datakom høsten 20021 datakommunikasjon høsten 2002 forelesning nr 5, mandag 16. september chapter...

35
Datakom høsten 2002 1 Datakommunikasjon høsten 2002 Forelesning nr 5, mandag 16. september Chapter 4, Network Layer and Routing

Upload: janice-clark

Post on 16-Jan-2016

217 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: Datakom høsten 20021 Datakommunikasjon høsten 2002 Forelesning nr 5, mandag 16. september Chapter 4, Network Layer and Routing

Datakom høsten 2002 1

Datakommunikasjon høsten 2002

Forelesning nr 5, mandag 16. septemberChapter 4, Network Layer and Routing

Page 2: Datakom høsten 20021 Datakommunikasjon høsten 2002 Forelesning nr 5, mandag 16. september Chapter 4, Network Layer and Routing

Datakom høsten 2002 2

Øvingsoppgaver Oppgaver 1 CIDR og subnetting

IP Address : 193.69.136.0 Address Class : Classless /25 Network Address : 193.69.136.0

A)

Du skal dele nettet i to subnett. Hva blir: Subnet id-er Subnet Mask Subnet bit mask Subnet Bits Host Bits Hosts per Subnet

Page 3: Datakom høsten 20021 Datakommunikasjon høsten 2002 Forelesning nr 5, mandag 16. september Chapter 4, Network Layer and Routing

Datakom høsten 2002 3

ØvingsoppgaverØvingsoppgave 2Du skal dele nettet i oppgave 1 I 8

subnett. Hva blir: Subnet id-er Subnet Mask Subnet bit mask Subnet Bits Host Bits Hosts per Subnet

Page 4: Datakom høsten 20021 Datakommunikasjon høsten 2002 Forelesning nr 5, mandag 16. september Chapter 4, Network Layer and Routing

Datakom høsten 2002 4

ØvingsoppgaverOppgave 3

IP Address : 176.85.36.0 Address Class : Classless /23 Network Address : 176.85.36.0 Du skal dele nettet i 4 subnett. Hva blir:

Subnet id-er Subnet MaskSubnet bit maskSubnet BitsHost BitsHosts per Subnet

Page 5: Datakom høsten 20021 Datakommunikasjon høsten 2002 Forelesning nr 5, mandag 16. september Chapter 4, Network Layer and Routing

Datakom høsten 2002 5

Virtual circuits

call setup, teardown for each call before data can flow each packet carries VC identifier (not destination host ID) every router on source-dest path maintains “state” for each

passing connection transport-layer connection only involved two end systems

link, router resources (bandwidth, buffers) may be allocated to VC to get circuit-like perf.

“source-to-dest path behaves much like telephone circuit” performance-wise network actions along source-to-dest path

Page 6: Datakom høsten 20021 Datakommunikasjon høsten 2002 Forelesning nr 5, mandag 16. september Chapter 4, Network Layer and Routing

Datakom høsten 2002 6

Virtual circuits: signaling protocols

used to setup, maintain teardown VC used in ATM, frame-relay, X.25 not used in today’s Internet

application

transportnetworkdata linkphysical

application

transportnetworkdata linkphysical

1. Initiate call 2. incoming call

3. Accept call4. Call connected5. Data flow begins 6. Receive data

Page 7: Datakom høsten 20021 Datakommunikasjon høsten 2002 Forelesning nr 5, mandag 16. september Chapter 4, Network Layer and Routing

Datakom høsten 2002 7

Datagram networks: the Internet model

no call setup at network layer routers: no state about end-to-end connections

no network-level concept of “connection”

packets forwarded using destination host address packets between same source-dest pair may take

different paths

application

transportnetworkdata linkphysical

application

transportnetworkdata linkphysical

1. Send data 2. Receive data

Page 8: Datakom høsten 20021 Datakommunikasjon høsten 2002 Forelesning nr 5, mandag 16. september Chapter 4, Network Layer and Routing

Datakom høsten 2002 8

Network layer service models:

NetworkArchitecture

Internet

ATM

ATM

ATM

ATM

ServiceModel

best effort

CBR

VBR

ABR

UBR

Bandwidth

none

constantrateguaranteedrateguaranteed minimumnone

Loss

no

yes

yes

no

no

Order

no

yes

yes

yes

yes

Timing

no

yes

yes

no

no

Congestionfeedback

no (inferredvia loss)nocongestionnocongestionyes

no

Guarantees ?

