d6.2: specification concept of the general technical system redesign

41
Grant Agreement number: 314286 Project acronym: MUNIN Project title: Maritime Unmanned Navigation through Intelligence in Networks Funding Scheme: SST.2012.5.2‐5: E‐guided vessels: the 'autonomous' ship D6.2: Specification concept of the general technical system redesign Due date of deliverable: 2013‐07‐30 Actual submission date: 2013‐07‐16 Start date of project: 2012‐09‐01 Lead partner for deliverable: HSW Project Duration: 36 months Distribution date: Document revision: 1.0 Project cofunded by the European Commission within the Seventh Framework Programme (20072013) Dissemination Level PU Public Public PP Restricted to other programme participants (including the Commission Services) RE Restricted to a group specified by the consortium (including the Commission Services) CO Confidential, only for members of the consortium (including the Commission Services)

Upload: nguyenkien

Post on 10-Feb-2017

215 views

Category:

Documents


1 download

TRANSCRIPT

Page 1: D6.2: Specification concept of the general technical system redesign

GrantAgreementnumber:314286Projectacronym:MUNINProjecttitle:MaritimeUnmannedNavigationthroughIntelligenceinNetworksFundingScheme:SST.2012.5.2‐5:E‐guidedvessels:the'autonomous'ship

D6.2:Specificationconceptofthegeneraltechnicalsystemredesign

Duedateofdeliverable:2013‐07‐30Actualsubmissiondate:2013‐07‐16

Startdateofproject:2012‐09‐01Leadpartnerfordeliverable:HSW

ProjectDuration:36months

Distributiondate: Documentrevision:1.0

Projectco‐fundedbytheEuropeanCommissionwithintheSeventhFrameworkProgramme(2007‐2013)

DisseminationLevelPU Public PublicPP Restrictedtootherprogrammeparticipants(includingtheCommissionServices)RE Restrictedtoagroupspecifiedbytheconsortium(includingtheCommissionServices)CO Confidential,onlyformembersoftheconsortium(includingtheCommissionServices)

Page 2: D6.2: Specification concept of the general technical system redesign

MUNIN – FP7 GA‐No 314286  

D 6.2 – Print date: 13/07/16

Status: final  2/41  Dissemination level: PU 

DocumentsummaryinformationDeliverable D6.2Specificationconceptofthegeneraltechnicalredesign Classification PublicInitials Author Organisation RoleKW KarstenWehner HSW EditorHS HartmutSchmidt HSW ContributorEF EnricoFentzahn Msoft Layout&FormattingRev. Who Date Comment0.1 HS 2013‐07‐12 Initialrevision1.0 EF 2013‐07‐16 CommentsfromCML Internalreviewneeded: [x ]yes []noInitials Reviewer Approved NotapprovedLW LauraWalther WithComments

DisclaimerThecontentofthepublicationhereinisthesoleresponsibilityofthepublishersanditdoesnotnecessarilyrepresenttheviewsexpressedbytheEuropeanCommissionoritsservices.

Whiletheinformationcontainedinthedocumentsisbelievedtobeaccurate,theauthor(s)oranyotherparticipantintheMUNINconsortiummakenowarrantyofanykindwithregardtothismaterialincluding,butnotlimitedtotheimpliedwarrantiesofmerchantabilityandfitnessforaparticularpurpose.

Neither the MUNIN Consortium nor any of its members, their officers, employees or agents shall beresponsible or liable in negligence or otherwise howsoever in respect of any inaccuracy or omissionherein.

Without derogating from the generality of the foregoing neither theMUNIN Consortium nor any of itsmembers,theirofficers,employeesoragentsshallbeliableforanydirectorindirectorconsequentiallossordamagecausedbyorarisingfromanyinformationadviceorinaccuracyoromissionherein.

Page 3: D6.2: Specification concept of the general technical system redesign

MUNIN – FP7 GA‐No 314286  

D 6.2 – Print date: 13/07/16

Status: final  3/41  Dissemination level: PU 

Executivesummary

Startingwithadefinitionofthescopeandtheboundariesoftheconsideredmachineryplant,themaincomponentsforthenecessarysystemsweredescribed.Ofparticularnoteisthechangetodistillatefuel,withallitsadvantagesfortheoperation,maintenanceandtheenvironment(comparedtoheavyfueloilwithhighersulfurcontents).Basedonananalysisoftechnicalfailuresinthesystems,theircriticalitywasanalyzedandthepossibilityofoperationwithfaultysystemwasdescribed.Fromtheseinvestigations,necessarymeasuresandthescopeofredesignwerederived.Finallythecontentsofthespecificationdocumentwerediscussedwithexperts.Thisvalidationoftheconceptwascarriedoutwithexperiencedtechnicalofficersandprofessors.

Page 4: D6.2: Specification concept of the general technical system redesign

MUNIN – FP7 GA‐No 314286  

D 6.2 – Print date: 13/07/16

Status: final  4/41  Dissemination level: PU 

Listofabbreviations

ABS AutonomousBridgeSystem

AE Auxiliaryengine

AEMC AutonomousEngineMonitoringandControl

CBM Condition‐basedmaintenance

CO2 CarbonDioxide

Cyl. Cylinder

ECA EmissionControlArea

GenSet GeneratorSet

GenkW GeneratorOutput(Kilowatt)

HFO HeavyFuelOil

LNG LiquefiedNaturalGas

LO LubricationOil

ME Mainengine

NOx NitrogenDioxide

EGT ExhaustGasTurbocharger

UMS UnattendedMachinerySpaces

SAS ShipAutomationSystem

SCC ShoreControlCenter

SECA SulphurEmissionControlArea

SSDG Ship’sServiceDieselGenerator

WMC WaterMistCatcher

Page 5: D6.2: Specification concept of the general technical system redesign

MUNIN – FP7 GA‐No 314286  

D 6.2 – Print date: 13/07/16

Status: final  5/41  Dissemination level: PU 

Tableofcontents

Executivesummary...............................................................................................................................3 

Listofabbreviations.............................................................................................................................4 

1.  Introduction....................................................................................................................................6 1.1  Scope............................................................................................................................................................6 1.2  Structureofreport.................................................................................................................................6 

2.  Systemboundariesofmonitoringandcontrol/1/...........................................................7 

3.  Scopeofmachineryplant...........................................................................................................8 

4.  Listofcomponentsusedinthesystems................................................................................9 4.1  Mainenginewithsupplysystems...................................................................................................9 4.2  Auxiliaryengineswithsupplysystems......................................................................................18 4.3  Propulsion,rudder,steeringgear................................................................................................23 4.4  Bilgeandballastsystem...................................................................................................................24 4.5  Firemainsystem..................................................................................................................................25 

5.  Technicalfailuresinthesystemgroups..............................................................................26 

6.  Possibilities of operation with faulty systems, interactions in terms ofmaintenance..................................................................................................................................28 

7.  Minimumscopeofnecessarysystemsforreduced‐emergency‐operation..........32 

8.  Derivedmeasures,additionalredundancies,additionalconditionmonitoringsystems............................................................................................................................................33 

9.  Descriptionofengineoperationundercreatedfailurescenarioconditions........36 

10.  Summarizedscopeofredesign...............................................................................................37 

11.  Technicaldiscussionsforvalidationoftheconcept.......................................................38 

References..............................................................................................................................................41 

Page 6: D6.2: Specification concept of the general technical system redesign

MUNIN – FP7 GA‐No 314286  

D 6.2 – Print date: 13/07/16

Status: final  6/41  Dissemination level: PU 

1. Introduction

1.1 Scope

Of special interest for this investigation was the unmanned engine operation underopensea conditions. The machinery plant includes the engine room, stern tube,propeller,rudder,steeringgearandcasingwithsmokestack.

