data supporting a molecular phylogeny of the hyper...

14
Data Article Data supporting a molecular phylogeny of the hyper-diverse genus Brueelia Sarah E. Bush a,n , Jason D. Weckstein b,1 , Daniel R. Gustafsson a , Julie Allen c , Emily DiBlasi a , Scott M. Shreve c,2 , Rachel Boldt c , Heather R. Skeen b,3 , Kevin P. Johnson c a Department of Biology, University of Utah, 257 South 1400 East, Salt Lake City, UT 84112, USA b Field Museum of Natural History, Science and Education, Integrative Research Center,1400 S. Lake Shore Drive, Chicago, IL 60605, USA c Illinois Natural History Survey, University of Illinois,1816 South Oak Street, Champaign, IL 61820, USA article info Article history: Received 1 October 2015 Received in revised form 14 October 2015 Accepted 20 October 2015 Available online 2 November 2015 Keywords: Brueelia Lice Songbirds Host-specicity Phylogenetic reconstruction Macroevolution abstract Data is presented in support of a phylogenetic reconstruction of one of the largest, and most poorly understood, groups of lice: the Brueelia-complex (Bush et al., 2015 [1]). Presented data include the voucher information and molecular data (GenBank accession numbers) of 333 ingroup taxa within the Brueelia-complex and 30 outgroup taxa selected from across the order Phthiraptera. Also included are phylogenetic reconstructions based on Bayesian inference analyses of combined COI and EF-1α sequences for Brueelia-complex species and outgroup taxa. & 2015 Elsevier Inc.. Published by Elsevier Inc. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/). Contents lists available at ScienceDirect journal homepage: www.elsevier.com/locate/dib Data in Brief http://dx.doi.org/10.1016/j.dib.2015.10.022 2352-3409/& 2015 Elsevier Inc.. Published by Elsevier Inc. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/). DOI of original article: http://dx.doi.org/10.1016/j.ympev.2015.09.015 n Corresponding author. E-mail address: [email protected] (S.E. Bush). 1 Current address: Department of Ornithology and Department of Biodiversity, Earth, and Environmental Sciences, Academy of Natural Sciences of Drexel University,1900 Benjamin Franklin Parkway, Philadelphia, PA 19103, USA. 2 Current address: Department of Biology, Centre College, Danville, KY 40422, USA. 3 Current address: Biology Department, Loyola University Chicago, Chicago IL 60660, USA. Data in Brief 5 (2015) 10781091

Upload: vohanh

Post on 03-Jul-2018

213 views

Category:

Documents


0 download

TRANSCRIPT

Data Article

Data supporting a molecular phylogeny of thehyper-diverse genus Brueelia

Sarah E. Bush a,n, Jason D. Weckstein b,1, Daniel R. Gustafsson a, Julie Allen c,Emily DiBlasi a, Scott M. Shreve c,2, Rachel Boldt c, Heather R. Skeen b,3,Kevin P. Johnson c

a Department of Biology, University of Utah, 257 South 1400 East, Salt Lake City, UT 84112, USAb Field Museum of Natural History, Science and Education, Integrative Research Center, 1400 S. Lake Shore Drive, Chicago, IL 60605,USAc Illinois Natural History Survey, University of Illinois, 1816 South Oak Street, Champaign, IL 61820, USA

a r t i c l e i n f o

Article history:Received 1 October 2015Received in revised form14 October 2015Accepted 20 October 2015Available online 2 November 2015

Keywords:BrueeliaLiceSongbirdsHost-specificityPhylogenetic reconstructionMacroevolution

a b s t r a c t

Data is presented in support of a phylogenetic reconstruction ofone of the largest, and most poorly understood, groups of lice: theBrueelia-complex (Bush et al., 2015 [1]). Presented data include thevoucher information and molecular data (GenBank accessionnumbers) of 333 ingroup taxa within the Brueelia-complex and 30outgroup taxa selected from across the order Phthiraptera. Alsoincluded are phylogenetic reconstructions based on Bayesianinference analyses of combined COI and EF-1α sequences forBrueelia-complex species and outgroup taxa.

& 2015 Elsevier Inc.. Published by Elsevier Inc. This is an openaccess article under the CC BY license

(http://creativecommons.org/licenses/by/4.0/).

Contents lists available at ScienceDirect

journal homepage: www.elsevier.com/locate/dib

Data in Brief

http://dx.doi.org/10.1016/j.dib.2015.10.0222352-3409/& 2015 Elsevier Inc.. Published by Elsevier Inc. This is an open access article under the CC BY license(http://creativecommons.org/licenses/by/4.0/).

