

Samsung eNodeB Overview Samsung eNodeB Specs Samsung eNodeB Key Features Samsung eNodeB Hardware

Page 6: Day 1 Part 1 LTE Technology Overview V1

Introduction to LTE

Page 7: Day 1 Part 1 LTE Technology Overview V1

Target Services

Page 8: Day 1 Part 1 LTE Technology Overview V1

Evolution of Cellular Networks

1980s 1990s 2000 2010 onwards

Generation

Late 90s 2003 2008

1G

2G & its evolution

3G & its evolution

4G & its evolution

LTE

GSM

Analog cellular

GPRSEDGE

UMTSHSPA

HSPA+LTE-A

9.6

Kbps

144

Kbps

384

Kbps

2Mbps

14

Mbps

84

Mbps

300

Mbps

1Gbps

Packet switched data

Circuit switched voice support

Packet core

Only changes to RAN

Changes to RAN & Core network

Deployed in the

same channel

Deployed in the

same channel

Deployed in the

same channel

Standards

Band

Peak data rates

Page 9: Day 1 Part 1 LTE Technology Overview V1

Comparison: 2G, 3G and LTEFeatures GSM / GPRS / EDGE WCDMA / HSPA LTE

Multiple Access FDMA + TDMA CDMA OFDMA

Carrier Bandwidth 200 KHz 5 MHz 1.4 - 20 MHz

Peak Data RateGSM 9.6 KbpsGPRS 144 KbpsEDGE 384 Kbps

WCDMA 2 MbpsHSPA 14 Mbps

HSPA+ 42 Mbps LTE 100 MbpsLTE-A 1Gbps

Transmission Time Interval (TTI) EDGE 20ms WCDMA 10 ms

HSPA 2ms 1ms

Latency (user plane) ~120 ms ~40 ms ~<20 ms

Modulation schemes GMSK, 8-PSK QPSK, 16-QAM, 64-QAM

QPSK, 16-QAM, 64-QAM

Access Network BTS + BSC NodeB + RNC eNodeB

Core Network CS – MSC, GMSCPS – SGSN, GGSN

CS – MSC, GMSCPS – SGSN, GGSN

PS – MME, S-GW, P-GW

Voice & Video Calls CS CS PS

Page 10: Day 1 Part 1 LTE Technology Overview V1

Comparison: 2G, 3G and LTE Architectures

CoreNetwork

AccessNetwork

MSC

GGSN

SGSN

BSC / RNC

eNodeB

PSTN IP

GMSC

IP

BTS / NodeB

LTEGSM / WCDMA

• Controller node in access network

• Separate CS and PS cores• Combined user and

control planes

• Single-node access network

• Completely PS network• Separate USER and

CONTROL planes

Page 11: Day 1 Part 1 LTE Technology Overview V1

3GPP Releases

Release Functional Freeze Date Key Features

R99 March 2000 UMTS 3.84 Mcps (WCDMA FDD &TDD)

R4 March 2001 1.28 Mcps TD-SCDMA

R5 June 2002 HSDPA

R6 March 2005 HSUPA (E-DCH)

R7 Dec 2007 HSPA+ (64QAM DL, MIMO, 16QAM UL), LTE & SAE feasibility study

R8 Dec 2008 LTE work item – OFDMA, SAE work item, new IP core, 3G femtocells, DC HSDPA

R9 Dec 2009 LTE-A feasibility study, SON, LTE femtocells, Dual Cell HSUPA

R10 March 2011 CoMP study, 4-carrier HSDPA

Source: Aglient Technologies

Page 12: Day 1 Part 1 LTE Technology Overview V1

LTE Requirements

• 100 Mbps DL & 50 Mbps UL for 20 MHz• Spectral efficiency of 5 bps/Hz DL and 2.5

bps/Hz ULData Rates

• Control plane < 100 ms• User plane (RAN) < 5msLatencies

• LTE WCDMA 500 ms NRT, 300 ms RT• LTE GSM 500 ms NRT, 300 ms RTInterworking

Page 13: Day 1 Part 1 LTE Technology Overview V1

TD – LTE RF Bands

LTE Band Number Allocation (MHz) Width of Band (MHz)