Page 9: Datakom høsten 20021 Datakommunikasjon høsten 2002 Forelesning nr 5, mandag 16. september Chapter 4, Network Layer and Routing

Datakom høsten 2002 9

DHCP: Dynamic Host Configuration Protocol

Goal: allow host to dynamically obtain its IP address from network server when it joins networkCan renew its lease on address in use

Allows reuse of addresses (only hold address while connected an “on”

Support for mobile users who want to join network (more shortly)

DHCP overview: host broadcasts “DHCP discover” msg DHCP server responds with “DHCP offer” msg host requests IP address: “DHCP request” msg DHCP server sends address: “DHCP ack” msg

Page 10: Datakom høsten 20021 Datakommunikasjon høsten 2002 Forelesning nr 5, mandag 16. september Chapter 4, Network Layer and Routing

Datakom høsten 2002 10

DHCP client-server scenario

223.1.1.1

223.1.1.2

223.1.1.3

223.1.1.4 223.1.2.9

223.1.2.2

223.1.2.1

223.1.3.2223.1.3.1

223.1.3.27

A

BE

DHCP server

arriving DHCP client needsaddress in thisnetwork

Page 11: Datakom høsten 20021 Datakommunikasjon høsten 2002 Forelesning nr 5, mandag 16. september Chapter 4, Network Layer and Routing

Datakom høsten 2002 11

DHCP client-server scenarioDHCP server: 223.1.2.5 arriving

client

time

DHCP discover

src : 0.0.0.0, 68 dest.: 255.255.255.255,67yiaddr: 0.0.0.0transaction ID: 654

DHCP offer

src: 223.1.2.5, 67 dest: 255.255.255.255, 68yiaddrr: 223.1.2.4transaction ID: 654Lifetime: 3600 secs

DHCP request

src: 0.0.0.0, 68 dest:: 255.255.255.255, 67yiaddrr: 223.1.2.4transaction ID: 655Lifetime: 3600 secs

DHCP ACK

src: 223.1.2.5, 67 dest: 255.255.255.255, 68yiaddrr: 223.1.2.4transaction ID: 655Lifetime: 3600 secs

Page 12: Datakom høsten 20021 Datakommunikasjon høsten 2002 Forelesning nr 5, mandag 16. september Chapter 4, Network Layer and Routing

Datakom høsten 2002 12

Routing

Graph abstraction for routing algorithms:

graph nodes are routers

graph edges are physical links link cost: delay, $

cost, or congestion level

Goal: determine “good” path

(sequence of routers) thru network from source to

dest.

Routing protocol

A

ED

CB

F

2

2

13

1

1

2

53

5

“good” path: typically means

minimum cost path other def’s possible

Page 13: Datakom høsten 20021 Datakommunikasjon høsten 2002 Forelesning nr 5, mandag 16. september Chapter 4, Network Layer and Routing

Datakom høsten 2002 13

Routing Algorithm classificationGlobal or decentralized

information?Global: all routers have complete

topology, link cost info “link state” algorithmsDecentralized: router knows physically-

connected neighbors, link costs to neighbors

iterative process of computation, exchange of info with neighbors

“distance vector” algorithms

Static or dynamic?Static: routes change slowly

over timeDynamic: routes change more

quickly periodic update in response to link

cost changes

Page 14: Datakom høsten 20021 Datakommunikasjon høsten 2002 Forelesning nr 5, mandag 16. september Chapter 4, Network Layer and Routing