Themainpropulsionengine is a two‐stroke lowspeed turbochargedcrossheadDieselengine with a directly coupled fixed pitch propeller. Auxiliary engines (three Dieselgeneratorsets)andothernecessarysystemsareincluded.

The technical failures in themain system groups are the basis of the analysis of thepossibilityofoperationwithfaultysystems.

Another point is the interaction in terms of maintenance, requirements and possiblesolutions.

Mainfocusofthereportistheanalysisofthederivedmeasures,additionalredundanciesandmonitoringandcontrolpossibilities,endinginthescopeofredesignandevaluationbyexperts.

1.2 Structureofreport

The system boundaries of monitoring and control and the scope of the unmannedmachineryplantweredefined for a bulk carrier. Basedon this, themain componentsusedintheinvolvedsystemsaredescribedandtheanalysisoftechnicalfailuresisdone.Thepossibilitiesofoperationwithfaultysystemsaredescribedandinformationaboutthenecessarysystemsinemergencyoperationaregiven.Basedonthe failureanalysisand the systemdefinition, additionalmeasures, redundanciesandmonitoring systemsarederived.Inrelationtothecreatedopenseafailurescenarios,theengineoperationisdescribed. In summary, the scope of redesign is described and a technical discussionwithexpertswasdonetovalidatetheresults.

Page 7: D6.2: Specification concept of the general technical system redesign

MUNIN – FP7 GA‐No 314286  

D 6.2 – Print date: 13/07/16

Status: final  7/41  Dissemination level: PU 

2. Systemboundariesofmonitoringandcontrol/1/

The Autonomous Engine Monitoring and Control (AEMC) system is part of theautonomousextensionsforanunmannedvessel.TheAEMCisusedtocontroltheenginerelated parts of the ship. The other autonomous controller is theAutonomousBridgeSystem(ABS)controller.Basically,theAEMCissetontopoftheShipAutomationSystem(SAS) and uses an interface to get the measuring values and status from the SAS. Asecondpurposeof theAEMC isgetting control commands fromother systemse.g. theABSandforwardingthemtotheshipautomationsystem.

TheAEMCcontrols the systems formachineryoperation.The first system is themainengine and the associated system for lubrication oil and cooling water. Starting andstopping of the main engine is controlled by superior instances which have theknowledge about the navigation and the course of the ship. This can be the ABS, theshoresidecontrolcentre(SCC)oracrewonboard.Theseinstanceswilltargetvaluesforthepropulsionsystemaswell.Forexample,therudderangleorthepropellerspeedisone of these values. The propulsion system itself is controlled by the AEMC. Anotherfully controlled part of theAEMC is the power generation. This includes the auxiliaryengines, the generator and the support systems like lubrication oil, fuel system andcoolingsystem.Thebilgesystemand thesteamsystemaregenerallyundercontroloftheAEMC.ThefuelsystemisbasicallyhandledbytheAEMCbutthecalculationandthestartofbunkeringisdonebythebridge.

Some systems are partly under control of the AEMC. An example is the alarmmanagementsystem.TheAEMConlyhandles theengine relatedalarmsundreactsonraising alarms. The ballast water system is in general not part of the AEMC, but theAEMCwillprovideaninterfaceforthebridgetocontroltheballastwatersystem.SotheAEMCgetscommandsonhowmuchwateristobepumpedtotheballasttanksandwilldirectlyforwardthesecommandstotheshipautomationsystem.

The following systems arenot relatedwith theAEMC: cargomanagement, navigation,manoeuvring, fire fighting, air condition system, aviation system, thruster controlincluding a pump jet and external communication. These systems are generallycontrolledbytheABS.

Page 8: D6.2: Specification concept of the general technical system redesign

MUNIN – FP7 GA‐No 314286  

D 6.2 – Print date: 13/07/16

Status: final  8/41  Dissemination level: PU 

3. Scopeofmachineryplant

In this chapter, the scope of themachinery plant of our project bulk carrier is to bedefined and described. This plant is controlled and monitored by the “AutonomousEngineControlandMonitoringSystem”.

Bulk carriers transport dry cargoes (e.g. grain, coal, ore) in a number of holds withdoublebottomsandsinglesideskins.Slopingangledtanksforwaterballastarelocatedat both the top and the bottom of the vertical sides (topside and hopper tanks).Additionally,someholdsarecapableoftakingwaterballast.

Thebasisofourprojectofanunmannedshipengineoperation(unattendedmachineryplantrooms)onboardofabulkcarrieristhemostcommonlyinstalledmainpropulsionplantwithatwo‐strokelowspeedturbochargedcrossheadDieselenginewithadirectlycoupledfixedpitchpropeller.

Regarding the premises, the machinery plant includes the engine room, stern tube,propeller,rudder,steeringgearandcasingwithsmokestack,seefig.1and2,/2/.

Boundariesoftheunmannedengineroom

Figure1–Schematicarrangementofamerchantship

Page 9: D6.2: Specification concept of the general technical system redesign

MUNIN – FP7 GA‐No 314286  

D 6.2 – Print date: 13/07/16

Status: final  9/41  Dissemination level: PU 

Figure2–Machineryarrangementforalowspeedmainpropulsionplant/2/

In addition to the used components and the supply systems of the propulsion plant,otherimportantauxiliarymachineryandsystemsmustbeincluded.

Inthenextchapterthesesystemsaredescribedinmoredetail.

4. Listofcomponentsusedinthesystems

4.1 Mainenginewithsupplysystems

Fueloilsystem

In the MUNIN project, the unmanned engine operation is designed for the open seavoyage.UndertheseconditionstheshipsusenormallyHeavyFuelOil(HFO)andonlyin

Page 10: D6.2: Specification concept of the general technical system redesign

MUNIN – FP7 GA‐No 314286  

D 6.2 – Print date: 13/07/16

Status: final  10/41  Dissemination level: PU 

emissionrestrictedareasit’snecessarytouseDieseloilorspecialexhaustgastreatmentplants.

Derivedfromit,weconsidertheHFOsystemunderthesespecificboundaryconditions.

Today,theshipsbunker“dirty”HFOandthefueloilcleaningandtreatmentmustbeonboard.

The system must enable a safe operation. An important step for safe operation is asimplesystem.Therefore,itwouldbeobvioustousealreadypurifiedHFOforbunkeringandstorageonboard.

For operation in Emission Control Areas (ECAs) and the fulfillment of specialregulations, the project ship would have to be equipped with an additional distillatesupplysystem.HFOanddistillatewouldbeforuseinmainengineandauxiliaryengines.Because of incompatibilities concerning the chemical composition and the thermalbehavior, a mixing or a changeover between HFO and distillate contains a bigunpredictablerisk.

Thatcauses,forexample,theformationofadhesivesolids(cloggedfiltersandpipes)orthermalshocks(partsoftheinjectionsystemareblocked).Bothprocessesfinallyleadtothetotalfailureoftheengines.

UndertheboundaryconditionthattheshipoperatesinEmissionControlAreasduringtheseavoyage,achangeoverbetweenthefueloiltypesisnecessary.ItisalsonecessarytoenableachangeoverbetweenstoragetankswithHFOofdifferentoriginsduringthevoyage,followedbythealreadydescribedmixingproblems.

Alltheserisksaretoohighforanautonomousoperation.

Therefore, the technically best and simplest solution is a distillate fuel oil systemwithout mixing and thermal problems and without expensive purifying, heating andtreatmentnecessities.