DOI of original article: http://dx.doi.org/10.1016/j.ympev.2015.09.015n Corresponding author.E-mail address: [email protected] (S.E. Bush).1 Current address: Department of Ornithology and Department of Biodiversity, Earth, and Environmental Sciences,

Academy of Natural Sciences of Drexel University, 1900 Benjamin Franklin Parkway, Philadelphia, PA 19103, USA.2 Current address: Department of Biology, Centre College, Danville, KY 40422, USA.3 Current address: Biology Department, Loyola University Chicago, Chicago IL 60660, USA.

Data in Brief 5 (2015) 1078–1091

Specifications table

Subject area Biology, genetics and genomicsMore specific subject area PhylogeneticsType of data Specimen matrix, phylogenetic reconstructionHow data was acquired Phylogenetic reconstruction using Bayesian inference methodsData format Raw, analyzedExperimental factors n/aExperimental features n/aData source location worldwideData accessibility Within this article, sequences available in GenBank

Value of the data

! Evolutionary history of feather lice in the Brueelia-complex was reconstructed.! Data support re-recognition of historic genera, and erection of several new genera.! Associations of lice with geography and host-family are correlated with phylogeny.! Host association and geographic origin of each sequenced specimen are provided.

1. Data, materials and methods

The data presented herein supports a phylogenetic reconstruction of the Brueelia-complex; thesedata complement the companion article by Bush et al. [1].

1.1. Sampling

We sampled a total of 333 louse specimens belonging to the Brueelia-complex (SupplementalTable 1). These lice were sampled from 250 bird species belonging to 66 bird families and five orders(Passeriformes, Coraciiformes, Cuculiformes, Piciformes, and Trogoniformes). Sampled lice include 38known species and 211 lice that represent either new species of lice or new host associations. Thesesamples were collected from 23 countries and all continents except Antarctica. An additional 30outgroup taxa for rooting the phylogeny were selected to represent nested sister taxonomic rela-tionships within the family Philopteridae [2,3]. These 30 louse outgroup species were from 27 hostspecies, in 17 host families, collected from 9 countries.

Lice were collected either from euthanized bird specimens using ethyl acetate fumigation or fromlive birds dusted with pyrethrum powder [4,5]. Care was taken to make sure that individual hostswere kept separate at all times and to clean all working surfaces between fumigation. Lice werecollected by the authors and colleagues during field-work conducted over several decades and werestored in vials of 95% ethanol, usually in ultracold ("80 °C) freezers.

1.2. DNA extraction, amplification and alignment

DNA was extracted from lice using either the Qiagen DNeasy micro-kit (Valencia, California, USA)following the manufacturer's protocol as described by Valim and Weckstein [6], or the Qiagen DNeasytissue kit (Valencia, California, USA) following the manufacture's protocol as described by Johnsonet al. [7]. After DNA was extracted from individual lice, the exoskeletons were retained and mountedon microscope slides [8]. These voucher slides were used to identify each specimen to genus using thekeys in Price et al. [9]. Specific-level identifications were based on original descriptions, specific keysif possible, and comparison with identified slide mounted material. Voucher slides are deposited in

S.E. Bush et al. / Data in Brief 5 (2015) 1078–1091 1079

Brueelia sp. ex. Terpsiphone paradisi Monarchidae 140Brueelia sp. ex. Phylloscopus inornatus Phylloscopidae 261Brueelia sp. ex. Ficedula tricolor Muscicapidae 150 Brueelia sp. ex. Culicicapa ceylonensis Stenostiridae 250

Brueelia sp. ex. Periparus elegans Paridae 177 Brueelia sp. ex. Phoenicurus fuliginosus Muscicapidae 154Brueelia sp. ex. Sitta frontalis Sittidae 249 Brueelia sp. ex. Phoenicurus fuliginosus Muscicapidae 155 Brueelia sp. ex. Ficedula hyperythra Muscicapidae 149 Brueelia sp. ex. Rhipidura nigrocinnamomea Rhipiduridae 139