Datakom høsten 2002 14

Hierarchical Routing

scale: with 200 million destinations:

can’t store all dest’s in routing tables!

routing table exchange would swamp links!

administrative autonomy

internet = network of networks

each network admin may want to control routing in its own network

Our routing study thus far - idealization all routers identical network “flat”… not true in practice

Page 15: Datakom høsten 20021 Datakommunikasjon høsten 2002 Forelesning nr 5, mandag 16. september Chapter 4, Network Layer and Routing

Datakom høsten 2002 15

Hierarchical Routing

aggregate routers into regions, “autonomous systems” (AS)

routers in same AS run same routing protocol “intra-AS” routing

protocol routers in different AS

can run different intra-AS routing protocol

special routers in AS run intra-AS routing

protocol with all other routers in AS

also responsible for routing to destinations outside AS run inter-AS routing

protocol with other gateway routers

gateway routers

Page 16: Datakom høsten 20021 Datakommunikasjon høsten 2002 Forelesning nr 5, mandag 16. september Chapter 4, Network Layer and Routing

Datakom høsten 2002 16

Intra-AS and Inter-AS routingGateways:

•perform inter-AS routing amongst themselves•perform intra-AS routers with other routers in their AS

inter-AS, intra-AS routing in

gateway A.c

network layer

link layer

physical layer

a

b

b

aaC

A

Bd

A.a

A.c

C.bB.a

cb

c

Page 17: Datakom høsten 20021 Datakommunikasjon høsten 2002 Forelesning nr 5, mandag 16. september Chapter 4, Network Layer and Routing

Datakom høsten 2002 17

Intra-AS and Inter-AS routing

Host h2

a

b

b

aaC

A

Bd c

A.a

A.c

C.bB.a

cb

Hosth1

Intra-AS routingwithin AS A

Inter-AS routingbetween A and B

Intra-AS routingwithin AS B

We’ll examine specific inter-AS and intra-AS Internet routing protocols shortly

Page 18: Datakom høsten 20021 Datakommunikasjon høsten 2002 Forelesning nr 5, mandag 16. september Chapter 4, Network Layer and Routing

Datakom høsten 2002 18

Routing in the Internet The Global Internet consists of Autonomous

Systems (AS) interconnected with each other: Stub AS: small corporation: one connection to other

AS’s Multihomed AS: large corporation (no transit): multiple

connections to other AS’s Transit AS: provider, hooking many AS’s together

Two-level routing: Intra-AS: administrator responsible for choice of routing

algorithm within network Inter-AS: unique standard for inter-AS routing: BGP

Page 19: Datakom høsten 20021 Datakommunikasjon høsten 2002 Forelesning nr 5, mandag 16. september Chapter 4, Network Layer and Routing

Datakom høsten 2002 19

Internet AS HierarchyIntra-AS border (exterior gateway) routers

Inter-AS interior (gateway) routers

Page 20: Datakom høsten 20021 Datakommunikasjon høsten 2002 Forelesning nr 5, mandag 16. september Chapter 4, Network Layer and Routing

Datakom høsten 2002 20

Intra-AS Routing Also known as Interior Gateway Protocols (IGP) Most common Intra-AS routing protocols:

RIP: Routing Information Protocol

OSPF: Open Shortest Path First

IGRP: Interior Gateway Routing Protocol (Cisco proprietary)

Page 21: Datakom høsten 20021 Datakommunikasjon høsten 2002 Forelesning nr 5, mandag 16. september Chapter 4, Network Layer and Routing

Datakom høsten 2002 21

RIP ( Routing Information Protocol)

Distance vector algorithm Included in BSD-UNIX Distribution in 1982 Distance metric: # of hops (max = 15 hops)

Can you guess why?