The fuel prices and construction costs are not considered, but it is likely that thepredictedavailabilityofdistillatesinrelationtotheresidualswillincrease,(seetable1/3/),whileconstructioncostswilldecrease.

Page 11: D6.2: Specification concept of the general technical system redesign

MUNIN – FP7 GA‐No 314286  

D 6.2 – Print date: 13/07/16

Status: final  11/41  Dissemination level: PU 

Table1–Availabilityoffueloils

Basically,thesystemisdesignedasfollows.Forsuchasystem,weneedstoragetanks,settlingtanksandservicetanks.

Thefueloil isnormallystoredinbottomtanksandinsidetanks.Thetankshavetobeprovidedwithequipmentforcheckingtheamountofoil inthetanks.Atransferpumpsucks fuel oil through a coarse filter and feeds it to one of two settling tanks. Bothsettling tanks must be large enough to contain fuel oil for at least 12h of engineoperationatfullload.Whileonesettlingtankisoperated,theothertankisinstand‐bymode. The stand‐by mode allows water and other heavier impurities to settle. Afterdrainingofsludgeandwater,thefueloilispumpedtotherespectiveservicetanks(eachfor12hoffullloadoperation).Fromservicetanksthefuelflowstotheauxiliaryenginesand to the electrically driven supply pump (second pump on stand‐by) of the mainengine.Thissupplypumpsreplenishtheconsumptioninthefuelcirculatingsystem.Thecirculating and injection systemmust be adapted by the engine builder on operationwith distillate fuel. The construction expense will probably decrease because of theeasierfueloilsystemwithdistillatefuel.Anautomaticfullflowfilterhastobeinstalledbeforetheinjectionpumps.

Page 12: D6.2: Specification concept of the general technical system redesign

MUNIN – FP7 GA‐No 314286  

D 6.2 – Print date: 13/07/16

Status: final  12/41  Dissemination level: PU 

Commonrailsystem

The internalengine injectionsystemwillberunasacommonrail system.Thismeansthat in these systems a cylinder‐specific fuel injection rate shaping, rate control andsingle cylinder switch off is possible. For the distillate fuel system a completely newlayoutandredesignisrequired.

Both leadingmanufacturers of two‐stroke crosshead engines (MAN‐BWandWärtsilä)havetheirowncommonrailsystem.

AtMAN‐BWME type engines needs a hydraulic high pressure unit that supplies highpressure lubrication oil for driving the fuel pumps and the operation of the exhaustvalves.Thisservooilistakenfromthemainlubricationoilsystemviaanautomaticfinefilter.Thedischargelinesoftheservooilsystemleadbacktothelubeoildischargetankof the main engine. The high pressure fuel injection pumps are driven by the highpressureservooil,aswellastheplungerpumpsoftheexhaustvalves.

Theyaredrivenbyelectronicinputsfromthecylindercontrolunits.

Figure3showstheschematicdiagramfordriveandcontrolsofthehighpressurepumpsandexhaustvalveoftwo‐strokecrossheadMAN‐BWMEengines.

Figure3–SchematicdiagramforMAN‐BWMEhydraulicsystem/4/

Thecylinderlubricationisincorporatedintheelectroniccontrolunits.

Page 13: D6.2: Specification concept of the general technical system redesign

MUNIN – FP7 GA‐No 314286  

D 6.2 – Print date: 13/07/16

Status: final  13/41  Dissemination level: PU 

AtWärtsiläRT‐FLEX common rail systems, a crank shaft drivenhighpressurepumpsunit delivers the fuel to the common rail. The engine management system (WärtsiläEngine Control System,WECS) controls the supply, tuned to the requirements, of thefuelfromthecommonrailtotheinjectors.Thecontrolunitiselectronicallydriven(byaWECS) and hydraulically operated by a high pressure lubrication oil system. Thepressureissuppliedbyaseparatepumpsystem.

In addition to regulating the fuel injection, the system also controls the opening andclosing of exhaust and start air valves. It is possible to control and adjust all valvesindividually.

Figure4–SchematicdiagramforWärtsiläRT‐Flexcommonrailsystem/5/

Alsofortheauxiliaryenginescommonrailsystemsareavailable.

Forexample,byeliminatingthenecessaryheatingsystemsforoperationwithheavyfueloil, the fueloil injectionsystem,basedondistillate,willbesimplifiedcomparedtothecurrentheavyfueloilsystems.

Page 14: D6.2: Specification concept of the general technical system redesign

MUNIN – FP7 GA‐No 314286  

D 6.2 – Print date: 13/07/16

Status: final  14/41  Dissemination level: PU 

Lubricationoilsystem

The lubrication oil systemof two‐stroke crosshead engines consists of three separatesystems:

a)Lubricationofcrankshaft,crossheadwithguides,thrustblock,drivegearandpistoncooling.

b)Cylinderlubricationwiththeuseofspecialcylinderlubricationoil.Itisacompletelyseparate system for the lubrication of pistons, piston rings and cylinder liner. Thetribological system of piston/piston ring/cylinder liner on a two‐stroke crossheadengineislubricatedwithoilviaseparateinjectionpumps.

c) Oil system for controlling the exhaust valves and fuel pumps (see description ofcommonrailsystems).Thissystemusesthesamelubricationoilasthesysteminpointa).

Figure5illustratesthelubricationoilsystemofaMANB&WMEengine.

Figure5–LubricatingoilsystemofME/6/

Page 15: D6.2: Specification concept of the general technical system redesign

MUNIN – FP7 GA‐No 314286  

D 6.2 – Print date: 13/07/16

Status: final  15/41  Dissemination level: PU 

Duetothepartitionbetweenthescavenging‐airspaceandthecrankcasebythebottomof thecylinder framewithpistonrodstuffingbox, it isensuredthat thecontaminatedcylinderoil(thatleaksdownfrompistonandcylinderliner)cannotenterthecrankcase.Thelubricationoilinthecrankcaseremainsverycleanandisadditionallycleanedwithaseparatorandanautomaticfinefilter.

Figure6showsanexampleforacurrentelectronicallycontrolledcylinderlubricationsystem.

Figure6–CylinderlubricationwithAlphalubricatorforME/6/

Cylinderoilispumpedfromthecylinderoilstoragetanktotheservicetank.Forouruse,thistankisdimensionedforaminimum10daycylinderoilconsumption.Itispossibletohave only one tank if the capacity is higher. The whole system is controlled by thecylindercontrolunits.Theycalculatetheinjectionfrequency,basedonenginespeedandfuelindex.

ThecylinderlubricationsystemofWärtsiläiselectronicallycontrolledtoo.

Coolingwatersystem

The following figure shows a modern cooling water system with a short seawatersection.Itisacentralcoolingwatersystemforatwo‐strokecrossheadmainengine.

Page 16: D6.2: Specification concept of the general technical system redesign

MUNIN – FP7 GA‐No 314286  

D 6.2 – Print date: 13/07/16

Status: final  16/41  Dissemination level: PU 

Figure7–Centralcoolingwatersystem/6/

Fromtheseawater inlet(highor low)totheoutlet, theseawaterpassestwoseawaterpumpsandthecentralcooler.Inthefreshwatercirculationsystem,twopumpsdeliverthewatertothecentralcooler,theaircoolerunit,thelubricationoilcoolerandjacketwatercoolerwhicharearrangedinaparallelmanner.Thejacketcoolingwaterisusedtocool thecylinder liners, cylindercoversandexhaustvalvesof themainengine.Theoutlettemperatureoftheengineiscontrolledthermostatically.Thejacketcoolingwatermustbetreatedcarefully.Itmustbepossibletopreheatthemainenginejacketcoolingwater.

