dark%maer ,...

47
Dark ma’er, dark energy and par/cle physics Pierre Binétruy, APC, Paris Moriond, 24 March 2016

Upload: phungphuc

Post on 13-Feb-2019

217 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: Dark%maer , dark%energy%and%par/cle%physics%moriond.in2p3.fr/J16/transparencies/4_wednesday/2_afternoon/6... · New Physics with light SM particles at CMS – JPC – Rutgers University

Dark  ma'er,  dark  energy  and  par/cle  physics  

Pierre  Binétruy,  APC,  Paris  

Moriond,                24  March    2016  

Page 2: Dark%maer , dark%energy%and%par/cle%physics%moriond.in2p3.fr/J16/transparencies/4_wednesday/2_afternoon/6... · New Physics with light SM particles at CMS – JPC – Rutgers University

Dark  ma'er,  dark  energy,  infla/on,  gravita/onal    waves,  diphoton  events…  and  par/cle  physics  

Pierre  Binétruy,  APC,  Paris  

Moriond,                24  March    2016  

Page 3: Dark%maer , dark%energy%and%par/cle%physics%moriond.in2p3.fr/J16/transparencies/4_wednesday/2_afternoon/6... · New Physics with light SM particles at CMS – JPC – Rutgers University

2012:  discovery  of  the  Higgs  par/cle  at  LHC  

2013:  release  of  Planck  data  

We  are  certainly  living  a  golden  era…  

2016:  discovery  of  gravita/onal  waves  

All  3  of  them,  a  triumph  of  theore/cal  insight  and  experimental  or  observa/onal    achievement  

Page 4: Dark%maer , dark%energy%and%par/cle%physics%moriond.in2p3.fr/J16/transparencies/4_wednesday/2_afternoon/6... · New Physics with light SM particles at CMS – JPC – Rutgers University

…  which  may  be  not  finished  

April  22,  launch  of  the  Microscope  satellite:  test  of  the  equivalence  principle  to  the  10-­‐15  

Jan Stark for the ATLAS collaboration Moriond QCD -- March 19-26, 2016 11

Di-photons: search for spin-0 resonancePerform 2D p

0 scan (as function of mass and width

of the hypothetical resonance).

Largest deviation from background-only hypothesis: near 750 GeV width 45 GeV (i.e. 6%)

Local significance: 3.9σGlobal significance: 2.0σ

Report limits on fiducial cross sectionas a function of mass hypothesis,for several width hypotheses.

Example shown here: width of 6%

ATLAS-CONF-2016-xxx

A  new  spin-­‐0  resonance?                                          First  sign  of  new  physics  beyond  SM  Jan  Stark,  QCD  

(GeV)Xm210×5 310 310×2 310×3

0p

-410

-310

-210

-110

-2 10× = 1.4 mΓ

J = 0

J = 2

σ1

σ2

σ3

(13 TeV)-13.3 fbCMS Preliminary

New Physics with light SM particles at CMS – JPC – Rutgers University – Sunday, March 20th, 2016

DIPHOTON RESONANCES

• Limits set on a three different widths• Γ/M=1.4x10-4, 1.4x10-2, 5.6x10-2

• Both spin-0 and spin-2 hypotheses• limits and p-values very similar

9

[EXO-16-018]

(GeV)Sm210×5 310 310×2 310×3

) (fb

)γγ

→ S

→(p

95%

C.L

. lim

it

02468

10121416182022 J=0-2 10× = 1.4 m

Γ

Expected limitσ 1 ± σ 2 ±

Observed limit

(13 TeV)-13.3 fbCMS Preliminary

Diphoton limits at 13 TeV (0 and 3.8 T)

(GeV)Sm210×5 210×6 210×7 210×8

0p

-410

-310

-210

-110

J=0-2 10× = 1.4 mΓ

Combined-10T 0.6 fb

-13.8T 2.7 fb

σ1

σ2

σ3

(13 TeV)-13.3 fbCMS Preliminary

p-values at 13 TeVfor 0T, 3.8T and combination

John  Paul  Chou,  QCD  

Page 5: Dark%maer , dark%energy%and%par/cle%physics%moriond.in2p3.fr/J16/transparencies/4_wednesday/2_afternoon/6... · New Physics with light SM particles at CMS – JPC – Rutgers University

From  the  point  of  view  of  cosmology,                                                                                                two  compelling  events  in  recent  years:  

2012:  discovery  of  the  Higgs  par/cle  at  LHC  

2013:  release  of  Planck  data  

Why?  In  the  early  1980s,  the  high  energy  community  developed  a  model  of  the  Primordial  Universe  based  on  the  Standard  Model  and  its  extensions  (in  par/cular  Grand  Unifica/on)  

Page 6: Dark%maer , dark%energy%and%par/cle%physics%moriond.in2p3.fr/J16/transparencies/4_wednesday/2_afternoon/6... · New Physics with light SM particles at CMS – JPC – Rutgers University

This  Model  led  to  a  common  framework  for  trying  to  explain:  

•   the    ma'er-­‐an/ma'er  asymmetry  through  fundamental  interac/ons  

•   the  flatness,  horizon  (and  monopole)  problems  through  the  scenario  of  infla/on  

poten/al  at          high  T    

                         energy  stored  typically  ρ0∼  MU

4  ∼  (1016  GeV)4  

Einstein  eqns  :  Tμν  ∼  ρ0  gμν          ⟹  H2  =  8πGN  ρ0  /3  =  cst  Hvac2  ⟹  de  Si'er  solu/on    a(t)  ∼  exp  (Hvact)    