33 1900 - 1920 20

34 2010 - 2025 15

35 1850 - 1910 60

36 1930 - 1990 60

37 1910 - 1930 20

38 2570 - 2620 50

39 1880 - 1920 40

40 2300 - 2400 100

41 2496 - 2690 194

42 3400 - 3600 200

43 3600 - 3800 200

Page 14: Day 1 Part 1 LTE Technology Overview V1

LTE Specifications

Specification index Description of contents

TS 36.100 seriesEquipment Requirements: Terminals, Base stations, and Repeaters

TS 36.200 seriesLayer 1 (Physical layer): Physical channels, Modulation, Multiplexing, Channel coding, etc.

TS 36.300 seriesLayers 2 and 3: Medium Access Control, Radio Link Control, and Radio Resource Control.

TS 36.400 seriesNetwork Signaling & Interfaces: Architecture, S1, X2 Interfaces, etc.

TS 36.500 series UE equipment conformance testing

URL: http://www.3gpp.org/ftp/Specs/html-info/36-series.htm

Page 15: Day 1 Part 1 LTE Technology Overview V1

SummaryLTE is the next generation in cellular evolution

It offers high data rates (up to 100 Mbps DL) and low latencies (< 5ms user plane)

It allows flexible bandwidth deployment

It uses small 1ms Transmission Time Interval (TTI) to reduce latency

It supports interworking with existing cellular standards

Page 16: Day 1 Part 1 LTE Technology Overview V1

LTE Network Architecture

Page 17: Day 1 Part 1 LTE Technology Overview V1

MSC

GGSNSGSN

BSC

GSM / GPRS Architecture

BTS

BTS

Abis

BSS CS Core

GMSC

PS Core

PSTN

MS

IP

Gn

Gi

Uu

Page 18: Day 1 Part 1 LTE Technology Overview V1

RNC

WCDMA Architecture

MSC

GGSNSGSN

NodeB

Iub

RAN CS Core

GMSC

PS Core

PSTN

MSNodeB

Iu-CS

Iu-PS

RNC

Iur

NodeB IP

Gn

Gi

Page 19: Day 1 Part 1 LTE Technology Overview V1

LTE Architecture PhilosophySingle node e-UTRAN

Packet based while supporting real time conversational traffic

Minimize number of interfaces

Minimizes single points of failure

Supports end-to-end QOS

Supports QOS differentiation between control, user and O&M traffic

Flat architecture

Supports interworking with a variety of wireless networks

eUTRAN

EPC

IP Cloud

Page 20: Day 1 Part 1 LTE Technology Overview V1

LTE Network

eNodeB

eNodeB

X2

S1-MME

S1-U S5 / S8

S11

S6a

Gx

PDN

S4

External 3GPP Core Network

SGi

Uu

E-UTRAN EPC

S3

Combined into SAE - GW

Page 21: Day 1 Part 1 LTE Technology Overview V1

eNodeBRRM functions Radio Bearer Control Radio Admission Control Connection Mobility Control Dynamic resource allocation UL

& DL

IP header compression and encryption of user data

Selection of MME at UE attachment

Measurements for mobility

Scheduling and transmission of paging and broadcast

Page 22: Day 1 Part 1 LTE Technology Overview V1

Samsung eNodeB: CDU & RRU

L9CA Card

DU

RRU

CPRI

UAMA Card

Page 23: Day 1 Part 1 LTE Technology Overview V1

Samsung Smart SchedulerUses general purpose hardware platform – IBM BladeCenter HT Chassis and HS23 Blade server

Implemented in software by General Purpose Processor (GPP)