Controlandstartingairsystem(seefig.8.)

Controllingthestartinginelectronicallycontrolledengines(MANB&WMEandWärtsiläFlex)issimple.Itiselectronicallyactivated(seecommonrailsystems).

Two automatically operating compressors keep the air pressure in the starting airreceivers(30bar)todirectlydeliverit tothemainengine inordertostart it.Afterthepressure was reduced in a reduction unit, the compressed air (reduced pressure) issuppliedascontrolair(maneuveringair,safetysystemair).

Startingairandcontrolairfortheauxiliaryenginesaresuppliedfromthesamestartingairreceivers,ifnecessaryviathereductionvalves.

Page 17: D6.2: Specification concept of the general technical system redesign

MUNIN – FP7 GA‐No 314286  

D 6.2 – Print date: 13/07/16

Status: final  17/41  Dissemination level: PU 

An emergency compressor and a starting air bottle are installed. They enable anemergencystartoftheauxiliaryengines.

Figure8–Startingairsystemofthemainengineandtheauxiliaryengines/6/It is possible to extend the described cooling water system for themain engine to acommonsystemwiththeauxiliaryengines.Thissolutionwouldtobepreferredandisdescribedinchapter4.2.

Waste‐heatrecoveryandsteamgenerationsystem

The following figure shows a scheme of a heat recovery system for large two‐strokecrossheadengines/5/.

Inthissystemexhaustgasenergycanberecoveredandusedinasteamturbineandinan exhaust gas turbine to generate electrical power for additional ship propulsion(throughashaftmotor)and/orshipboardservices.

Page 18: D6.2: Specification concept of the general technical system redesign

MUNIN – FP7 GA‐No 314286  

D 6.2 – Print date: 13/07/16

Status: final  18/41  Dissemination level: PU 

Figure9–SchematicoftheTotalHeatRecoveryPlant/7/

4.2 Auxiliaryengineswithsupplysystems

The auxiliary engine system shall consist of three Diesel generator sets. Each of thisGenSets has enough electrical output, which is sufficient for the electric energyconsumption of the ship. Therefore, here is a high level of redundancy. The GenSetsdelivertheirenergy,asdoestheheatrecoverysystem,viathemainswitchboardpowerdistribution.

Boundaryconditionsfortheenergyrequirementsarethefollowing:

‐ During theopen sea voyage enough electrical power is supplied bywaste heatrecoveryunit(steamturbine),

‐ Duringtheoperationintheport,noadditionalpowerisneeded,‐ During open sea operation one GenSet with roughly 1000 Gen kW (60% load

optimized)issufficient,‐ DuringmaneuveringoneGenSetwithroughly1800‐2000GenkWissufficient.

Thesupplysystemfortheauxiliaryenginesconsistsoftheirownfueloilandlubricationoilsystem.Theothersupplysystems(coolingwater,startingair)shallbeintegratedinacommonauxiliarysystemforthetwo‐strokecrossheadmainengineandthefour‐strokeauxiliaryengines.

Page 19: D6.2: Specification concept of the general technical system redesign

MUNIN – FP7 GA‐No 314286  

D 6.2 – Print date: 13/07/16

Status: final  19/41  Dissemination level: PU 

Centralcoolingsystem

The common central cooling system has additional pumps to support the auxiliaryenginesoperationinport.

The lowandhightemperaturesystemsaredirectlyconnectedforpreheatingthemainandauxiliaryenginesduringstandstill.

Forthewholefreshwatersystem(lowandhightemperature),onlyoneexpansionandonedeaerationtankarenecessary.Betweenthetanksanalarmdeviceisinstalled,whichgivessignalsifexcessgas(air)canbefoundinthecoolingwater.Thismaybetheresultofdamagesoftheengineorsystemcomponents.

The seawater cooling pump circulates the seawater from the sea chest through thecentralcoolertotheseawateroutletvalve.Thecentralcoolerfreshwaterpumpdirectlycirculates the low temperature freshwater through the lubrication oil coolers of themainengine,thescavengeaircoolersandtheauxiliaryengines.

The auxiliary engine jacket water cooling system has engine‐driven pumps and isintegrated in the low temperature system (by‐pass). The main engine jacket watercoolingsystemisanindependentpumpcircuit.

During operation in port with a stopped main engine, a small central cooling waterpump(portpumpforaux.engines)circulates thenecessary flowofwater throughtheauxiliaryengines (aircoolers, lubricatingoil cooler, jacketcooler).Apreheatingof thestoppedmainengineandthestoppedauxiliaryenginesmustbepossible.

Thecommoncentralcoolingsystemisshowninfigure10.

Page 20: D6.2: Specification concept of the general technical system redesign

MUNIN – FP7 GA‐No 314286  

D 6.2 – Print date: 13/07/16

Status: final  20/41  Dissemination level: PU 

Figure10–Commoncentralcoolingsystem/8/

Startingairsystem

Thestartingairsystembuildsacommonsystemwiththemainengine.Itisdescribedinchapter4.1.

Page 21: D6.2: Specification concept of the general technical system redesign

MUNIN – FP7 GA‐No 314286  

D 6.2 – Print date: 13/07/16

Status: final  21/41  Dissemination level: PU 

Fueloilsystem

The fuel oil system for the threeauxiliary engines consists of a commonpart and thesinglecomponentsforeachengine.

The common system includes the line from the storage tank, a separator unit withelectricalpreheatertothedaytank.Fromthedaytankthedistillatefuelflowsthroughthe primary filter and the preheater to each auxiliary engine. There, the own enginesystemswith feed pump and fine filter continue the circulation. Also the drip systemwithdriptankiscommonforallthreeengines.

Figure11showsafueloilsystemforamediumspeedDieselengine.

Figure11–FueloilsystemformediumspeedDieselengine/9/

Page 22: D6.2: Specification concept of the general technical system redesign

MUNIN – FP7 GA‐No 314286  

D 6.2 – Print date: 13/07/16

Status: final  22/41  Dissemination level: PU 

Lubricationoilsystem

Thelubricationoilsystemoftheauxiliaryengineplant(threeGenSets)/MAK/isshowninfig.12.Eachenginehas itsownsumptank,pre‐lubricationpump, forcedcirculationpump,filterandcooler.Thelubricationoilsystemsoftheenginesareconnectedtooneanothervia fillinganddrainpipes.Thispipesystemisalsoconnected toonecommonseparator,whichcleansthelubricationoiloftheauxiliaryengineplant.

Figure12–Lubricatingoilsystemformediumspeedengine/9/

Page 23: D6.2: Specification concept of the general technical system redesign

MUNIN – FP7 GA‐No 314286  

D 6.2 – Print date: 13/07/16

Status: final  23/41  Dissemination level: PU 

4.3 Propulsion,rudder,steeringgear

Figure13showsapropulsionplantwithmainengine,shaftingwithbearings,sterntube,fixedpitchpropellerandtherudderwithsteeringgear.

Theaftmostshaftaftertheintermediateshafts isthepropellershaft. Itrunsthroughasterntube,whichisprovidedwithbearingsandstuffingboxes.Thepropellerismountedat theendof thepropeller shaft.Behind it the rudder isattached. It canbe turnedbyusingthesteeringgear.

Theshipmustbeprovidedwithanefficientmainsteeringgearandanauxiliarysteeringgear.

Maintypesofsteeringgearsarethefollowing:

‐ Fullyhydraulictype‐ Electro‐hydraulictype‐ Fullyelectrictype

Figure13–Propulsionplant/10/

Page 24: D6.2: Specification concept of the general technical system redesign

MUNIN – FP7 GA‐No 314286  

D 6.2 – Print date: 13/07/16

Status: final  24/41  Dissemination level: PU 

4.4 Bilgeandballastsystem

The following figures showtwosystemsasanexample.Figure14showsa system forcleanbilgeandballast/2/andfigure15showsasystemforoilymachineryspacebilges/2/.