   

A.  Linde  A.  Guth    

Page 7: Dark%maer , dark%energy%and%par/cle%physics%moriond.in2p3.fr/J16/transparencies/4_wednesday/2_afternoon/6... · New Physics with light SM particles at CMS – JPC – Rutgers University

This  Model  led  to  a  common  framework  for  trying  to  explain:  

•   the    ma'er-­‐an/ma'er  asymmetry  through  fundamental  interac/ons  

•   the  flatness,  horizon  (and  monopole)  problems  through  the  scenario  of  infla/on  

•   dark  ma'er,  in  the  form  of  par/cles  

•   more  recently,  the  accelera/on  of  the  expansion  of  the  Universe,  through    a  new  component,  dark  energy  

Page 8: Dark%maer , dark%energy%and%par/cle%physics%moriond.in2p3.fr/J16/transparencies/4_wednesday/2_afternoon/6... · New Physics with light SM particles at CMS – JPC – Rutgers University

Note  that  «  fundamental  »  scalar  fields  play  a  central  role  in  this  paradigm.  

Why?  

Scalar  fields  easily  provide  a  diffuse  background  

Speed  of  sound    cs2  =  (δp  /  δρ)adiaba/c  

In  most  models,  cs2  ~  1,  i.e.  the  pressure  of  the  scalar  field  resists  gravita/onal  clustering  :  

Unless  in  specific  cases,  scalar  fields    tend  not  to  cluster.  

V(φ)  

φ  

ρφ  =  φ2  /2  +  V(φ)  energy  density  

pφ  =  φ2  /2  +  V(φ)  pressure  .  

.  

Page 9: Dark%maer , dark%energy%and%par/cle%physics%moriond.in2p3.fr/J16/transparencies/4_wednesday/2_afternoon/6... · New Physics with light SM particles at CMS – JPC – Rutgers University

Planck  results:  what  comforted  the  infla/on  paradigm?    

Pre-­‐Planck:  space.me  is  spa.ally  flat  Ω  =  1  or  ρ  =  ρc    

Planck:    ns  =  0.968  ±0.006  

ns<1,  built-­‐in  instability  

ns=1,  infla/on  for  ever  (de  Si'er)  

Rehea/ng:    inflaton  decay  into  par/cles  slows    down  oscilla/ons  and  repopulates  the  Universe  

Page 10: Dark%maer , dark%energy%and%par/cle%physics%moriond.in2p3.fr/J16/transparencies/4_wednesday/2_afternoon/6... · New Physics with light SM particles at CMS – JPC – Rutgers University

The  discovery  of  the  Higgs  has  thus  provided  the  first  «  fundamental  »  scalar  field.  

If    there  is  one,  why  not  many?  

Indeed,  triviality  argument  

scale  

coupling  abelian  gauge  

λφ4  

nonabelian  gauge  

Λ  

Page 11: Dark%maer , dark%energy%and%par/cle%physics%moriond.in2p3.fr/J16/transparencies/4_wednesday/2_afternoon/6... · New Physics with light SM particles at CMS – JPC – Rutgers University

Note  also  that  the  only  dimensionful  parameter  in  the  Standard  Model  is  the  Higgs  mass  m:  

L =  -­‐  m2  φ+  φ

If  it  has  a  dynamical  origin,  its  value  should  be  fixed  by  another  field  

For  example.  another  scalar  field  S   L =  -­‐  η  S2  φ+  φ

No/on  of  Higgs  portal:  

Or  ,  the  space-­‐/me  curvature  R  (of  dimension  L-­‐2)   L =  -­‐  R2  φ+  φ

(η:  coupling)  

(scenario  of  Higgs  infla/on)  

VolksModell (the everybody’s model)

The Sgg and S�� operators can be generated if S couples to charged particles

SQ̄f(yf + i y5f�5)Qf + SAsQ̃⇤sQ̃s

g

g

Q

S

Q

g

g

Extra fermions Q or scalars Q̃ needed

SM loop excluded: the tree level decay would be too large e.g.�tt̄

���⇡ 105.

dark  ma'er  par/cles,  …  

Page 12: Dark%maer , dark%energy%and%par/cle%physics%moriond.in2p3.fr/J16/transparencies/4_wednesday/2_afternoon/6... · New Physics with light SM particles at CMS – JPC – Rutgers University

Basic  ques/ons  which  cosmology/par/cle  physics  have  to  address:  

•   What  is  the  cause  of  the  (recent)  accelera/on  of  the  expansion  of  the  Universe?  

•   What  is  the  exact  mechanism  for  infla/on?  Is  eternal  infla/on  a  valid  op/on?  

•   How  to  explain  the  ma'er-­‐an/ma'er  asymmetry?  

•   How  to  compute  the  energy  of  the  vacuum?  

•   How  to  reconcile  gravity  with  the  other  forces  described  by  the  SM?    

•   Why  is  the  Higgs  mass  stable  under  radia/ve  correc/ons?  

•   Why  is  the  Higgs  mass  so  close  to  the  instability  fron/er?  