Distance vectors: exchanged among neighbors every 30 sec via Response Message (also called advertisement)

Each advertisement: list of up to 25 destination nets within AS

Page 22: Datakom høsten 20021 Datakommunikasjon høsten 2002 Forelesning nr 5, mandag 16. september Chapter 4, Network Layer and Routing

Datakom høsten 2002 22

RIP: Example

Destination Network Next Router Num. of hops to dest. w A 2

y B 2 z B 7

x -- 1…. …. ....

w x y

z

A

C

D B

Routing table in D

Page 23: Datakom høsten 20021 Datakommunikasjon høsten 2002 Forelesning nr 5, mandag 16. september Chapter 4, Network Layer and Routing

Datakom høsten 2002 23

RIP: Example

Destination Network Next Router Num. of hops to dest. w A 2

y B 2 z B A 7 5

x -- 1…. …. ....Routing table in D

w x y

z

A

C

D B

Dest Next hops w - - x - - z C 4 …. … ...

Advertisementfrom A to D

Page 24: Datakom høsten 20021 Datakommunikasjon høsten 2002 Forelesning nr 5, mandag 16. september Chapter 4, Network Layer and Routing

Datakom høsten 2002 24

RIP: Link Failure and Recovery If no advertisement heard after 180 sec -->

neighbor/link declared dead routes via neighbor invalidated new advertisements sent to neighbors neighbors in turn send out new advertisements

(if tables changed) link failure info quickly propagates to entire net poison reverse used to prevent ping-pong

loops (infinite distance = 16 hops)

Page 25: Datakom høsten 20021 Datakommunikasjon høsten 2002 Forelesning nr 5, mandag 16. september Chapter 4, Network Layer and Routing

Datakom høsten 2002 25

RIP Table processing RIP routing tables managed by application-

level process called route-d (daemon) advertisements sent in UDP packets, periodically

repeated

physical

link

network forwarding (IP) table

Transprt (UDP)

routed

physical

link

network (IP)

Transprt (UDP)

routed

forwardingtable

Page 26: Datakom høsten 20021 Datakommunikasjon høsten 2002 Forelesning nr 5, mandag 16. september Chapter 4, Network Layer and Routing

Datakom høsten 2002 26

RIP Table example (continued)Router: giroflee.eurocom.fr

Three attached class C networks (LANs) Router only knows routes to attached LANs Default router used to “go up” Route multicast address: 224.0.0.0 Loopback interface (for debugging)

Destination Gateway Flags Ref Use Interface -------------------- -------------------- ----- ----- ------ --------- 127.0.0.1 127.0.0.1 UH 0 26492 lo0 192.168.2. 192.168.2.5 U 2 13 fa0 193.55.114. 193.55.114.6 U 3 58503 le0 192.168.3. 192.168.3.5 U 2 25 qaa0 224.0.0.0 193.55.114.6 U 3 0 le0 default 193.55.114.129 UG 0 143454

Page 27: Datakom høsten 20021 Datakommunikasjon høsten 2002 Forelesning nr 5, mandag 16. september Chapter 4, Network Layer and Routing

Datakom høsten 2002 27

Route print (netstat –rn)Active Routes:

Network Destination Netmask Gateway Interface Metric0.0.0.0 0.0.0.0 192.168.1.1 192.168.1.121 20127.0.0.0 255.0.0.0 127.0.0.1 127.0.0.1 1192.168.1.0 255.255.255.0 192.168.1.121 192.168.1.121 20192.168.1.121 255.255.255.255 127.0.0.1 127.0.0.1 20192.168.1.255 255.255.255.255 192.168.1.121 192.168.1.121

20193.69.136.0 255.255.255.0 192.168.1.1 192.168.1.121

1193.69.137.0 255.255.255.0 192.168.1.1 192.168.1.121

1224.0.0.0 240.0.0.0 192.168.1.121 192.168.1.121 20255.255.255.255 255.255.255.255 192.168.1.121 192.168.1.121

1

Default Gateway: 192.168.1.1

Persistent Routes: None

Page 28: Datakom høsten 20021 Datakommunikasjon høsten 2002 Forelesning nr 5, mandag 16. september Chapter 4, Network Layer and Routing