Thebilgeandballastsystemsmustmakeitpossibletoemptyeverycompartmentintheship.Theballastsystemisconnectedtoallspaceswithintheshipto,whichballastwatercanbesupplied.Thebilgesystemisconnectedtoguttersintheholdsetc.

Inprinciple,aballastpump isused tosuckwater fromtheballastvalvechest.Abilgepumpisusedtosuckwaterfromabilgevalvechest.

For oil‐contaminatedwater it is necessary to use awater–oil separator to prevent oilpollution of the sea. An example for such a system is the bilge system formachineryspaces.

Figure14–Cleanbilgeandballastsystem/2/

Page 25: D6.2: Specification concept of the general technical system redesign

MUNIN – FP7 GA‐No 314286  

D 6.2 – Print date: 13/07/16

Status: final  25/41  Dissemination level: PU 

Figure15–Bilgesystemforoilybilgesinmachineryspaces/2/

4.5 Firemainsystem

A ship's main emergency fire system consists of a specific number of fire hydrants,whicharelocatedatstrategicpositionsacrosstheship.Aseriesofdedicatedpumpsareprovidedtosupplythesefirehydrants.

Allthesepumpsaresuppliedwithpowerfromthemainpowersystem.Apartfromthat,anemergencyfirepumpisprovided.Thispumpis locatedremotefromthemachineryspace.Thepumpsareconnectedtothemainseawaterconnection.

Other possibilities to extinguish fires, such as foam, dry‐powder and CO2 fireextinguishers,mustbeinstalledtoo.Ifneeded,theyshallbeusedbytheboardingcrew.Furthertobe installed isthepossibilitytoextinguisha firebyfillingspaceswith inertgas. This system must be automized or shore base controlled. Figure 16 shows anexampleofafiremainsystemwithseawater.

Page 26: D6.2: Specification concept of the general technical system redesign

MUNIN – FP7 GA‐No 314286  

D 6.2 – Print date: 13/07/16

Status: final  26/41  Dissemination level: PU 

Figure16–Firemainsystem/2/

5. Technicalfailuresinthesystemgroups

Thebasisoftheanalysisandevaluationoftechnicalfailuresinthemainsystemgroupsof ship machinery plants is the “Annual Report 2011” of the BG Traffic, ship safetydepartment /11/. In the report 2010/2011, technical failures at national andinternationalseagoingvesselsinGermanwaterswereanalyzedandevaluated.

These flag‐independent results demonstrated that the main system groups – mainengine,fueloilsystem,coolingwatersystem,electricalsystemandrudderplant–werethemostfrequentlyaffectedgroups.

Table 2 ‐ Technical failures in the system groups /11/ 

Mainengine 37.3%

Fueloilsystem 15.5%

Coolingwatersystem 13.6%

Electricalplant 12.7%

Rudderplant 11.8%

Propulsionplant,shafting 5.5%

Dieselgenerator 3.6%

Page 27: D6.2: Specification concept of the general technical system redesign

MUNIN – FP7 GA‐No 314286  

D 6.2 – Print date: 13/07/16

Status: final  27/41  Dissemination level: PU 

Almost half of all failures of themain engine are causedby start, reverse and controldevices.Itispossiblethatthecauseslieintheimpropermaintenanceofthesecomplexsystemswhichcombineelectrics,electronics,pneumaticsandmechanics.Approx.one‐thirdofallfailuresarestandardfailures,e.g.faultyinlet/outletvalves,stickinginjectionpump, cracked or leaking cylinder covers, cracked cylinder liners, broken or leakinginjection pipes etc. Other malfunctions are caused by total failures of Exhaust GasTurbochargers(EGT).

The malfunctions that occur in the fuel oil system often cause total failures of mainenginesorDieselgenerators.Abouthalfofthefailuresarecausedbytheincompatibilityofmixingfueloils.

Theautonomous ship canprevent theseproblems fromoccurringbecause itdoesnotusefuelsofdifferentqualities.

Thefailuresoccurringinthecoolingwatersystemincludecoolingwaterpumps,piping,high temperature controllers and sensors as well as low temperature and seawatersystems.

Oftenfaultsintheelectricalsystemledtoblackout,causedbyover‐orunderloadswitchoff,over‐orunderfrequency.Theyalsocauseproblemswiththeelectronics,e.g.failuresof the main switchboard. Therefore, an electrical system with automatic standbysystemsshouldbeinstalledatanunmannedship.

Main causes of failures in rudder plants were failures in power supply and controldevicesaswellashumanerrors(incasesofshorttimefailures).

Assessment of criticality of the main failures, which are to be analyzed for engineoperation:

Mainenginefailures:Start,reverseandcontroldevice:HighcriticalityFaultyinlet/outletvalves:LowcriticalityStickinginjectionpumps:LowcriticalityCrackedorleakingcylindercovers:HighcriticalityCrackedcylinderliners:HighcriticalityBrokenorleakinginjectionpipes:LowcriticalityTotalfailuresofExhaustGasTurbochargers(EGT):Lowcriticality

Fueloilsystemmalfunctions:Incompatibilityofmixingfueloils:Highcriticality

Page 28: D6.2: Specification concept of the general technical system redesign

MUNIN – FP7 GA‐No 314286  

D 6.2 – Print date: 13/07/16

Status: final  28/41  Dissemination level: PU 

Coolingwatersystemfailures:Coolingwaterpumps:LowcriticalityPiping,controllerandsensors:Lowcriticality

Faultsinelectricalsystem:Black out (caused by over‐ or underload switch off, over‐ orunderfrequency):LowcriticalityElectronics,e.g.failuremainswitchboard:Lowcriticality

Failuresinrudderplants:Powersupplyandcontroldevices:Lowcriticality

6. Possibilitiesofoperationwithfaultysystems,interactionsintermsofmaintenance

Theunmannedmachineryoperationshouldtakeplaceduringtheopenseavoyage.

Thisoperationisthebasisoftheevaluationofthefailuresnamedinchapter5.Italsoisthe focus of the now following possibility of ship engine operation with faulty mainenginegroups.

Mainenginefailures:

Incasesofmainenginepowerlosses,thereisenoughshipservicepowersuppliedbytheGenSets. The 1000 kWGenSet and the other two GenSets are able to deliver roughly3800 kW to the emergency propulsion and steering unit “pump jet”. Of course, othercombinationsarepossibletoo.

Underthespecifiedconditionsofoperation,thefollowingGenSetswereapplicable:

1x5L28/32H(1000GenkW)and

2x9L28/32H(each1880GenkW).

Start,reverseandcontroldevices

Thestartingairsystemisrarelyusedduringopenseaoperation.

Therefore,possiblefailurescannotbedetermined.Neitheraretheyhighlycritical.

However, these devices are necessary if sudden maneuvers (e.g. in dangeroussituations)mustbeexecuted.Inthesecases,possiblefailuresmustbeanalyzed,becausetheywouldbehighlycritical.

Page 29: D6.2: Specification concept of the general technical system redesign

MUNIN – FP7 GA‐No 314286  

D 6.2 – Print date: 13/07/16

Status: final  29/41  Dissemination level: PU 

Throughbeingintegrationintotheelectronicallycontrolindividualcylindersorpartsofthesystem,thesedevicescanbedecommissioned,orredundanciescanbeused.