Page 13: Dark%maer , dark%energy%and%par/cle%physics%moriond.in2p3.fr/J16/transparencies/4_wednesday/2_afternoon/6... · New Physics with light SM particles at CMS – JPC – Rutgers University

This  eventually  will  have  to  be  solved  by  a  single  theory:                                                            it  might  be  important  to  address  several  issues  at  the  same  /me    

gravita/onal  waves  

Higgs  

Infla/on  

accelera/on  of  the  expansion                            (dark  energy)  

quantum  gravity  

new  physics@colliders            (diphoton…)  

       stability  of  the  theory  

modifica/on  of  gravity  

dark  ma'er  

Some  illustra/ons…  

black  holes  

an/ma'er  

Page 14: Dark%maer , dark%energy%and%par/cle%physics%moriond.in2p3.fr/J16/transparencies/4_wednesday/2_afternoon/6... · New Physics with light SM particles at CMS – JPC – Rutgers University

gravita/onal  waves  

Higgs  

Infla/on  

accelera/on  of  the  expansion                            (dark  energy)  

quantum  gravity  

new  physics@colliders            (diphoton…)  

       stability  of  the  theory  

modifica/on  of  gravity  

dark  ma'er  

black  holes  

an/ma'er  

Page 15: Dark%maer , dark%energy%and%par/cle%physics%moriond.in2p3.fr/J16/transparencies/4_wednesday/2_afternoon/6... · New Physics with light SM particles at CMS – JPC – Rutgers University

Diphoton  resonance  and  dark  ma'er  

Jan Stark for the ATLAS collaboration Moriond QCD -- March 19-26, 2016 11

Di-photons: search for spin-0 resonancePerform 2D p

0 scan (as function of mass and width

of the hypothetical resonance).

Largest deviation from background-only hypothesis: near 750 GeV width 45 GeV (i.e. 6%)

Local significance: 3.9σGlobal significance: 2.0σ

Report limits on fiducial cross sectionas a function of mass hypothesis,for several width hypotheses.

Example shown here: width of 6%

ATLAS-CONF-2016-xxx

Results  presented  in  the  «  750  GeV  structure  »  mini-­‐session  tend  to  f  avor  a  spin-­‐0  resonance  with  a  rather  large  width:  

Γ/M  ≈  6%  

This  may  be  due  to  the  decays  of  the  (pseudo)scalar  resonance  into  (many)  dark  ma'er  par/cles  

Dark  ma'er  portal?  

VolksModell (the everybody’s model)

The Sgg and S�� operators can be generated if S couples to charged particles

SQ̄f(yf + i y5f�5)Qf + SAsQ̃⇤sQ̃s

g

g

Q

S

Q

g

g

Extra fermions Q or scalars Q̃ needed

SM loop excluded: the tree level decay would be too large e.g.�tt̄

���⇡ 105.

φ  

χ  

χ  

Page 16: Dark%maer , dark%energy%and%par/cle%physics%moriond.in2p3.fr/J16/transparencies/4_wednesday/2_afternoon/6... · New Physics with light SM particles at CMS – JPC – Rutgers University

Extra Q = Dark Matter?

1) The connection with ⌦DM is interesting on its own;2) if �/M ⇠ 0.06 allows to hide many particles that enhance S ! ��;3) if �/M ⇠ 0.06 allows to get tree level S ! DMDM decays.

GDM = 0.01 MS

GDM = 0.03 MS

GDM = 0.06 MS

100 100030 300 300010-2

10-1

1

10

DM mass in GeV

Scalarcouplingy DM

gg

uudd

ss

cc

bb

GDM = 0.01 MS

GDM = 0.03 MS

GDM = 0.06 MS

100 100030 300 300010-2

10-1

1

10

DM mass in GeVPseudo-scalarcouplingyé DM

Direct detection bounds are (weak) irrelevant if S is a scalar (pseudo-scalar).

A.  Strumia,  QCD  

Such a resonance has thus the ideal properties to play a prominent role in the physics ofthe particles that form the dark matter (DM) in the universe [6] and which are the mostwanted particles in both accelerator based experiments and astrophysical experiments.Indeed, the present wisdom summarised by the weakly interacting massive particle orWIMP paradigm, is that an electrically neutral particle with a mass in the few 10 GeV tofew hundred GeV range and interacting weakly with the visible sector, should be stableat cosmological scales and accounts for the DM with a relic abundance that has beenprecisely measured by the WMAP and PLANCK satellites [7, 8].

In this brief note, we investigate the possibility that the observed diphoton resonancemediates the interactions of a spin–1

2 DM particle. We will work in a rather modelindependent framework in which the new particle content associated to both the resonanceand the DM states is not specified and the interactions are described by e↵ective operators.We first show that the measured value of the cosmological relic density can be reproducedfor a wide range of the DM particle masses and couplings. We then discuss the presentbounds and the future sensitivities that can be achieved on the these parameters fromastrophysical detection experiments, both direct such as XENON [9] and LUX [10] andmore precisely in perspective of the new LZ project [11]. We also study indirect searchesat the HESS [12] and FERMI [13] experiments. The complementarity of the approaches isdemonstrated as they are di↵erently sensitive to the CP nature of the mediator resonance.

2. E↵ective interactions of the diphoton resonance

We start by discussing the interactions of the diphoton resonance with the SM and DMparticles. For simplicity, we consider a Majorana DM particle in our work, but thegeneralization to a Dirac fermion is straightforward. The interactions will be described ina model independent way in terms of e↵ective operators for given JP spin–parity quantumnumbers of the � resonance. Two widely di↵erent possibilities need to be considered.