Minimizes inter-cell interference

Improves cell-edge throughput

Centralized management for multiple eNB’s

10 blades per server support total 2880 cells

X2

SC1

SC1

LSM

Page 24: Day 1 Part 1 LTE Technology Overview V1

Mobility Management EntityControl plane Network Element in EPCNon-Access-Stratum (NAS) Security (Authentication, integrity Protection)Tracking Area updatesSubscriber attach/detachSignaling coordination for SAE Bearer Setup/ReleaseRadio Security ControlTrigger and distribution of Paging Messages to eNBRoaming Control (S6a interface to HSS)Inter-CN Node Signaling (S10 interface), allows efficient inter-MME tracking area updates and attaches

Page 25: Day 1 Part 1 LTE Technology Overview V1

Samsung MME

FAN

L

E

S

A

L

E

S

A

L

E

S

A

BLANK

L

E

N

A

L

E

N

A

L

E

M

A

L

E

M

A

L

E

S

A

L

E

S

A

L

E

S

A

L

E

S

A

L

E

S

A

L

E

S

A

FAN

RAID

FAN

L

E

S

A

L

E

S

A

L

E

S

A

L

E

S

A

L

E

S

A

L

E

S

A

L

E

M

A

L

E

M

A

L

E

S

A

L

E

S

A

L

E

S

A

L

E

S

A

L

E

S

A

L

E

S

A

FAN

Item Specification

Capacity/Performance

10M Subscribers, 30M Bearers

36,000 CPS (1 CPS = 1 Attach and 1 Detach per second)

16 x GE

Rack Dimen-sion 600 mm(W) x 800 mm(D) x 2,000 mm(H)

Board

LEMA LTE EPC Management board Assembly : Switch and Management

LENA LTE EPC Network Interface board Assembly : Network interface

LESA LTE EPC Session management board Assembly : Session/Mobility management

RedundancyLEMA, LENA – 1:1 (active/standby)

LESA – 2:1 (active/standby)

Page 26: Day 1 Part 1 LTE Technology Overview V1

Serving GatewayLocal mobility anchor point: Switching the user plane path to a new eNB in case of Handover

Mobility anchoring for inter-3GPP mobility. This is sometimes referred to as the 3GPP Anchor function

Idle Mode Packet Buffering and notification to MME

Packet Routing/Forwarding between eNB, PDN GW and SGSN

Lawful Interception support

Page 27: Day 1 Part 1 LTE Technology Overview V1

PDN GatewayMobility anchor for mobility between 3GPP access systems and non-3GPP access systems. This is sometimes referred to as the SAE Anchor function

Policy Enforcement (PCEF)

Per User based Packet Filtering (i.e. deep packet inspection)Charging & Lawful Interception support

IP Address Allocation for UE

Packet Routing/Forwarding between Serving GW and external Data Network

Packet screening (firewall functionality)

Page 28: Day 1 Part 1 LTE Technology Overview V1

Samsung SAE-GW

FAN

L

E

N

A

L

E

N

A

L

E

N

A

L

E

N

A

L

E

N

A

L

E

N

A

L

E

M

A

L

E

M

A

L

E

D

A

L

E

D

A

L

E

D

A

L

E

D

A

L

E

D

A

L

E

D

A

FAN

RAID

Item Specification

Capacity/Performance

2.8M IP-CAN sessions / 8.4M bearers with full redundancy

100Gbps for only data forwarding with redun-dancy60Gbps including DPI/PCC with redundancy44Gbps including HHE[1]/DPI/PCC with redun-dancy

Simultaneous packet & call processing

16,000 CPS (1 CPS = 1 Attach and 1 Detach per sec)

12 x 40GE and 48 x 10GE

Rack Dimension 600 mm(W) x 800 mm(D) x 2,000 mm(H)

Board

LEMA LTE EPC Management board Assembly : Switch and Management

LENA LTE EPC Network Interface board Assembly : Network interface

LEDA LTE EPC Data Processing board Assembly : Call control

RedundancyLEMA, LENA – 1:1 (active/standby)

LEDA – 2:1 (active/standby)