Faultyinlet/outletvalves

Sinceanelectronicallycontrolledmotor isusedasabasis, it ispossible toexcludetheaffected cylinders from the operation. It is then possible to operate the engine withreducedpower.

Stickinginjectionpumps

Sinceanelectronicallycontrolledmotor isusedasabasis, it ispossible toexcludetheaffected cylinders from the operation. It is then possible to operate the engine withreducedpower.

If a high pressure fuel common rail is used, it is not necessary to install an injectionpumpforeverysinglecylinder.Theinjectionpressureiscreatedbyhighpressurepumpunitswiththeirownredundancies.

Crackedorleakingcylindercovers

Itisveryriskytooperateengineswithcrackedorleakingcylindercovers,becausethereisnowaytoeliminatethesefailuresduringengineoperation.

An immediate exchange of these cylinder covers is necessary. The engine has to bestopped.

Itisnecessarytodevelopdiagnosissystems,whichcandetectsuchcrackformations.

Crackedcylinderliners

Itisalsoveryriskytooperateengineswithcrackedcylinderliners,becausethereisnowaytoeliminatethisfailureduringengineoperation.

Animmediateexchangeofthecylinderlinerisnecessary.Theenginehastobestopped.Itisalsonecessarytodevelopdiagnosticsystems,whichcandetectcylinderlinercrackformations.

Brokenorleakinginjectionpipes

Sinceanelectronicallycontrolledmotor isusedasabasis, it ispossible toexcludetheaffected cylinders from the operation. It is then possible to operate the engine withreducedpower.

Page 30: D6.2: Specification concept of the general technical system redesign

MUNIN – FP7 GA‐No 314286  

D 6.2 – Print date: 13/07/16

Status: final  30/41  Dissemination level: PU 

TotalfailuresofExhaustGasTurbochargers(EGT)

In case of a total failure of anEGT, it is necessary to fix the rotatingparts (e.g. brakeredesign).

Asystemtoautomaticallyfixtherotoroftheaffectedturbochargermustbedevelopedforthat.

It is possible to operate the ship withmatched load (reduced) by using the engine’sauxiliaryblowers.

All functions of the turbocharger must be electronically controlled, including a dailycleaningofcompressorandturbineside.

Incompatibilityofmixingfueloils

It is extremely unlikely thatmixing fuel oils are incompatible because the unmannedship’sengineisonlyoperatedwithdistillatefuels.Failuresinsupplysystems:

Coolingwaterpumps,

When the pumpmalfunctions, it is possible to continue operation automatically withstand‐bypumps.Thedefectivepumpcanbereplacedinport.

Piping, controller and sensors of the high temperature, low temperature‐ andseawatersystems

Itisnecessarytohavedoubleimplementationofsensorsandmonitoring,whichdetectcable breaks. In case contamination is detected, it is possible to operate with acorrespondinglyreducedload.

Electricalsystem:

Blackout,causedbyover‐orunderloadswitchoff,over‐orunderfrequency

The immediate transfer to an emergency supply of key consumer and theecommissioning, activation of GenSets and the normal load distribution must beautomaticallydone.

Problemsonelectronics,e.g.failureofthemainswitchboard

Page 31: D6.2: Specification concept of the general technical system redesign

MUNIN – FP7 GA‐No 314286  

D 6.2 – Print date: 13/07/16

Status: final  31/41  Dissemination level: PU 

The major systems of the main switchboard must be redundant and switchedautomatically.

Sufficient redundancies, like the redundancy at the electronic controls of the engines,mustreducethetotalfailurestozero.

Rudderplants:

‐Failuresinthepowersupplyandcontroldevices

Ifthemainsteeringgearfails,theredundantsteeringgearisusuallyoflimiteduseonly.Therefore, there should be the possibility to supply energy (2 large GenSets) to thepumpjetandthusobtainmaneuverability.

Intheindividualassessmentoferrorsinsupplysystems,ithastobeconsideredthatthishasanimpactonmainandauxiliaryengineoperation.

Because there is no crew on board during the open sea voyage, the input of humanoperatorerrorsisonlypossiblebytheSCC.

Theusualrepairandmaintenanceworksdonebythecrew(e.g.pumpoverhaul)arenolongerfeasible.

This has major consequences on the maintenance concept. Three possible strategieshavebeenidentified:

‐ Developmentofmaintenancefreeequipment(unrealistic)‐ Use of normal equipment and concentration of maintenance and repair at

waittimeinport(increasedneedofpersonnel,tools,transport…)‐ Developmentofanexchangesystem,componentsareuseduntiltheassumed

endoflife,withoutmaintenanceandthenexchangedcompletely(plugsystemneeded,requirementsfordevelopmentandstandardization)

Theconcentrationofmaintenanceinportsbyusingstandardplug‐inswillleadtomoreefficiencyandshorterberthingtimes.

Efficientpossibilitiestotransportandliftsparepartsmustbedeveloped,includingtoolsandequipment.Suchshort‐timeactionsfurtherneedspeciallyqualifiedstaff.

Paralleltoanincreasingefficiencyofmaintenance,thetimeforfailureidentificationandpreparationofworkcanbereducedbyusingcondition‐basedmaintenance.

Repairandmaintenanceplanninghastobedoneonshore.

Page 32: D6.2: Specification concept of the general technical system redesign

MUNIN – FP7 GA‐No 314286  

D 6.2 – Print date: 13/07/16

Status: final  32/41  Dissemination level: PU 

In case of faulty operation, with reduced power of the main engine, this leads to anincreasedspecificexhaustemission.

ThiscanbelimitedbyappropriateinfluenceontheelectroniccontrolledenginebytheSCC.

7. Minimum scope of necessary systems for reduced emergencyoperation

‐Minimumshaftpower

Toensureaminimumshaftpower,whichmaybedifferentdependingontheoperatingconditions of the vessel, e.g. decreasing themain engine output, 4000 kW can be fedthroughtheelectricalshaftmotorasadditionalpowertotheshaftortheycanbeusedoverthepumpjetforpropulsionpurposes.

‐Minimumelectricalpower

In normal sea operation, an electric power of 600 kW should be sufficient. For themaneuver operation an additional 1000 kW must be available (e.g. bow thruster,anchor).

Toprovideminimalelectricpowerduringopenseaoperationwiththemainengine,theelectricaloutputofthesteamgeneratorandthethreeredundantGenSetsareavailable.Inmaneuveroperation,thesupplywithelectricalenergycouldbecarriedoutbyoneofthetwolargeauxiliarydieselengines.

‐Minimumfunctionofsteering

Steeringtheshipmustalwaysbeguaranteed.Incasesoffailuresoftheruddergear,thiscan be done via steering by the emergency rudder gear. But it is not sure that theemergency operation can be carried out for all kinds of failures of the steering gear.Therefore,itisproposedthatanadditionalpumpjetintheforwardpartoftheshipcanbeputintooperationandthusensuressteeringandmaneuvering.

‐Emergencyfunctionofmainfiresystem

Floodingtheholdsandtheengineroomwithinertgasmustbepossible,i.e.thecurrentamountofcarriedalonggasmustbesignificantlyincreasedanddistributedonboardinadifferentmanner.TheinitiationmustbeautomaticoritcanbecontrolledbytheSCC.In addition to the installed fire alarms, hotspots can also be detected by infraredcameras;smokeorleakingfluidsbyregularcameras.