A first one is that the � particle has no direct couplings to SM fermions. In this case,its interactions with gluons and electroweak gauge bosons are given by the following twoLagrangians. In the case of a CP–even 0+ particle, one has [14]:

L0+ =c1⇤�Fµ⌫F

µ⌫ +c2⇤�W µ⌫Wµ⌫ +

c3⇤�Ga

µ⌫Gµ⌫a + g���̄�+m �̄�. (1)

with Fµ⌫ = (@µY⌫�@⌫Yµ) the field strength of the Yµ hypercharge SM gauge field; the sameholds for the SU(2) Wµ fields and the SU(3) Gµ fields. In the case where the mediator ofthe interaction � is a CP–odd or pseudoscalar 0� particle, one would have instead [14]

L0� =c1⇤�Fµ⌫F̃

µ⌫ +c2⇤�W µ⌫W̃µ⌫ +

c3⇤�Ga

µ⌫G̃µ⌫a + ig���̄�

5�+m �̄�. (2)

with F̃µ⌫ = ✏µ⌫⇢�F⇢� and likewise for the SU(2) and SU(3) gauge fields. On should notethat while for LHC physics the CP nature of the � resonance should not matter much, itis very important when it comes to dark matter searches.

The e↵ective couplings of the � state to the SM gauge bosons can be then written as

c�� = c1 cos2 ✓W + c2 sin

2 ✓W , cZZ = c1 sin2 ✓W + c2 cos

2 ✓W , cWW = c2, cgg = c3 (3)

There is also the possibility that the mediator � has direct couplings to SM fermions.As a bilinear term of the form �f̄f is not gauge invariant and explicitly breaks the SM

2

Such a resonance has thus the ideal properties to play a prominent role in the physics ofthe particles that form the dark matter (DM) in the universe [6] and which are the mostwanted particles in both accelerator based experiments and astrophysical experiments.Indeed, the present wisdom summarised by the weakly interacting massive particle orWIMP paradigm, is that an electrically neutral particle with a mass in the few 10 GeV tofew hundred GeV range and interacting weakly with the visible sector, should be stableat cosmological scales and accounts for the DM with a relic abundance that has beenprecisely measured by the WMAP and PLANCK satellites [7, 8].

In this brief note, we investigate the possibility that the observed diphoton resonancemediates the interactions of a spin–1

2 DM particle. We will work in a rather modelindependent framework in which the new particle content associated to both the resonanceand the DM states is not specified and the interactions are described by e↵ective operators.We first show that the measured value of the cosmological relic density can be reproducedfor a wide range of the DM particle masses and couplings. We then discuss the presentbounds and the future sensitivities that can be achieved on the these parameters fromastrophysical detection experiments, both direct such as XENON [9] and LUX [10] andmore precisely in perspective of the new LZ project [11]. We also study indirect searchesat the HESS [12] and FERMI [13] experiments. The complementarity of the approaches isdemonstrated as they are di↵erently sensitive to the CP nature of the mediator resonance.

2. E↵ective interactions of the diphoton resonance

We start by discussing the interactions of the diphoton resonance with the SM and DMparticles. For simplicity, we consider a Majorana DM particle in our work, but thegeneralization to a Dirac fermion is straightforward. The interactions will be described ina model independent way in terms of e↵ective operators for given JP spin–parity quantumnumbers of the � resonance. Two widely di↵erent possibilities need to be considered.

A first one is that the � particle has no direct couplings to SM fermions. In this case,its interactions with gluons and electroweak gauge bosons are given by the following twoLagrangians. In the case of a CP–even 0+ particle, one has [14]:

L0+ =c1⇤�Fµ⌫F

µ⌫ +c2⇤�W µ⌫Wµ⌫ +

c3⇤�Ga

µ⌫Gµ⌫a + g���̄�+m �̄�. (1)

with Fµ⌫ = (@µY⌫�@⌫Yµ) the field strength of the Yµ hypercharge SM gauge field; the sameholds for the SU(2) Wµ fields and the SU(3) Gµ fields. In the case where the mediator ofthe interaction � is a CP–odd or pseudoscalar 0� particle, one would have instead [14]

L0� =c1⇤�Fµ⌫F̃

µ⌫ +c2⇤�W µ⌫W̃µ⌫ +

c3⇤�Ga

µ⌫G̃µ⌫a + ig���̄�

5�+m �̄�. (2)

with F̃µ⌫ = ✏µ⌫⇢�F⇢� and likewise for the SU(2) and SU(3) gauge fields. On should notethat while for LHC physics the CP nature of the � resonance should not matter much, itis very important when it comes to dark matter searches.

The e↵ective couplings of the � state to the SM gauge bosons can be then written as

c�� = c1 cos2 ✓W + c2 sin

2 ✓W , cZZ = c1 sin2 ✓W + c2 cos

2 ✓W , cWW = c2, cgg = c3 (3)

There is also the possibility that the mediator � has direct couplings to SM fermions.As a bilinear term of the form �f̄f is not gauge invariant and explicitly breaks the SM

2

scalar   pseudoscalar  

Mambrini,  Arcadi,  Djouadi  1512.04913,  Backovic,  Mario�,  Redigolo  1512.04917;  Knappen,  Melia,  Papucci,  Zurek,    1512.04928;    …  

1512.04933  direct  detec/on  upper  limit  

Indirect  detec/on:  see  Morgante  et  al.  1603.0592    

No  direct  detec/on  limit  

Region  (in  blue)  where  DM  has  the  observed  relic  aboundance  

Page 17: Dark%maer , dark%energy%and%par/cle%physics%moriond.in2p3.fr/J16/transparencies/4_wednesday/2_afternoon/6... · New Physics with light SM particles at CMS – JPC – Rutgers University