Page 29: Day 1 Part 1 LTE Technology Overview V1

Transport Network Hierarchy

CSR

CSR

CSR CSR

AG1

AG1 AG1

AG1

AG2AG2

AG3 AG3

eNBeNB

eNB

eNB

A pair of AG3 routers per site

Up to 16 pairs of AG2 routers Dual-homing with AG3 routers

Up to 10 AG1 rings Up to 4 AG1 routers in a ring Dual-homed ring with AG2 routers

Up to 4 CSR rings Up to 5 (fiber) or 4 (MW or fiber + MV) eNBs per ring Dual-homed with AG1 routersCSR and eNB

AG2 node

Page 30: Day 1 Part 1 LTE Technology Overview V1

R4G Network Deployment QuantificationMumbai

Zones ( 2)

NP GW

OCS

NP GWMNP GWIMS Apps

eSMLC / GMLCLIM - BE

IPSM / SMSC NW IVR

Content MgmtSelf CareOCS OSS

MNP GW

OCS

IMS Apps IPSM / SMSCNW IVR

eSMLC / GMLC

Content Mgmt

Regions (4)

EPC ( 18)

Delhi

IMS Core

MGCF

TAS/OTM

DNS/ENUM

NPDB

PCRF

DRA

HSS

AAA / PS

Ld Bal.

West (Mumbai)

NIMS

eMBMS GW

BMSC MCE DPIL4/L7

NIMS

MRFSBC WAGLIM FE IBRL2 SW

MMESAE GW

LSM R/C

Circles ( 22)

MGW RAN Scheduler eNodeB

South (Chennai)

IMS Core

MGCF

TAS/OTM

DNS/ENUM

NPDB

PCRF

DRA

HSS

AAA / PS

Ld Bal.

North (Delhi)

IMS Core

MGCF

TAS/OTM

DNS/ENUM

NPDB

PCRF

DRA

HSS

AAA / PS

Ld Bal.

East (Kolkata)

IMS Core

MGCF

TAS/OTM

DNS/ENUM

NPDB

PCRF

DRA

HSS

AAA / PS

Ld Bal.

Zonal & Regional Level Nodes will work in Active- Active (Load sharing) mode

EPC++EPC IMS Wi-Fi Supporting OSS/BSSLegend RAN

Page 31: Day 1 Part 1 LTE Technology Overview V1

SummaryLTE architecture is completely packet-based

Single node RAN

Flat architecture EPC

eNodeB performs all the RRM functions

MME performs all control plane core functions

S-GW is the local mobility anchor. Facilitates inter-3GPP handovers

P-GW assigns IP address and applies policy and QoS

Page 32: Day 1 Part 1 LTE Technology Overview V1

Quiz

Radio resources are allocated by

• eNodeB• S-GW

_____ establishes a connection between the UE and EPC

• S-GW• P-GW• MME

During handover DL data is buffered at

• S-GW• MME• P-GW

Page 33: Day 1 Part 1 LTE Technology Overview V1

LTE Air Interface

Page 34: Day 1 Part 1 LTE Technology Overview V1

Air Interface Features

Air Interface of EUTRAN

OFDMA in downlink and SC-FDMA in Uplink

FDD and TDD duplex methods

Scalable bandwidth 1.4MHz to currently 20MHz

MIMO (Multiple Input Multiple Output) is a major component

Page 35: Day 1 Part 1 LTE Technology Overview V1

LTE Key ParametersFrequency Range UMTS FDD bands and UMTS TDD bands

Channel Band-width, 1Resource Block (RB) = 180KHz

1.4MHz 3MHz 5MHz 10MHz 15MHz 20MHz

6 RBs 15RBs 25RBs 50RBs 75RBs 100RBs

Modulation scheme Downlink: QPSK, 16QAM, 64QAMUplink: QPSK, 16QAM, 64QAM (optional for handset)

Multiple Access Downlink: OFDMAUplink: SC-FDMA

MIMOTransmit diversity, Cyclic delay diversity (Max. 4 antenna at Base station & hand-set)Spatial multiplexing, Multiuser MIMO

Peak Data rateDownlink: 150Mbps (UE category 4, 2x2 MIMO, 20MHz) 300Mbps (UE category 5, 4x4 MIMO, 20MHz) Uplink: 75Mbps (20MHz)