Brueelia sp. ex. Terpsiphone paradisi Monarchidae 141 Brueelia sp. ex. Ficedula zanthopygia Muscicapidae 151Brueelia sp. ex. Iduna similis Acrocephalidae 257 Brueelia sp. ex. Sheppardia sharpei Muscicapidae 158 Brueelia sp. ex. Bradypterus cinnamomeus Locustellidae 256 Brueelia sp. ex. Pogonocichla stellata Muscicapidae 153 Brueelia sp. ex. Cossypha caffra Muscicapidae 144 Brueelia sp. ex. Cossypha anomala Muscicapidae 143 Brueelia sp. ex. Pseudalethe fuelleborni Muscicapidae 281 Brueelia sp. ex. Peneothello sigillata Eopsaltridae 67 Brueelia sp. ex. Peneothello cyanus Eopsaltridae 66 Brueelia sp. ex. Chaetorhynchus papuensis Dicruridae 44 Brueelia sp. ex. Aleadryas rufinucha Pachycephalidae 172

Brueelia sp. ex. Sericornis perspicillatus Acanthizidae 5 Brueelia sp. ex. Sericornis nouhuysi Acanthizidae 4

Brueelia sp. ex. Cyornis rufigastra Muscicapidae 148 Brueelia sp. ex. Copsychus luzoniensis Muscicapidae 142

Brueelia sp. ex. Meliphaga lewinii Meliphagidae 127 Brueelia sp. ex. Meliphaga lewinii Meliphagidae 126Brueelia sp. ex. Pachycephala pectoralis Pachycephalidae 170 Brueelia sp. ex. Colluricincla harmonica Colluricinclidae 168 Brueelia sp. ex. Ailuroedus crassirostris Ptilonorhynchidae 212 Brueelia sp. ex. Pachycephala pectoralis Pachycephalidae 171 Brueelia sp. ex. Meliphaga lewinii Meliphagidae 128 Brueelia sp. ex. Psophodes olivaceus Psophodidae 167 Brueelia sp. ex. Ailuroedus crassirostris Ptilonorhynchidae 211 Brueelia sp. ex. Chlamydera nuchalis Ptilonorhynchidae 215 Brueelia sp. ex. Chlamydera nuchalis Ptilonorhynchidae 213 Brueelia sp. ex. Chlamydera nuchalis Ptilonorhynchidae 214 Brueelia sp. ex. Chlamydera nuchalis Ptilonorhynchidae 216

Brueelia sp. ex. Lichenostomus penicillatus Meliphagidae 124 Brueelia sp. ex. Falcunculus frontatus Falcunculidae 169

Brueelia papuana ex. Paradisaea raggiana Paradisaeidae 176 Brueelia papuana ex. Paradisaea raggiana Paradisaeidae 175

Brueelia papuana ex. Colluricincla ferruginea Colluricinclidae 173 Brueelia papuana ex. Cicinnurus magnificus Paradisaeidae 174

Brueelia sp. ex. Climacteris picumnus Climacteridae 23 Brueelia sp. ex. Climacteris picumnus Climacteridae 22

Brueelia sp. ex. Cymbirhynchus macrorhynchos Eurylaimidae 83 Brueelia sp. ex. Cymbirhynchus macrorhynchos Eurylaimidae 82 Brueelia sp. ex. Eurylaimus ochromalus Eurylaimidae 84

Nitzschnirmus menuraelyrae ex. Menura novaehollandiae Menuridae 129 Brueelia sp. ex. Meliarchus sclateri Meliphagidae 125

Brueelia sp. ex. Pycnonotus plumosus Pycnonotidae 238 Brueelia sp. ex. Pycnonotus goiavier Pycnonotidae 236

Brueelia sp. ex. Hypsipetes leucocephalus Pycnonotidae 230Brueelia sp. ex. Hypsipetes leucocephalus Pycnonotidae 228 Brueelia sp. ex. Hypsipetes philippinus Pycnonotidae 226

Brueelia sp. ex. Hypsipetes philippinus Pycnonotidae 227 Brueelia wallacei ex. Irena puella Irenidae 112

Brueelia sp. ex. Saxicola ferreus Muscicapidae 157Brueelia sp. ex. Saxicola ferreus Muscicapidae 156 Brueelia sp. ex. Cyornis banyumas Muscicapidae 147Brueelia sp. ex. Cyornis banyumas Muscicapidae 146

Brueelia sp. ex. Copsychus albospecularis Muscicapidae 293 Brueelia sp. ex. Oriolus chinensis Oriolidae 165

Brueelia sp. ex. Eopsaltria pulverulenta Petroicidae 190 Brueelia sp. ex. Zoothera lunulata Turdidae 304 Brueelia sp. ex. Zoothera heinei Turdidae 302 Brueelia sp. ex. Zoothera lunulata Turdidae 305Brueelia sp. ex. Zoothera lunulata Turdidae 303