A  note:  the  dark  ma'er-­‐black  hole  connec/on  

«  Interes/ngly  enough,  there  remains  a  window  for  masses  10  M⊙   ︎<  MBH  <   ︎  100  M⊙    where  primordial  black  holes  (PBHs)  may  cons/tute  the  dark  ma'er.  If  two  PBHs    in  a  galac/c  halo  pass  sufficiently  close,  they  can  radiate  enough  energy  in    gravita/onal  waves  to  become  gravita/onally  bound.  The  bound  PBHs  will  then    rapidly  spiral  inward  due  to  emission  of  gravita/onal  radia/on  and  ul/mately  merge.  »    

S.  Bird,  I.    Cholis,  J.  B.  Muñoz,  Y.  Ali-­‐Haïmoud,  M.  Kamionkowski,  E.  D.  Kovetz,  A.  Raccanelli,  A.  G.  Riess                                                                                                            arXiv:  1603.00464  [astro-­‐ph.CO]      

Page 18: Dark%maer , dark%energy%and%par/cle%physics%moriond.in2p3.fr/J16/transparencies/4_wednesday/2_afternoon/6... · New Physics with light SM particles at CMS – JPC – Rutgers University

gravita/onal  waves  

Higgs  

Infla/on  

accelera/on  of  the  expansion                            (dark  energy)  

quantum  gravity  

new  physics@colliders            (diphoton…)  

       stability  of  the  theory  

modifica/on  of  gravity  

dark  ma'er  

black  holes  

an/ma'er  

Page 19: Dark%maer , dark%energy%and%par/cle%physics%moriond.in2p3.fr/J16/transparencies/4_wednesday/2_afternoon/6... · New Physics with light SM particles at CMS – JPC – Rutgers University

Higgs  infla/on  

Higgs  h  of  the  original  SM  cannot  be  the  inflaton  

Condi/on  to  avoid  quantum  gravity  regime  during  slowroll:  quar/c  coupling  λ≪10-­‐2    

                                                                                                                                                                                                                                                 (whereas  λ∼10-­‐1)  

Need  to  couple  it  to  space.me  curvature  R  

S  =  ∫  d4x  √-­‐g  {  -­‐              (1  +  ξ                  )  R  +          ∂μh  ∂μh    -­‐              (h2  –v2)2  }  h2  

MP2  

MP2  

2  1  

2  

λ  

4  

S  =  ∫  d4x  √-­‐g  {  -­‐                R  -­‐            [gμν    -­‐                (Rμν  –  R  gμν  /2  )]  ∂μh  ∂νh    -­‐                (h2  –v2)2  }  MP

2  

2    1        

2  

λ  

4  w2  MP

2  

Berzukov,  Shaposhnikov  0710.3755  [hep-­‐th]…  

Germani,  Kehagias  1003.2635  [hep-­‐ph]…  

Page 20: Dark%maer , dark%energy%and%par/cle%physics%moriond.in2p3.fr/J16/transparencies/4_wednesday/2_afternoon/6... · New Physics with light SM particles at CMS – JPC – Rutgers University

0

hM4/j2/16

hM4/j2/4

U(r)

0 rend rCOBE r

0h v4/4

0 v

Bezrukov,  Shaposhnikov  infla/on  

Note:  problem  with  unitarity  at  scale  MP/ξ;  app.  shi�  symmetry  helps  at  scale  ≫  MP/ξ  (infla/on)    

Burgess,  Lee,  Tro'  0902.4465,1002.2730  George,  Mooij,  Postma,  1310.2157    

Bezrukov,  Magnin,  Shaposhnikov,  Sibiryakov  1008.5157  Ferrara,  Kallosh,  Linde,  Marrani,  Van  Proeyen  1008.2942  

Mathema/cal  trick:    conformal  transforma/on  on  the  metric  

δT/T  ∼  10-­‐5        ⇒   ξ/√λ  ∼  47000  

Page 21: Dark%maer , dark%energy%and%par/cle%physics%moriond.in2p3.fr/J16/transparencies/4_wednesday/2_afternoon/6... · New Physics with light SM particles at CMS – JPC – Rutgers University

0

hM4/j2/16

hM4/j2/4

U(r)

0 rend rCOBE r

0h v4/4

0 v

Is  it  dependent  on  the    type  of  field  and  on    the  details  of  the  low  energy  poten/al?  

No!  

S  =  ∫  d4x  √-­‐g  {  -­‐              (1  +  ξ                  )  R  +          ∂μh  ∂μh    -­‐              (h2  –v2)2  }  h2  

MP2  

MP2  

2  1  

2  

λ  

4  

S  =  ∫  d4x  √-­‐g  {  -­‐              (1  +  ξ  f(φ))  R  +          ∂μh  ∂μh    -­‐    λ  f(φ)2  }  MP

2  

2  1  

2  

generalize  

In  the  limit  ξ  large,  one  obtains  the  predic/ons  of  Higgs  infla/on  

Kallosh,  Linde,  Roest  1310.3950  

Going  beyond  the  Higgs  field…  

Page 22: Dark%maer , dark%energy%and%par/cle%physics%moriond.in2p3.fr/J16/transparencies/4_wednesday/2_afternoon/6... · New Physics with light SM particles at CMS – JPC – Rutgers University

α-­‐a'ractors  

Kallosh,  Linde,  Roest  1310.3950  

�23

�2

�3

�4

0.955 0.960 0.965 0.970 0.975 0.980

-3.0

-2.5

-2.0

-1.5

-1.0

-0.5

0.0

log  scale  

Page 23: Dark%maer , dark%energy%and%par/cle%physics%moriond.in2p3.fr/J16/transparencies/4_wednesday/2_afternoon/6... · New Physics with light SM particles at CMS – JPC – Rutgers University

In  fact,  one  may  iden/fy  characteris/c  classes  of  models  (in  a  sense  very  similar  to  the  characteris/c  classes  of  cri/cal  phenomena  in  condensed  ma'er  physics)  

Can  one  understand  this  from  a  broader  perspec/ve?  