Page 36: Day 1 Part 1 LTE Technology Overview V1

UE Categories

All categories support 20 MHz

2x2 MIMO mandatory in other classes except Class 1

UE Category Class 1 Class 2 Class 3 Class 4 Class 5

Peak Data rate DL (Mbps) 10 50 100 150 300

Peak Data rate UL (Mbps) 5 25 50 50 75

Modulation DL 64QAM 64QAM 64QAM 64QAM 64QAM

Modulation UL 16QAM 16QAM 16QAM 16QAM 64QAM

MIMO DL Optional 2x2 2x2 2x2 4x4

Page 37: Day 1 Part 1 LTE Technology Overview V1

LTE Frequency Variants in 3GPP – FDD

1

2

3

4

5

7

8

9

6

2x25

2x75

2x60

2x60

2x70

2x45

2x35

2x35

2x10

824-849

1710-1785

1850-1910

1920-1980

2500-2570

1710-1755

880-915

1749.9-1784.9

830-840

Total [MHz] Uplink [MHz]

869-894

1805-1880

1930-1990

2110-2170

2620-2690

2110-2155

925-960

1844.9-1879.9

875-885

Downlink [MHz]

10 2x60 1710-1770 2110-2170

11 2x25 1427.9-1452.9 1475.9-1500.9

1800

2600

900

US AWS

UMTS core

US PCS

US 850

Japan 800

Japan 1700

Japan 1500

Extended AWS

Europe Japan Americas

788-798 758-768

777-787 746-756

UHF (TV)

US700

2x10

2x1013

12 2x18 698-716 728-746

14

790-820 832-862?2x30?xx

US700

US700

Page 38: Day 1 Part 1 LTE Technology Overview V1

LTE Frequency Variants - TDD

33

34

35

36

1x60

1x15

1x20

1x60

1850-1910

2010-2025

1900-1920

1930-1990

37

38

1x20

1x50

1910-1930

2570-2620

Total Spectrum

Frequency (MHz)

UMTS TDD1

UMTS TDD2

US PCS

US PCS

US PCS

Euro Middle Gap 2600

39

40

1x40

1x100

1880-1920

2300-2400

China TDD

2.3 TDD

Page 39: Day 1 Part 1 LTE Technology Overview V1

OFDMAFlexible resource allocationRobustness against multipath

The peak (centre frequency) of one subcarrier …

…intercepts the ‘nulls’ of the neighbouring subcarriers

15 kHz in LTE: fixed

Total Bandwidth

Page 40: Day 1 Part 1 LTE Technology Overview V1

OFDM Transmission BasicsData is sent in parallel across the set of subcarriers

The throughput is the sum of the data rates of subcarriers

Power

Frequency

Bandwidth

01 10 11 01 01

10

11

01

OFDMA Symbol

S/P

Serial to Parallel

Page 41: Day 1 Part 1 LTE Technology Overview V1

LTE Time-Frequency Grid

Fast time-domain scheduling

Radio resources on a time-frequency grid

Freq

uenc

y

•Resource Block 180 KHz x 0.5 ms•Each RB = 12 x 7 = 84 RE’s

Time

Sub-carrier 1

Sub-carrier 12

Symbol 0 Symbol 6

Page 42: Day 1 Part 1 LTE Technology Overview V1

Cyclic PrefixCyclic Prefix (CP) is transmitted in the guard time interval

OFDMA symbol duration including CP is approximate 71.4 µs. Long duration when compared with 3.69µs for GSM and 0.26µs for WCDMA

Symbol length without CP: 66.67µs (1/15kHz)

12

34

time

TSYMB

OL

Time Domain

time

time

Tg

1

2

3

time

4

Page 43: Day 1 Part 1 LTE Technology Overview V1

Cyclic Prefix DetailsCopies the last part of a symbol shape for a duration of guard-time and attach it in front of the symbol

CP Types Normal CP: for small cells or with short multipath delay spread Extended CP: designed for use with large cells or those with long delay profiles

t

Total symbol time T(s)Guard Time T(g)

CP T(g)

Useful symbol time T(b)

Note: CP represents an overhead resulting in symbol rate reduction.