0.51

0.81

0.69

1

0.99

0.48

0.83

0.650.30

0.760.54

1

0.8

1

1

1

to Figure 1b 0.3

Fig. 1. Consensus tree from Bayesian analysis of combined COI and EF-1α sequences for Brueelia-complex species and outgrouptaxa. Branches proportional to substitutions per site for the consensus tree (scale indicated). Numbers associated with nodesare posterior probabilities for the clade from a 10 million generation MCMC analysis, sampled every 1000 generations andexcluding the first 1 million generations as burn-in (valueso0.5, and values associated with short terminal branches notshown here; all support values40.5 are shown on Fig. 2). Numbers after taxonomic names refer to Supplemental Table 1.Louse taxonomy follows the classification of Price et al. [9] and subsequent publications. Host taxonomy follows Clements et al.[21] and Dickinson et al. [22]: host genus, species, and family are all indicated. Tree partitioned into six portions (a-f).

S.E. Bush et al. / Data in Brief 5 (2015) 1078–10911080

Brueelia sp. ex. Neocossyphus poensis Turdidae 295Brueelia sp. ex. Malimbus nitens Ploceidae 205Brueelia sp. ex. Phyllastrephus icterinus Pycnonotidae 234 Brueelia sp. ex. Stelgidillas gracilirostris Pycnonotidae 217Brueelia sp. ex. Criniger barbatus Pycnonotidae 224 Brueelia sp. ex. Bleda canicapillus Pycnonotidae 221 Brueelia sp. ex. Bleda syndactylus Pycnonotidae 223 Brueelia sp. ex. Nicator chloris Nicatoridae 121 Brueelia sp. ex. Bleda ex. mius Pycnonotidae 222Brueelia sp. ex. Phyllastrephus albigularis Pycnonotidae 231 Brueelia sp. ex. Eurillas latirostris Pycnonotidae 218

Brueelia sp. ex. Laniarius ferrugineus Malaconotidae 118 Brueelia sp. ex. Dryoscopus cubla Malaconotidae 115 Brueelia sp. ex. Vanga curvirostris Vangidae 308 Brueelia sp. ex. Phyllastrephus flavostriatus Pycnonotidae 233 Brueelia sp. ex. Arizelocichla milanjensis Pycnonotidae 219

Brueelia sp. ex. Phyllastrephus flavostriatus Pycnonotidae 232 Brueelia sp. ex. Laniarius fuelleborni Malaconotidae 119 Brueelia sp. ex. Laniarius aethiopicus Malaconotidae 117

Brueelia sp. ex. Dryoscopus cubla Malaconotidae 116 Brueelia sp. ex. Platysteira cyanea Platysteiridae 200Brueelia sp. ex. Batis soror Platysteiridae 199 Brueelia sp. ex. Batis soror Platysteiridae 198 Brueelia sp. ex. Batis capensis Platysteiridae 197

Brueelia sp. ex. Buccanodon duchaillui Lybiidae 113Brueelia sp. ex. Xanthomixis cinereiceps Bernieridae 263Brueelia sp. ex. Bernieria madagascariensis Bernieridae 255

Brueelia sp. ex. Tchagra senegalus Malaconotidae 123 Brueelia sp. ex. Malaconotus blanchoti Malaconotidae 120 Brueelia sp. ex. Telophorus sulfureopectus Malaconotidae 114Brueelia sp. ex. Myrmecocichla arnotti Muscicapidae 152 Brueelia sp. ex. Cossypha heuglini Muscicapidae 145

Brueelia sp. ex. Geokichla gurneyi Turdidae 301 Brueelia sp. ex. Myadestes coloratus Turdidae 294

Brueelia sp. ex. Cyanocorax yncas Corvidae 29Brueelia sp. ex. Cyanocitta cristata Corvidae 28

Brueelia sp. ex. Cardellina canadensis Parulidae 185 Brueelia cicchinoi ex. Trogon melanocephalus Trogonidae 280

Brueelia sp. ex. Trogon massena Trogonidae 279Brueelia antiqua ex. Catharus ustulatus Turdidae 292 Brueelia antiqua ex. Catharus minimus Turdidae 288 Brueelia antiqua ex. Catharus fuscescens Turdidae 287Brueelia antiqua ex. Catharus guttatus Turdidae 283