Page 24: Dark%maer , dark%energy%and%par/cle%physics%moriond.in2p3.fr/J16/transparencies/4_wednesday/2_afternoon/6... · New Physics with light SM particles at CMS – JPC – Rutgers University

In  an  infla/on  scenario,  one  first  have  to  solve  the  classical  equa/on  of  mo/on  of  the    inflaton  field  in  its  poten/al.  

Suppose  that  we  are  in  an  expanding    Universe  with  cosmic  scale  factor  a(t)    

.  ≣  d/dt  Hubble  parameter  H(t)  ≣  a(t)/a(t)  

.  

Equa/on  of  evolu/on  of  the  field  φ  

φ  +  3  H  φ  =  -­‐  dV/dφ          .  .   .  

φ  ρφ  =  φ2  /2  +  V(φ)  

V(φ)  

pφ  =  φ2  /2  -­‐  V(φ)  

.  

.  energy  density  

pressure  

Page 25: Dark%maer , dark%energy%and%par/cle%physics%moriond.in2p3.fr/J16/transparencies/4_wednesday/2_afternoon/6... · New Physics with light SM particles at CMS – JPC – Rutgers University

There  is  a  simple  way  of  extrac/ng  an  integral  of  mo/on  Bond  and  Salopek,  1990  

Write          H(t)  =  a/a(t)  ≣  -­‐W(φ)/2  i.e.  take  the  scalar  field  φ  as  your  clock  

Then  […]  the  equa/on  of  mo/on  becomes  simply    

φ  =  Wφ    

V(φ)  =  3W2/4  –  Wφ2/2  

W(φ)  superpoten/al  

dφ                      dφ            dt                    φ                  1                dW                      Wφ  

dlna                    dt            dlna              H                  H                  dφ                        W  =  =  =    =  -­‐2  

.  

.  

.  

.  

But  

Wφ    dW/dφ    

φ  

Page 26: Dark%maer , dark%energy%and%par/cle%physics%moriond.in2p3.fr/J16/transparencies/4_wednesday/2_afternoon/6... · New Physics with light SM particles at CMS – JPC – Rutgers University

evolu/on  of  φ  

dφ                                    Wφ  

dlna                                  W  =      -­‐2                                    

Page 27: Dark%maer , dark%energy%and%par/cle%physics%moriond.in2p3.fr/J16/transparencies/4_wednesday/2_afternoon/6... · New Physics with light SM particles at CMS – JPC – Rutgers University

evolu/on  of  φ  

dφ                                    Wφ  

dlna                                  W  =      -­‐2                                    ≣    β(φ)  

dg  

dlnμ  =    β(g)  

renormalisa/on  group  equa/on            in  QFT  or  sta/s/cal  physics  

field  φ   gauge  coupling  g  

cosmic  scale  factor  a   renormalisa/on  scale  μ  

Page 28: Dark%maer , dark%energy%and%par/cle%physics%moriond.in2p3.fr/J16/transparencies/4_wednesday/2_afternoon/6... · New Physics with light SM particles at CMS – JPC – Rutgers University

Where  does  this  come  from?  Understandable  in  the  context  of  gauge/gravity  duality                                                                                                                                                                                                                  (AdS/CFT  correspondence)  

 gravity  theory  in  an/  de  Si'er  

 INFLATION  

gravity  theory  in  deSi'er  

conformally  invariant  QFT  (typically  gauge  theory  w/  β(g)=0)    

McFadden,  Skenderis  

MP2  ↔  -­‐MP

2  

V↔-­‐V  

E.  Kiritsis  1307.5873  

Λ  >  0  

Λ  <  0  

Page 29: Dark%maer , dark%energy%and%par/cle%physics%moriond.in2p3.fr/J16/transparencies/4_wednesday/2_afternoon/6... · New Physics with light SM particles at CMS – JPC – Rutgers University

Where  does  this  come  from?  Understandable  in  the  context  of  gauge/gravity  duality  

 gravity  theory  in  almost  

an/  de  Si'er  

 INFLATION  

gravity  theory  in  almost  deSi'er  β(φ)  ≠0  

conformally  invariant  QFT  (typically  gauge  theory)  +  operators  β(g)≠0  

McFadden  Skenderis  

MP2  ↔  -­‐MP

2  

V↔-­‐V  

E.  Kiritsis  1307.5873  McFadden,  Skenderis  

Page 30: Dark%maer , dark%energy%and%par/cle%physics%moriond.in2p3.fr/J16/transparencies/4_wednesday/2_afternoon/6... · New Physics with light SM particles at CMS – JPC – Rutgers University

evolu/on  of  φ  

dφ                                    Wφ  

dlna                                  W  =      -­‐2                                    ≣    β(φ)  

dg  

dlnμ  =    β(g)  

renormalisa/on  group  equa/on            in  QFT  or  sta/s/cal  physics  

Note:    β(φ)  =  [  3(pφ+ρφ)/ρφ]1/2      

Vacuum  energy:  p  =  -­‐  ρ    ⇒  β  =  0  fixed  point  

Infla/on:  vicinity  of  a  fixed  point  ns<1,  built-­‐in  instability  

ns=1,  infla/on  for  ever  

field  φ   gauge  coupling  g  

cosmic  scale  factor  a   renormalisa/on  scale  μ  

Page 31: Dark%maer , dark%energy%and%par/cle%physics%moriond.in2p3.fr/J16/transparencies/4_wednesday/2_afternoon/6... · New Physics with light SM particles at CMS – JPC – Rutgers University