Last part of the symbol is used as Cyclic Prefix

(CP)

CP ratio = T(g)/T(b)

Page 44: Day 1 Part 1 LTE Technology Overview V1

Sub-Carrier Types

• Used for data transmission Data

• Used for channel quality and signal strength estimatesReference Signals

• DC (centre) subcarrier: channel’s centre frequency• Guard subcarriers: Separate top and bottom subcarriers

from any adjacent channel

Null subcarriers (no transmission/power)

Guard (no power)

DC (no power)

data

Guard (no power)

Page 45: Day 1 Part 1 LTE Technology Overview V1

FFT in OFDMFast Fourier Transform (FFT) and the Inverse Fast Fourier Transform (IFFT) allows to move between time and frequency domain representation

OFDM signals are generated using the IFFT

Fourier Transform

Inverse Fourier Transform

Page 46: Day 1 Part 1 LTE Technology Overview V1

OFDMA Operation Multiple access is achieved in OFDMA by assigning subsets of subcarriers to individual users as shown below

S/P IFFT CP

Modulation mapping e.g.

QPSK symbols

Transmitter Receiver

P/SFFTCPRemov

e

Modulation mapping e.g.

QPSK symbols

Total Channel Bandwidth

Transmitted Sub-Carriers

User 1

User 2

User 3

Page 47: Day 1 Part 1 LTE Technology Overview V1

OFDMA Parameters

1.4MHz 3 MHz 5 MHz 10 MHz 15 MHz 20 MHz

Frame Duration 10 ms

Subcarrier Spacing 15 KHz

Sampling Rate (MHz) 1.92 3.84 7.68 15.36 23.04 30.72

Data Subcarriers 72 180 300 600 900 1200

OFDM Symbols/slot Normal CP=7, Extended CP=6

CP length Normal CP=4.69/5.12 μsec, Extended CP= 16.67μsec

Page 48: Day 1 Part 1 LTE Technology Overview V1

OFDMA PAPR RatioThe transmitted power is the sum of the powers of all the subcarriers.

The higher the peaks, the greater the range of power levels.

Not best suited for use with mobile (battery-powered) devices

Page 49: Day 1 Part 1 LTE Technology Overview V1

Comparison SC-FDMA v/s OFDMA

OFDMA transmits data in parallel across multiple subcarriers

SC-FDMA transmits data in series employing multiple subcarriers

Can reduce the PAPR between 6…9dB compared to OFDMA

OFDMA SC-FDMA

01 10 11 01 01

10

11

01

OFDMA Symbol

S/P

01 10 11 01

SC-FDMA Symbol

FFT

01 10 11 01

Page 50: Day 1 Part 1 LTE Technology Overview V1

SC-FDMA & OFDMA Time-Frequency View

Page 51: Day 1 Part 1 LTE Technology Overview V1

LTE FDD and TDD Modes

Uplink Downlink

Bandwidth

up to 20MHz

Duplex Frequency

f

t Bandwidth

up to 20MHz

Gua

rdPe

riod

f

t

Uplink

Downlink

Bandwidth

up to 20MHz

Page 52: Day 1 Part 1 LTE Technology Overview V1

LTE Radio Frames, Slots and Sub frames FDD mode

The basic EUTRAN Radio Frame is 10 ms long.The EUTRAN Radio Frame is divided into 20 slots, each one 0.5 ms long.Always two slots together form a subframe. The subframe (1 ms) is the smallest time unit the scheduler assigns to physical channels. In case of TDD there is a time offset between uplink and downlink transmission.