Brueelia antiqua ex. Catharus ustulatus Turdidae 290Brueelia sp. ex. Seiurus noveboracensis Parulidae 183 Brueelia antiqua ex. Catharus ustulatus Turdidae 291Brueelia antiqua ex. Catharus guttatus Turdidae 282 Brueelia antiqua ex. Catharus ustulatus Turdidae 289 Brueelia antiqua ex. Catharus fuscescens Turdidae 286 Brueelia sp. ex. Setophaga caerulescens Parulidae 184 Brueelia antiqua ex. Catharus fuscescens Turdidae 285

Brueelia sp. ex. Arremon aurantiirostris Emberizidae 53 Brueelia brunneinucha ex. Dumetella caronlinensis Mimidae 136

Brueelia pallidula ex. Pheucticus ludovicianus Cardinalidae 18 Brueelia sp. ex. Alcippe morrisonia Leiothrichidae 265Brueelia sp. ex. Alcippe morrisonia Leiothrichidae 264

1

0.99

1

0.96

0.56

0.99

0.77

0.92

0.28

0.43

0.670.54

0.400.53

0.92

1

1

0.97

0.97

0.51

to Figure1c

to Figure 1a

0.3Fig. 1. (continued)

S.E. Bush et al. / Data in Brief 5 (2015) 1078–1091 1081

the Illinois Natural History Survey Insect Collection (INHS), Price Institute for Parasite Research at theUniversity of Utah (PIPeR), and Field Museum of Natural History (FMNH) (Supplemental Table 1).

Portions of one mitochondrial (COI) and one nuclear gene (EF-1α) were selected because thesegenes have successfully resolved phylogenies of closely related groups of parasitic lice and moredistantly related “bark lice” [3,10–13]. We used PCR to amplify and sequence portions of the mito-chondrial cytochrome oxidase I (COI; 379 bp) and the nuclear gene elongation factor 1a (EF1 α;347 bp) using published amplification and sequencing protocols [12,13]. Purified PCR products werecycle sequenced using ABI Big Dye (Applied Biosystems, Foster City, California) and run on an ABIPrism 3730 DNA sequencer (Applied Biosystems). Raw sequence data were trimmed, edited, andreconciled using Sequencher 5.0.1 (Genecodes CO., Ann Arbor, Michigan) or Geneious (version 7.0.3,Biomatters LTD). Both genes are protein coding and therefore we were able to easily align them by eyeaccording to codons. These aligned gene sequences were then concatenated for phylogenetic analysis.

1.3. Phylogenetic analyses

The final sequence alignment was analyzed using PartitionFinder (v1.1.1; [14,15]), an open sourcepython script that selects the best-fit partitioning schemes and models of molecular evolution forphylogenetic analysis. We tested whether the two genes (COI, EF1 α) should be analyzed togetherunder the same model and parameters or as two separate partitions. We tested only these twopartitions because separating each of these genes by codon would only provide 100 bps for eachpartition, a very small amount of sequence for estimating parameters and would likely result in over-parameterization. The PartitionFinder analysis found that a single partition and GTRþ IþG model ofmolecular evolution best fit the data, using both AICc and BIC criterion. Using these parameters,

Brueelia sp. ex. Stachyris striolata Timaliidae 277 Brueelia sp. ex. Stachyris striolata Timaliidae 276Brueelia sp. ex. Turdinus brevicaudatus Pellorneidae 273

Brueelia sp. ex. Pomatorhinus ruficollis Timaliidae 275Brueelia sp. ex. Garrulax maesi Leiothrichidae 267

Brueelia sp. ex. Garrulax maesi Leiothrichidae 268 Brueelia sp. ex. Paradoxornis gularis Paradoxornithidae 259 Brueelia sp. ex. Paradoxornis gularis Paradoxornithidae 258

Brueelia sp. ex. Turdinus brevicaudatus Pellorneidae 272Brueelia sp. ex. Robsonius rabori Pellorneidae 271

Brueelia sp. ex. Pomatorhinus ruficollis Timaliidae 274Brueelia sp. ex. Lanthocincla cineracea Leiothrichidae 266

Brueelia sp. ex. Prionops plumatus Malaconotidae 122 Brueelia sp. ex. Dicrurus adsimilis Dicruridae 45 Brueelia sp. ex. Cisticola natalensis Cisticolidae 21

Brueelia sp. ex. Dicrurus modestus Dicruridae 46 Brueelia sp. ex. Dicrurus leucophaeus Dicruridae 51Brueelia sp. ex. Geokichla citrina Turdidae 300

Brueelia sp. ex. Dicrurus hottentottus Dicruridae 50Brueelia sp. ex. Dicrurus hottentottus Dicruridae 49