Solu/ons  classified  into  universality  classes:  

Class  Ia:        β(φ)  =  βq  (φ-­‐φ0)q  

Class  II:        β(φ)  =  -­‐β  exp[-­‐γφ]  

V(φ)  ∼  A[1-­‐  B(φ-­‐φ0)q+1+…]  

fixed  point  at  ∞  

Ex:  Higgs  infla/on,  Starobinsky    infla/on  

PB,  Kiritsis,  Mabillard,  Pietroni  1407.0820  

Page 32: Dark%maer , dark%energy%and%par/cle%physics%moriond.in2p3.fr/J16/transparencies/4_wednesday/2_afternoon/6... · New Physics with light SM particles at CMS – JPC – Rutgers University

P.B.,  Kiritsis,  Mabillard,  Pietroni  1407.0820  

all  classes  

exponen/al  class  

Higgs  infla/on  

Page 33: Dark%maer , dark%energy%and%par/cle%physics%moriond.in2p3.fr/J16/transparencies/4_wednesday/2_afternoon/6... · New Physics with light SM particles at CMS – JPC – Rutgers University

Poten/al  clues  for  future  theories:  

accelera/on  of  the  expansion  of  the  Universe  

confirma/on  of  the  basic  principles  of  infla/on  

history  of  the  Universe  

now  

Big  Bang  

Why  is  it  that  vacuum  energy  seems  to  dominate  at  the  beginning  and  at  the    end  of  our  history?  

Page 34: Dark%maer , dark%energy%and%par/cle%physics%moriond.in2p3.fr/J16/transparencies/4_wednesday/2_afternoon/6... · New Physics with light SM particles at CMS – JPC – Rutgers University

V  

φ  

 φ  has  to  be  very  light  :            mφ    ~  H0

   ~      10-­‐33  eV    

φ  exchange  would  provide  a  long  range  force  similar  to  gravity:    φ  has  to  be  extremely  weakly  coupled  to  ordinary  ma'er  unless  its  mass  depends  on  ρma'er  :  SCREENING.    

ε=(mPV’/V)2  /2«1  

mP  

Screening:  a  generic  solu/on  to  a  generic    problem  

Many  infla/on  models  have  been  recycled  into  models  of  dark  energy,  but  the  change  of                                scales  generates  a  problem  specific  to  dark  energy  scalar  models.  

F.  Piazza,  Cosmology    

Page 35: Dark%maer , dark%energy%and%par/cle%physics%moriond.in2p3.fr/J16/transparencies/4_wednesday/2_afternoon/6... · New Physics with light SM particles at CMS – JPC – Rutgers University

Fixed  point  :  zero  of  β   β(φ0)=0  

φ0  

φ0’  infla/on  

       infla/on  (dark  energy?)  

Page 36: Dark%maer , dark%energy%and%par/cle%physics%moriond.in2p3.fr/J16/transparencies/4_wednesday/2_afternoon/6... · New Physics with light SM particles at CMS – JPC – Rutgers University

gravita/onal  waves  

Higgs  

Infla/on  

accelera/on  of  the  expansion                            (dark  energy)  

quantum  gravity  

new  physics@colliders            (diphoton…)  

       stability  of  the  theory  

modifica/on  of  gravity  

dark  ma'er  

black  holes  

an/ma'er  

Page 37: Dark%maer , dark%energy%and%par/cle%physics%moriond.in2p3.fr/J16/transparencies/4_wednesday/2_afternoon/6... · New Physics with light SM particles at CMS – JPC – Rutgers University

Infla/on  and  the  detec/on  of  gravita/onal  waves  by  ground  detectors  

In  the  standard  model  of  infla/on,  background  of  primordial  gravita/onal  waves    is  out  of  reach  of  LIGO  and  Virgo.  

H02  ΩGW  =    10-­‐13  (H/10-­‐4MPl)2  H0

2  ΩGW  =    10-­‐13(feq/f)  2(H/10-­‐4MPl)2  

Fluctua/ons  reenter  horizon  during  ma'er  era                      radia/on  era  

But  the  situa/on  is  different  if  the  inflaton  scalar  field  is  a  pseudoscalar…  

Page 38: Dark%maer , dark%energy%and%par/cle%physics%moriond.in2p3.fr/J16/transparencies/4_wednesday/2_afternoon/6... · New Physics with light SM particles at CMS – JPC – Rutgers University

Figure 5: Power spectrum of scalar perturbations for all the models with the same parameters and color code of

Fig. 4. The upper horizontal line estimates the PBH bound, the lower one indicates the COBE normalization.

10-15 10-10 10-5 100 10510-29

10-24

10-19

10-14

10-9

0102030405060

f [Hz]

ΩGWh2

N

Figure 6: Gravitational wave spectrum for all the models with the same parameters and color code of Fig. 4.

We are also showing the sensitivity curves for (from left to right): milli-second pulsar timing, eLISA, advanced

LIGO. Current bounds are denoted by solid lines, expected sensitivities of upcoming experiments by dashed

lines. See main text for details.