Frame structure type 1

Page 53: Day 1 Part 1 LTE Technology Overview V1

LTE Radio Frames, Slots and Sub frames TDD mode

Frame structure type 2

0 1 2 3 4 5 6 7 8 9TDD Frame 10ms , 10 subframes 1ms each

Special Subframes 1 & 6

0 2 3 4 5 7 8 9

DwPTS

Gp

UpPTS DwPTS

Gp

UpPTS

LTE Frame Structure Type 2: Applicable to TDD Every subframe will have two slots of 0.5ms as in FDD Frame

Page 54: Day 1 Part 1 LTE Technology Overview V1

LTE Radio Frames, Slots and Sub frames TDD mode LTE TDD Special Subframe Configuration (UL & DL capacity)

Asymmetric UL/DL Capacity Allocation Single sub-frame for UL and 8times sub-frame for DL per 10ms frame

UE is informed about UL/DL configuration via SIB-1, which is broadcast via Broadcast Channel (BCH)

UL/DL Configuration

Downlink-To-Uplink Switch-Point Periodicity

Subframe Number

0 1 2 3 4 5 6 7 8 90 5 ms D S U U U D S U U U1 5 ms D S U U D D S U U D2 5 ms D S U D D D S U D D3 10 ms D S U U U D D D D D4 10 ms D S U U D D D D D D5 10 ms D S U D D D D D D D6 5 ms D S U U U D S U U D

Page 55: Day 1 Part 1 LTE Technology Overview V1

Flexible Spectrum UsageChannel bandwidth: Bandwidths ranging from 1.4 MHz to 20 MHzData subcarriers: They vary with the bandwidth 72 for 1.4MHz to 1200 for 20MHz

Page 56: Day 1 Part 1 LTE Technology Overview V1

LTE Frame DetailsFrame (10ms) 10 Sub-frames (1ms) per frame

2 slots (0.5ms) per sub-frame 7 OFDM symbols per slot

Frame (10msec)

……………

Sub frame 0

0.5 msec 0.5 msec

Slot 0 Slot 19Slot 1 Slot 18

Sub frame 9

. …….

OFDM SYMBOL 0 OFDM SYMBOL 13

CP0=5.2uSec - CP1 TO CP13 =4.7uSecSingle Sub Frame (1 ms)

…..…..

Page 57: Day 1 Part 1 LTE Technology Overview V1

PSS and SSS

PCID = 3* NID (1) + NID (2) NID (1) = 0,1, …..,167 NID (2) = 0,1,2

Used for scrambling the information from the cell

One of 168 possibilities

Synchronization Signal(PSS & SSS)

. …….

Symbol 0 Symbol 6Symbol 5

1st slot (0.5 ms)

PSSSSS

SSS

Physical layer cell identitygroup

One of three possibilities

PSS

Physical layer identity

10 2

Page 58: Day 1 Part 1 LTE Technology Overview V1

PSS - TD LTEPSS is in Symbol # 2 of Sub-frames 1 and 6

Frame duration =10msec

... …

Sub frame 1

0.5 msec 0.5 msec

Slot 2 Slot 19Slot 3 Slot 18

Sub frame 9Sub frame 6

Slot 12 Slot 13

Single Sub Frame ( Duration=1 msec )

. …. …. ….

0 131 2 PSS 6 9 107 8

Page 59: Day 1 Part 1 LTE Technology Overview V1

SSS - TD LTESSS is in Symbol # 13 of Sub-frames 0 and 5

Frame duration =10msec

… …

Sub frame 0

0.5 msec 0.5 msec

Slot 0 Slot 19Slot 1 Slot 18

Sub frame 9Sub frame 5

Slot 10 Slot 11

Single Sub Frame ( Duration=1 msec )

. ..…. …. ….