Brueelia sp. ex. Liocichla phoenicea Leiothrichidae 270Brueelia sp. ex. Dicrurus balicassius Dicruridae 48 Brueelia sp. ex. Dicrurus balicassius Dicruridae 47

Brueelia sp. ex. Passer melanurus Passeridae 187 Brueelia sp. ex. Corvus orru Corvidae 26

0.66

0.68

0.61

0.43

0.97

0.32

0.47

10.7

0.641

1

1

0.29

to Figure 1d

to Figure 1b

0.3Fig. 1. (continued)

S.E. Bush et al. / Data in Brief 5 (2015) 1078–10911082

Sturnidoecus sp. ex. Turdus chrysolaus Turdidae 299 Sturnidoecus sp. ex. Turdus obscurus Turdidae 298Sturnidoecus sp. ex. Geokichla interpres Turdidae 333

Sturnidoecus sp. ex. Zoothera citrina Turdidae 306 Sturnidoecus sp. ex. Turdus pelios Turdidae 330

Sturnidoecus simplex ex. Turdus migratorius Turdidae 331 Sturnidoecus sp. ex. Turdus libonyanus Turdidae 332 Sturnidoecus sp. ex. Malaconotus blanchoti Malaconotidae 312

Sturnidoecus sp. ex. Lamprotornis purpureus Sturnidae 324Sturnidoecus sp. ex. Neocichla gutturalis Sturnidae 326Sturnidoecus sp. ex. Lamprotornis chloropterus Sturnidae 325

Sturnidoecus sp. ex. Hylocichla mustelina Turdidae 328Sturnidoecus sp. ex. Hylocichla mustelina Turdidae 327Sturnidoecus caligineus ex. Turdus grayi Turdidae 329

Sturnidoecus sp. ex. Catharus fuscater Turdidae 284 Sturnidoecus xanthops ex. Ploceus xanthops Ploceidae 321 Sturnidoecus sp. ex. Ploceus velatus Ploceidae 320

Sturnidoecus sp. ex. Ploceus ocularis Ploceidae 319Sturnidoecus sp. ex. Ploceus ocularis Ploceidae 318

Sturnidoecus sp. ex. Quelea quelea Ploceidae 322Sturnidoecus sp. ex. Euplectes ardens Ploceidae 316 Sturnidoecus sp. ex. Euplectes albonotatus Ploceidae 315 Sturnidoecus sp. ex. Euplectes ardens Ploceidae 317 Sturnidoecus sp. ex. Euplectes albonotatus Ploceidae 314 Sturnidoecus sp. ex. Euplectes ardens Ploceidae 313

Sturnidoecus sp. ex. Cinnyricinclus leucogaster Sturnidae 323 Sturnidoecus sp. ex. Zoothera dauma Turdidae 307

Brueelia semiannulata ex. Strepera graculina Cracticidae 41 Brueelia semiannulata ex. Gymnorhina tibicen Cracticidae 40 Brueelia semiannulata ex. Gymnorhina tibicen Cracticidae 38Brueelia semiannulata ex. Strepera graculina Cracticidae 42

Brueelia semiannulata ex. Cracticus argenteus Cracticidae 35 Brueelia semiannulata ex. Cracticus argenteus Cracticidae 34Brueelia semiannulata ex. Gymnorhina tibicen Cracticidae 39

Brueelia sp. ex. Cracticus quoyi Cracticidae 37Brueelia sp. ex. Cracticus quoyi Cracticidae 36

Brueelia sp. ex. Urocissa erythrorhyncha Corvidae 33 Brueelia sp. ex. Urocissa erythrorhyncha Corvidae 32

Brueelia moriona ex. Cyanocorax morio Corvidae 30

Brueelia quadrangularis ex. Corvus albus Corvidae 27

Traihoriella laticeps ex. Aulacorhynchus prasinus Ramphastidae 245Traihoriella laticeps ex. Andigena nigrirostris Ramphastidae 242Traihoriella laticeps ex. Andigena nigrirostris Ramphastidae 243Traihoriella laticeps ex. Andigena nigrirostris Ramphastidae 241

Traihoriella laticeps ex. Aulacorhynchus prasinus Ramphastidae 246Traihoriella laticeps ex. Aulacorhynchus derbianus Ramphastidae 247

Traihoriella laticeps ex. Aulacorhynchus sulcatus Ramphastidae 248 Traihoriella laticeps ex. Aulacorhynchus coeruleicinctis Ramphastidae 244