Datakom høsten 2002 28

OSPF (Open Shortest Path First) “open”: publicly available Uses Link State algorithm

LS packet dissemination Topology map at each node Route computation using Dijkstra’s algorithm

OSPF advertisement carries one entry per neighbor router

Advertisements disseminated to entire AS (via flooding) Carried in OSPF messages directly over IP (rather than

TCP or UDP

Page 29: Datakom høsten 20021 Datakommunikasjon høsten 2002 Forelesning nr 5, mandag 16. september Chapter 4, Network Layer and Routing

Datakom høsten 2002 29

OSPF “advanced” features (not in RIP)

Security: all OSPF messages authenticated (to prevent malicious intrusion)

Multiple same-cost paths allowed (only one path in RIP)

For each link, multiple cost metrics for different TOS (e.g., satellite link cost set “low” for best effort; high for real time)

Integrated uni- and multicast support: Multicast OSPF (MOSPF) uses same topology

data base as OSPF Hierarchical OSPF in large domains.

Page 30: Datakom høsten 20021 Datakommunikasjon høsten 2002 Forelesning nr 5, mandag 16. september Chapter 4, Network Layer and Routing

Datakom høsten 2002 30

Hierarchical OSPF

Page 31: Datakom høsten 20021 Datakommunikasjon høsten 2002 Forelesning nr 5, mandag 16. september Chapter 4, Network Layer and Routing

Datakom høsten 2002 31

Hierarchical OSPF Two-level hierarchy: local area, backbone.

Link-state advertisements only in area each nodes has detailed area topology; only know

direction (shortest path) to nets in other areas. Area border routers: “summarize” distances to

nets in own area, advertise to other Area Border routers.

Backbone routers: run OSPF routing limited to backbone.

Boundary routers: connect to other AS’s.

Page 32: Datakom høsten 20021 Datakommunikasjon høsten 2002 Forelesning nr 5, mandag 16. september Chapter 4, Network Layer and Routing

Datakom høsten 2002 32

Inter-AS routing in the Internet: BGP

Figure 4.5.2-new2: BGP use for inter-domain routing

AS2 (OSPF

intra-AS routing)

AS1 (RI P intra-AS

routing) BGP

AS3 (OSPF intra-AS

routing)

BGP

R1 R2

R3

R4

R5

Page 33: Datakom høsten 20021 Datakommunikasjon høsten 2002 Forelesning nr 5, mandag 16. september Chapter 4, Network Layer and Routing

Datakom høsten 2002 33

Internet inter-AS routing: BGP BGP (Border Gateway Protocol): the de facto

standard Path Vector protocol:

similar to Distance Vector protocol each Border Gateway broadcast to neighbors

(peers) entire path (i.e., sequence of AS’s) to destination

BGP routes to networks (ASs), not individual hosts

E.g., Gateway X may send its path to dest. Z:

Path (X,Z) = X,Y1,Y2,Y3,…,Z

Page 34: Datakom høsten 20021 Datakommunikasjon høsten 2002 Forelesning nr 5, mandag 16. september Chapter 4, Network Layer and Routing

Datakom høsten 2002 34

BGP messages

BGP messages exchanged using TCP. BGP messages:

OPEN: opens TCP connection to peer and authenticates sender

UPDATE: advertises new path (or withdraws old)

KEEPALIVE keeps connection alive in absence of UPDATES; also ACKs OPEN request

NOTIFICATION: reports errors in previous msg; also used to close connection

Page 35: Datakom høsten 20021 Datakommunikasjon høsten 2002 Forelesning nr 5, mandag 16. september Chapter 4, Network Layer and Routing

Datakom høsten 2002 35

Why different Intra- and Inter-AS routing ? Policy: Inter-AS: admin wants control over how its traffic

routed, who routes through its net. Intra-AS: single admin, so no policy decisions

needed

Scale: hierarchical routing saves table size, reduced

update trafficPerformance: Intra-AS: can focus on performance Inter-AS: policy may dominate over performance