0 13 SSS1 2 6 9 107 8

Page 60: Day 1 Part 1 LTE Technology Overview V1

System Acquisition

UE Power Up

Identified PSS & SSS,Determined Physical Cell ID

Get Synchronized in both Time and

Frequency

Identify PBCH(4 OFDM symbol x 6 RB’S)

System Information

Obtained through MIB At this stage

UE knows :Channel Bandwidth,SFN , Physical cell ID

No of Antennas

Page 61: Day 1 Part 1 LTE Technology Overview V1

System Acquisition (Continued)

PDSCH(Physical Downlink Shared Channel)

Identify the Location of SIBs

PCFICH (Physical Control Frame Indicator Channel)

PBCH

Presence of CFI field

Identify the OFDMA Symbols used for PDCCH

PDCCH(Physical Downlink Control Channel)

Contains DCI field

Identify the PDSCH Resources Allocation for SIBs

Page 62: Day 1 Part 1 LTE Technology Overview V1

System Information

Block Information

MIB Physical Layer Info

SIB 1 PLMN ID, Tracking Area ID, Access restrictions, SIB scheduling info

SIB 2 Common and shared channel info: SRS, PUSCH, PUCCH, Paging & RACH configuration, UL frequency information

SIB 3 Intra-frequency cell reselection parameters and information

SIB 4 Information on Intra-frequency neighbors

SIB 5 Information on Inter-frequency neighbors

SIB 6 Information for reselection on UTRAN (UMTS) cells

SIB 7 Information for reselection on GERAN (GSM) cells

SIB 8 Information for reselection on CDMA 2000 system

SIB 9 Home eNB information for future femtocells

SIB 10 Primary Earthquake and Tsunami Warning (ETWS) information

SIB 11 Secondary Earthquake and Tsunami Warning (ETWS) information

Page 63: Day 1 Part 1 LTE Technology Overview V1

Summary View of Channel Functions

Page 64: Day 1 Part 1 LTE Technology Overview V1

MIMO

MIMO

Number Of AntennasData Transmission Number Of Users

1. Beam-Forming

(Pre Coding)

2. Spatial

Multiplexing

3. Diversity

Coding

4. SDMA (Spatial Divi-

sion multiple access)

1. SISO (Single input single

output)

2. SIMO (Single input multiple

output)

3. MISO (Multiple input single

output)

4. MIMO (Multiple input single

output)

1. SU-MIMO (Single

User MIMO)

2. MU-MIMO (Multi

User MIMO)

MIMO

Number Of AntennasData Transmission

Page 65: Day 1 Part 1 LTE Technology Overview V1

MIMO Types (Continued)

MIMO

Number Of AntennasData Transmission Number Of Users

1. Beam-Forming

(Pre Coding)

2. Spatial

Multiplexing

3. Diversity

Coding

4. SDMA (Spatial Divi-

sion multiple access)

1. SISO (Single input single

output)

2. SIMO (Single input multiple

output)

3. MISO (Multiple input single

output)

4. MIMO (Multiple input single

output)

1. SU-MIMO (Single

User MIMO)

2. MU-MIMO (Multi

User MIMO)

MIMO

Number Of AntennasData Transmission

Page 66: Day 1 Part 1 LTE Technology Overview V1

UL MIMO

Allocate the same resource blocks to

Multiple UEs

→ Improves spectrum efficiency

Selection of better link antenna

(with single TX RF at the UE)

→ Improves link performance

eNodeB

UE

UE

11h

NMh

1Nh

1MhUE

eNodeB

Multi-user MIMO Antenna selection diversity

Page 67: Day 1 Part 1 LTE Technology Overview V1

SummaryOFDMA allows flexible resource allocation

OFDMA maps one modulation symbol on a subcarrier and transmits multiple subcarriers in parallel

A Cyclic Prefix is added to an OFDMA symbol for protection against ISI

OFDMA is implemented using FFT

Due to high PAPR issues, LTE uplink uses SC-FDMA

SC-FDMA transmits in series, mapping each modulation symbol on all the allocated subcarriers

Page 68: Day 1 Part 1 LTE Technology Overview V1

Quiz

Give two advantages of OFDMA

• Flexible bandwidth allocation• Robustness against multipath

SC-FDMA sends ____ modulation (e.g. QPSK) symbol(s) on ____ subcarrier(s)

• 1, N• N, N• 1/N, N

FFT is a must in implementing OFDMA

• True• False

Page 69: Day 1 Part 1 LTE Technology Overview V1

Thank You