Brueelia sp. ex. Corcorax melanorhamphos Grallinidae 91 Brueelia sp. ex. Corcorax melanorhamphos Grallinidae 90

Brueelia punjabensis ex. Megalaima virens Ramphastidae 14Bizzarifrons picturatus ex. Cacicus cela Icteridae 2

Bizzarifrons picturatus ex. Cacicus cela Icteridae 1 Bizzarifrons wecksteini ex. Psarocolius bifasciatus Icteridae 3

Brueelia sp. ex. Megalaima franklinii Ramphastidae 16Brueelia binhchauensis ex. Megalaima franklinii Ramphastidae 15

Brueelia sp. ex. Megalaima mystacophanos Ramphastidae 17 Brueelia binhchauensis ex. Megalaima monticola Ramphastidae 13

0.52

0.27

1

0.450.94

0.49

0.54

1

0.39

0.43

10.98

1

0.39

1

0.93 1

1

1

1

1

11

0.99

0.44

0.47

0.26

0.29

1

to Figure 1c

to Figure 1e 0.3

Fig. 1. (continued)

S.E. Bush et al. / Data in Brief 5 (2015) 1078–1091 1083

Fig. 1. (continued)

S.E. Bush et al. / Data in Brief 5 (2015) 1078–10911084

which were estimated as part of the analysis, and a flat Dirichlet prior for state frequencies, we ran aBayesian analysis in MrBayes 3.2.2 [16–18] for 10,000,000 generations. Each Bayesian analysisincluded two parallel runs, each with four Markov chains, to ensure that our analyses were not stuckat local optima [19]. Markov chains were sampled every 500 generations, yielding 20,000 parameterpoint-estimates. We used these 20,000 point-estimates minus the burn-in generations (500 point-estimates, 250,000 generations) to create a 50% majority-rule consensus tree and calculated Bayesianposterior probabilities to assess nodal support. We rooted the Bayesian tree using a nested set of sistertaxa within the family Philopteridae [2,12,13,20].

A consensus tree from the Bayesian analysis of combined COI and EF-1a sequences for Brueelia-complex is shown in Fig. 1. A cladogram of the consensus tree from the Bayesian analysis is shownin Fig. 2.

Fig. 1. (continued)

S.E. Bush et al. / Data in Brief 5 (2015) 1078–1091 1085

Appendix A. Supplementary material

Supplementary data associated with this article can be found in the online version at http://dx.doi.org/10.1016/j.dib.2015.10.022. Specifically, Supplemental Table 1, which is a list of studied specimens,their voucher numbers, host associations, geographic origin, and GenBank accession numbers.

Fig. 2. Cladogram of the consensus tree from a Bayesian analysis of combined COI and EF-1α sequences for Brueelia-complex speciesand outgroup taxa. Numbers associated with nodes are posterior probabilities calculated from 10 million MCMC generations sampledevery 1000 and excluding the first 1 million generations as burn-in (valueso0.5 not shown). Taxa colored to indicate geographicorigin as indicated in map in 2a. Conventions as in Fig. 1. Tree partitioned into five portions (a–e).

S.E. Bush et al. / Data in Brief 5 (2015) 1078–10911086

Fig. 2. (continued)

S.E. Bush et al. / Data in Brief 5 (2015) 1078–1091 1087

Re-efe-re-nc-es

[1] S.E. Bush, J.D. Weckstein, D.R. Gustafsson, J. Allen, E. DiBlasi, S.M. Shreve, R. Boldt, H.R. Skeen, K.P. Johnson, Unlocking the

Fig. 2. (continued)

S.E. Bush et al. / Data in Brief 5 (2015) 1078–10911088

Fig. 2. (continued)

S.E. Bush et al. / Data in Brief 5 (2015) 1078–1091 1089

black box of feather louse diversity: a molecular phylogeny of the hyper-diverse genus Brueelia, Mol. Phylogenet. Evol.(2015), in press.

[2] R.H. Cruickshank, K.P. Johnson, V.S. Smith, R.J. Adams, D.H. Clayton, R.D.M. Page, Phylogenetic analysis of partial sequencesof elongation factor 1a identifies major groups of lice (Insecta: Phthiraptera), Mol. Phylogenet. Evol. 19 (2001) 202–215.

[3] V.S. Smith, T. Ford, K.P. Johnson, P.C.D. Johnson, K. Yoshizawa, J.E. Light, Multiple lineages of lice pass through the K–Pgboundary, Biol. Lett. 7 (2011) 782–785.