Page 33: D6.2: Specification concept of the general technical system redesign

MUNIN – FP7 GA‐No 314286  

D 6.2 – Print date: 13/07/16

Status: final  33/41  Dissemination level: PU 

‐Emergencyfunctionsofbilgeandballastsystem

Theemergencybilgesuctionorbilge injectionvalve isusedtoprevent the floodingoftheship.Itisadirectsuctionfromthemachineryspacebilge,whichisconnectedtothelargest capacitypumporpumps. Itmustbea completely independentunit capableofoperation even if submerged. The power supply for the pump is arranged via theemergencygenerator.Thevariouspumpsand linesare interconnected tosomeextentsothateachpumpcanactasanalternativeorstand‐byoftheotherpump.

8. Derivedmeasures, additional redundancies, additional conditionmonitoringsystems

‐Ifnecessary,alloperatingfunctionsthatarepossibleintheenginecontrolroom(ECR)mustbecarriedoutfromshore‐sidecontrolcenter,

‐ Pump jet as a solution for defectivemain propulsion or steering system to obtain aminimumofmaneuverability,

‐ Full access to the electronic control systems of the main engine for the shore‐sideoperationcenter(incl.monitoring,modifyingofparameters,orders),

‐Doubleimplementationofsensorsandmonitoringofcablebreaks,

‐Highredundancyinelectricalpowergeneration,thatmeansthatoneGenSetisabletodelivertherequiredelectricalpower,

‐Additionalstand‐bypumpsinthesupplysystemsofthemainengineandtheauxiliaryenginesarenotnecessarybecauseoperationwithonlyonepumpispossible,optionallywithreducedload,

‐Additionalautomaticfiltersforfueloilandlubricationoilofthemainengine,

‐ Installation of an electrically driven shaft motor (or electric motor to an engineinstalled “power take in”gear) formore shaftpower, ifnecessary,by takingelectricalpowerfromtheGenSets,

‐Automatically,autonomouslyfunctioningmoduleforwasteheatrecovery(exhaustgasboiler,steamturbinewithgenerator,feedingintomainswitchboard),

‐Changeoverofallnecessaryheatingandpre‐heatingtoelectricaloperation,

‐Designanautomatic,redundantsystemforswitchingthetanks,

Page 34: D6.2: Specification concept of the general technical system redesign

MUNIN – FP7 GA‐No 314286  

D 6.2 – Print date: 13/07/16

Status: final  34/41  Dissemination level: PU 

‐Automatic,redundantsystemforcleaningthelubricationoil(separator/filtermodule)formainandauxiliaryengines,

‐ Possibility of shore‐based control of the Exhaust Gas Turbocharger (EGT) duringoperation(lubrication,cooling,fixingofrotor),

‐ Shore‐based control of the normally installed emergency steering plant, diagnosticsystemforthesteeringplantisnecessary,

‐Additionalnoise,vibrationmonitoringinthemachineryspaces,

‐Monitoringofthemachineryspacesandbilgesviainfraredcamerasandcorrespondinglightingfornormalcameras,

‐Morefirealarmandbilgemonitoring,

‐Fillingthemainenginecrankcasewithinertgassothatexplosionsareavoidedandtheriskoffireisreduced,

‐Equippingwithtechnicaldiagnosissystems,e.g.forthemainengineplant:

Revolutionuniformity,loadbalancecontrol

This systemcontinuouslymonitors theuniformity of the engineoperation. It controlsthebalanceofpoweroutputofthecylindersandinstantlydetectsanynon‐uniformity.

Leakagemeasurementsystem

Thisisasystemforearlyleakagedetectiononthecombustionchamberparts(exhaustvalves,injectionvalves).Theprincipleisbasedonthemeasurementofultrasonicsound.

Cylinderpressureandinjectionpressuremonitoring

Thismonitoring is possible by cylinder and injection analysis systems. Theywork incombination with the precise crank angle sensor of the basic Revolution UniformitySystemandcalculaterepeatableparameters.

Pistonringmonitoring

Acontinuousmonitoringofpistonringscanbedonebythepistonringanalysismodule.Itonlygivesalarmintheeventofwearorfaultsthesystem.

As a result the sensor detects the faults: “burnt‐in ring”, “broken ring” and “missingring”.Whenthesensoroperatesincombinationwithcoatedpistonrings,thecondition

Page 35: D6.2: Specification concept of the general technical system redesign

MUNIN – FP7 GA‐No 314286  

D 6.2 – Print date: 13/07/16

Status: final  35/41  Dissemination level: PU 

ofringwearcanbedetected.Additionally,thepistonringmonitoringsystemisabletodetectthethermaloverloadofthepiston.

Linertemperaturemonitoring

This system monitors the piston/piston rings/liner performance by measuring thetemperature of the upper part of the cylinder liner. A higher friction between thepiston/piston rings and the liner results in an increased characteristic temperaturelevel,whichmayleadtoscuffing.

Torquemeasurement

Thissystemtakesthetorsionmeasurementontherunningpropellershaft.Inrelationtothetorsionforcesonthepropellershaft,itcalculatestorqueandpoweroutput. Performancemonitoring

This system continuously checks the quality of the ship operation process. Theefficiency, safety and environmental impact of the propulsion plant under currentoperatingconditionsarepresented.Forexample,theeffectsofreducingenginespeedinheavyseas,onshipspeedandfueloilconsumptioncanbedeterminedforconsiderationinprocessmanagement.

Bearingtemperaturemonitoring

The systemmonitors themain bearing temperatures, displays their values and givesalarm.

Itisamonitoringsystemtopreventtheoverheatingofbearingsorshaftsbeforetheyarepermanentlydamaged.

Thissystemcanalsobeusedtomonitorthebearingsoftheshafting.

Bearingdistancemonitoringsystem

Basedonacontinuousdistancemeasuringinthecrankcase,adetectionofbearingweariscarriedoutandapredictionoftheremaininglifetimeofthebearingsispossible.

Page 36: D6.2: Specification concept of the general technical system redesign

MUNIN – FP7 GA‐No 314286  

D 6.2 – Print date: 13/07/16

Status: final  36/41  Dissemination level: PU 

9. Description of engine operation under created failure scenarioconditions

Openseapassagewithmalfunctions

The"baseline"situationisavoyagethroughtropicalregionswithhighairandseawatertemperaturesaswellasanatmosphericmoistureabove90%.Themainengine loadisabout95%.

Thedescribedconditionsprovokethesystemfailureknownas“carrywateroverflow”.Itisspecifiedasasteadyalterationinthetribologicalpiston‐cylindercomplex.Duetohighhumidityandhightemperaturetoomuchwatercondensesbehindthechargeaircooler.The water has to be blown out by the water separator (WMC). A decrease in WMCeffectiveness,whichmayleadtoapartiallubricationoiltear‐offatthecylinderlinerandthefinalscuffing,willbesimulated.

The process is to be identified by the constantly running diagnostic tool “PistonRingAnalysis“.Suitableactionshavetobecarriedoutbeforetheengineisseriouslydamaged.Under strong monitoring, at a reduced engine power, increased scavenging airtemperature and increased feeding of cylinder lubrication to the affected cylinder, afurtheroperationofthemotorinspiteofincorrectoutletofcondensatefromthechargeairispossible.

However, at the next stop in port an immediate repair or a replacement of thewatermistcatcherorthedrainisnecessary.

Also necessary is a check on the affected cylinder/piston complexes, possibly incombinationwithotherderivedmeasures.

Maneuveringwithmalfunctions(possibleduringopenseavoyage)

Thescenario’sinitialsituationcorrelateswiththepreviousscenario’s(Scenario3)initialstate.

Inaddition to the transientoperating conditionsandalarmmessages, a systemdefectwillbeimplemented.

Adefective fuel injectionpumpatoneof themainenginecylinders is simulated.Bothmainengineandglobalshipsystemparameterswillbeaffected.Toenablemaneuvering,anoverlayofthesystems’“normal”alarmmessagesandalarmmessagesgeneratedbythedefectwillbeoriginated.Alarmsandtheirpossiblecauseshavetobeevaluated.