18

Valerie  Domcke,  cosmology  session,  Thursday  

Axion-­‐type  coupling  is  allowed  (and  not  prevented  by  SM  symmetries):          φ  Fμν  Fμν      ~  

V.  Domcke,  M.  Pieroni,  PB      

φ2  

Starobinsky  

Hilltop  

1603.01287  

Gauge  field  has  a  tachyonic  instability:    non-­‐perturba/ve  produc/on  during  infla/on  which  induces  a  new  source  of  tensor  modes    

Anber,  Sorbo;  Linde,  Mooj,  Pajer;…  

Page 39: Dark%maer , dark%energy%and%par/cle%physics%moriond.in2p3.fr/J16/transparencies/4_wednesday/2_afternoon/6... · New Physics with light SM particles at CMS – JPC – Rutgers University

gravita/onal  waves  

Higgs  

Infla/on  

accelera/on  of  the  expansion                            (dark  energy)  

quantum  gravity  

new  physics@colliders            (diphoton…)  

       stability  of  the  theory  

modifica/on  of  gravity  

dark  ma'er  

black  holes  

an/ma'er  

Page 40: Dark%maer , dark%energy%and%par/cle%physics%moriond.in2p3.fr/J16/transparencies/4_wednesday/2_afternoon/6... · New Physics with light SM particles at CMS – JPC – Rutgers University

Dark  energy  and  vacuum  energy    

The  vacuum  is  the  site  of  quantum  field  fluctua/ons  which  contribute  to  its  energy    

Vacuum  energy  problem  

Back  of  an  envelope  calcula/on  :  

∼  ρc  ∼  10-­‐26  kg/m3  

ρ  =  mP4  ∼  10120    ρdark  energy    

par/cle  

an/par/cle  

Δt  ≤  ΔΕ/ħ  =  2mc2/ħ  

Page 41: Dark%maer , dark%energy%and%par/cle%physics%moriond.in2p3.fr/J16/transparencies/4_wednesday/2_afternoon/6... · New Physics with light SM particles at CMS – JPC – Rutgers University

par$cule)

par$cule)

an$par$cule)

an$par$cule) Horizon

singularité)

Fluctua/ons  play  also  an  important  role  close  to  the  horizon  of  a  black  hole:  

Hawking  radia/on  

                     singularity  of  black  hole  of  mass  M  

     leads  in  principle  to    black  hole  evapora/on  

Thermal  radia/on                    T  ∝  M-­‐1  

x  

Page 42: Dark%maer , dark%energy%and%par/cle%physics%moriond.in2p3.fr/J16/transparencies/4_wednesday/2_afternoon/6... · New Physics with light SM particles at CMS – JPC – Rutgers University

The  firewall  problem  

At  the  black  hole  horizon,  there  appears  to  be  a  incompa/bility  between  the  laws  of  quantum  mechanics  ,  the  laws  of  quantum  field  theory  (existence  of  a  unitary  S  matrix)  and  the  laws  of  general  rela/vity.  

AMBS  claim  that  an  observer  falling  into  a  black  hole  horizon  will  encounter    a  «  firewall  »  

black  hole  

horizon  

Incompa/ble  with  the      equivalence  principle:  free  fall  ≣  flat  space  

1207.3123  

Almheiri,  Marolf,  Polchinski,  Sully  

Page 43: Dark%maer , dark%energy%and%par/cle%physics%moriond.in2p3.fr/J16/transparencies/4_wednesday/2_afternoon/6... · New Physics with light SM particles at CMS – JPC – Rutgers University

This  led  Hawking  and  others  to  reconsider  the  nature  or  even  the  existence  of  the    horizon  around  black  holes…  

Who  will  tell?  Probably  gravita/onal  waves.  

Page 44: Dark%maer , dark%energy%and%par/cle%physics%moriond.in2p3.fr/J16/transparencies/4_wednesday/2_afternoon/6... · New Physics with light SM particles at CMS – JPC – Rutgers University

The  stellar  black  hole  cycles  some  105  /mes  around  the  supermassive  black  hole  before    plunging  into  its  horizon.    Allows  to  map  the  geometry  of  space-­‐/me  close  to  the  black  hole  horizon    

LISA,  2030  

Page 45: Dark%maer , dark%energy%and%par/cle%physics%moriond.in2p3.fr/J16/transparencies/4_wednesday/2_afternoon/6... · New Physics with light SM particles at CMS – JPC – Rutgers University

Note the similarities and differences between the cosmological and BH horizon

Black hole Visible Universe

singularity

Observer at infinity

Singularity at infinity

observerXX

Black  hole  holography   Holographic  principle  ?  

t’Hoo�,  Susskind  See    1208.4645  [gr-­‐qc]      

Page 46: Dark%maer , dark%energy%and%par/cle%physics%moriond.in2p3.fr/J16/transparencies/4_wednesday/2_afternoon/6... · New Physics with light SM particles at CMS – JPC – Rutgers University

US Decadal Survey on Gravitational Physics J. Hartle et al.

neutron  star  

       probed  by  best  accelerators  

present  Universe  

universe  at  end  of  infla/on  

quantum  gravity  scale  

primordial  black  hole  

Page 47: Dark%maer , dark%energy%and%par/cle%physics%moriond.in2p3.fr/J16/transparencies/4_wednesday/2_afternoon/6... · New Physics with light SM particles at CMS – JPC – Rutgers University

Conclusions  

We  have  entered  a  new  world  where  interconnec/on  is  probably  essen/al.    

Un/l  now,  we  have  o�en  resorted  to  toy  models  to  make  our  predic/ons  (e.g.  infla/on,  dark  energy,  dark  ma'er)  

If  we  want  to  address  mul/ple  issues,  it  is  important  to  use  theories  which  are    as  realis/c  and  as  complete  as  possible.    

Gravita/onal  waves  will  probably  become  an  essen/al  tool,  not  just  for  astrophysics    but  for  addressing  the  most  fundamental  issues  of  par/cle  physics.