[4] D.H. Clayton, D.M. Drown, Critical evaluation of five methods for quantifying chewing lice (Insecta: Phthiraptera), J.Parasitol. 87 (2001) 1291–1300.

[5] C. Bueter, J.D. Weckstein, K.P. Johnson, J.M. Bates, C.E. Gordon, Comparative phylogenetic histories of two louse generafound on Catharus thrushes and other birds, J. Parasitol. 95 (2009) 295–307.

[6] M.P. Valim, J.D. Weckstein, Two new species of Brueelia Kéler, 1936 (Ischnocera, Philopteridae) parasitic on Neotropicaltrogons (Aves, Trogoniformes), ZooKeys 128 (2011) 1–13.

[7] K.P. Johnson, R.J. Adams, D.H. Clayton, Molecular systematics of Goniodidae (Insecta: Phthiraptera), J. Parasitol. 87 (2001)862–869.

Fig. 2. (continued)

S.E. Bush et al. / Data in Brief 5 (2015) 1078–10911090

[8] R.L. Palma, Slide-mounting of lice: a detailed description of the Canada balsam technique, N. Z. Entomol. 6 (1978) 432–436.[9] R.D. Price, R.A. Hellenthal, R.L. Palma, K.P. Johnson, D.H. Clayton, The Chewing Lice: World Checklist and Biological Over-

view, Illinois Natural History Survey, 2003.[10] K.P. Johnson, J.D. Weckstein, C.C. Witt, R.C. Faucett, R.G. Moyle, The perils of using host relationships in parasite taxonomy:

phylogeny of the Degeeriella complex, Mol. Phylogenet. Evol. 23 (2002) 150–157.[11] K.P. Johnson, R.H. Cruickshank, R.J. Adams, V.S. Smith, R.D.M. Page, D.H. Clayton, Dramatically elevated rate of mito-

chondrial substitution in lice (Insecta: Phthiraptera), Mol. Phylogenet. Evol. 26 (2003) 231–242.[12] K.P. Johnson, K. Yoshizawa, V.S. Smith, Multiple origins of parasitism in lice, Proc. R. Soc. Lond. B 271 (2004) 1771–1776.

http://dx.doi.org/10.1098/rspb.2004.2798.[13] V.S. Smith, R.D.M. Page, K.P. Johnson, Data incongruence and the problem of avian louse phylogeny, Zool. Scr. 30 (2004)

239–259. http://dx.doi.org/10.1111/j.0300-3256. 2004.00149.x.[14] R. Lanfear, B. Calcott, S.Y.W. Ho, S. Guindon, PartitionFinder: combined selection of partitioning schemes and substitution

models for phylogenetic analyses, Mol. Biol. Evol. 29 (2012) 1695–1701.[15] R. Lanfear, B. Calcott, D. Kainer, C. Mayer, A. Stamatakis, Selecting optimal partitioning schemes for phylogenomic datasets,

BMC Evolut. Biol. 14 (2014) 82.[16] J.P. Huelsenbeck, F. Ronquist, MrBayes: Bayesian inference of phylogeny, Bioinformatics 17 (2001) 754–755.[17] F. Ronquist, J.P. Huelsenbeck, MRBAYES 3: Bayesian phylogenetic inference under mixed models, Bioinformatics 19 (2003)

1572–1574.[18] F. Ronquist, M. Teslenko, P.V.D. Mark, D.L. Ayres, A. Darling, S.H. Hohana, B. Larget, L. Liu, M.A. Suchard, J.P. Huelsenbeck,

MrBayes 3.2: efficient Bayesian phylogenetic inference and model selection across a large model space, Syst. Biol. 61(2012) 1–4.

[19] J.P. Huelsenbeck, J.P. Bollback, Empirical and hierarchical Bayesian estimation of ancestral states, Sys. Biol. 50 (2001)351–366.

[20] K.P. Johnson, S.M. Shreve, V.S. Smith, Repeated adaptive divergence of microhabitat specialization in avian feather lice,BMC Biol. 10 (2012) 52. http://dx.doi.org/10.1186/1741-7007-10-52.

[21] J.F. Clements, T.S. Schulenberg, M.J. Iliff, D. Roberson, T.A. Fredericks, B.L. Sullivan, C.L. Wood, The eBird/Clements checklistof birds of the world: Version 6.8. Downloaded from ⟨http://www.birds.cornell.edu/clementschecklist/download/⟩, 2014.

S.E. Bush et al. / Data in Brief 5 (2015) 1078–1091 1091