Page 37: D6.2: Specification concept of the general technical system redesign

MUNIN – FP7 GA‐No 314286  

D 6.2 – Print date: 13/07/16

Status: final  37/41  Dissemination level: PU 

Asaresultoffaultdetection,theaffectedcylinderinjectioncanbetakenoutofservice(inputtotheelectroniccontroloftheinjectionsystemfromSSC)andtheenginecanbeoperatedatreducedpower.

Atthenextstopinportanimmediaterepair,thereplacementofthedefectiveinjectionpump,isnecessary.

10. Summarizedscopeofredesign

For unmanned engine operation during open sea voyages only little additionalequipmenthastobeinstalled.Inthissolution,themostredesignactivitiesarenecessaryinthefueloilsystems.Theonefuelsystemwithdistillateissimplerthantoday’sheavyfueloilsystems.Alotofcomponentsusedtocarryoutpreheatingandheating,cleaningandresultingactivitiesinothersupplysystems(e.g.cylinderlubricationoil‐TBN,jacketcooling)canbereduced.

Theentirefueloilsystemhastobeconvertedtoadistillatefueloilsystem,thisappliesto both the on board (bunkering, storage, cleaning, supply) and the internal enginesystems(injection).

Themechanical and naval engineering effortwill be significantly lower. On the otherside,theoperationcostswillbeincreasedbythedistillatefuelprice.ButthisapproachoftheincreasedfuelcostsdependsontheseaareaandtheoperatinghoursinsideandoutsidetheECAsandSECAs.Withintheemissioncontrolareasitisalreadynecessarytooperatewithadistillatefuelorasignificantefforttoreduceemission.

Thenecessaryscopeofmonitoringequipmentandthemeasurementlistsareshowninreport6.1,basedontheregulationsofanunattendedmachineryoperation.

Special attentionmust be paid to the installed redundancies. The automatic functionsmustbecheckedbyharborcrewscontinuously.

Therewill be a high redundancy in electrical power generation. Thatmeans that oneGenSetisabletodelivertherequiredelectricalpower,iftwootherGenSetsfailandareoutofoperation.Theotherpossiblesituationisthat,causedbyfailures,themainenginecan only operate at low loads and that the ship needs more shaft power. Then, theelectricalpowerof the twoGenSets candrive anadditional e‐motor and can realize apowertake‐intotheshaft.

HighredundancyinelectricalpowergenerationmeansthatoneGenSetisabletodelivertherequiredtotalelectricalpower,iftwoGenSetsarefailuredandoutofoperation.Theotherpossiblesituationisthatthemainenginecan,causedbyfailures,onlyoperatewith

Page 38: D6.2: Specification concept of the general technical system redesign

MUNIN – FP7 GA‐No 314286  

D 6.2 – Print date: 13/07/16

Status: final  38/41  Dissemination level: PU 

low load and the ship needsmore shaft power. Then the electrical power of the twoGenSetscandriveanadditionale‐motorandcanrealizeapowertake‐intotheshaft.

Theinstallationofapumpjetintheforwardpartoftheshipasasolutionfordefectivemain propulsion or steering system to obtain a minimum of maneuverability is animportantmeasureofredesign.

Therefore,anelectricalsystemwithautomaticstand‐bysystemsshouldbe installed inanunmannedship.

It isnecessarythatallmonitoringandcontrolfunctionsforthedescribedengineroomsystemscanbecontrolledbytheshore‐sidecenter.

Bunkering, standard procedures of checking, condition‐ and time‐based maintenanceandrepairsaretasksfortheharborcrews.

Especially for theconditionmonitoringduringunmannedoperationand forpreparingthe condition‐based maintenance, the diagnostic tools (see chapter 8) are veryimportant.

Apossibilitytoreducethenecessarytimeformaintenance isanexchangeofcompleteunits. This requires the initiation of the corresponding developments for plug insolutions.

11. Technicaldiscussionsforvalidationoftheconcept

The discussion and validation of the concept was concluded at a meeting withexperiencedtechnicalofficersandprofessors.

Thecurrentconceptwithamainengine(twostrokelowspeedturbochargedcrossheadDiesel engine) with directly coupled fixed pitch propeller, three GenSets, waste heatrecoveryplant, shaftmotorandpump jetwereconfirmed.Focusofvalidationwas thetechnicalfeasibilityandinteractionwiththeenvironment.

Technicalfeasibility

Itisassumed,thattheelectroniccontroloftheengineswillincreasemoreandmore.

Becauseall important functionscanbemonitoredandcontrolledby theSCC, targetedmanipulation of electronically controlled components is possible. In case ofmalfunctions,thepossibilitiesofcontinuationofengineplantoperationwillincrease.

Page 39: D6.2: Specification concept of the general technical system redesign

MUNIN – FP7 GA‐No 314286  

D 6.2 – Print date: 13/07/16

Status: final  39/41  Dissemination level: PU 

SpecialattentionshouldbepaidtocontinuouscommunicationbetweentheshipandtheSCC. If necessary it must be possible to bring a crew on board during the open seavoyageincaseofdamages.

TofulfillthetasksintheSCC,personnelarerequiredwithatleastequalqualificationsastoday'stechnicalofficersandmustbeavailablearoundtheclock.

It was pointed out that the permanent residence of a crew member on board, foremergencysituations,isrecommended.

A high level of redundancy in the supply systems is required, up to installation ofcompleteredundantsystemswithallcomponents.Inthiscontext,thepossibilityofuseoftwoindependentmachineryplantswasdiscussed.AnotherpointwastheuseofDieselelectricpropulsionsystemsandtheuseoflowerableazipods.Butthetwostrokeenginewaspreferred.

Overall, the proposed solution with distillate fuel oil has been assessed as currentlyfeasibleoption.Withtheintroductionofsafesolutionsforthemarineengineoperationwith LNG as fuel, this variant can be seen as an option for the future in terms ofenvironmentalimpactandthisisadirectconnectiontothefollowinginteractionswiththeenvironment.

Interactionswiththeenvironment

Duetotheoperationofdistillatefuelwithverylowsulphurcontent,theenvironmentalimpactofsulphuroxidesandacidswillbelessinopenseaoperation.

Better fuel injection and spray formation, better thermal distribution duringcombustion, lowerNOx formationdue tobetterandmoreuniformcombustioncanbeachievedwhenusingdistillatewithoutmixingproblemsasitismorehomogeneousfuel.

Whenoperatingwithdistillate with its relativelyconstantproperties, it ispossible tooperatewithoptimizedcombustionand,therefore,withthebestpossiblefueleconomy.

ThisisameasuretoreducetheCO2emission.

Environmentalhazardisnotgreaterthanonmannedengineoperationoftheshipontheopensea.

Theriskofenvironmentalpollutionbyshipfiresissignificantlyreduced:

‐Duetothepossibilityoftheimmediateuseoftheinertgas,firefightingabilityinholdsandengineroomisimprovedand

Page 40: D6.2: Specification concept of the general technical system redesign

MUNIN – FP7 GA‐No 314286  

D 6.2 – Print date: 13/07/16

Status: final  40/41  Dissemination level: PU 

‐Duetothepossibleinertgasfillingofthecrankcaseofthemainengine,thefireriskisalsosignificantlyreduced.

Page 41: D6.2: Specification concept of the general technical system redesign

MUNIN – FP7 GA‐No 314286  

D 6.2 – Print date: 13/07/16

Status: final  41/41  Dissemination level: PU 

References

/1/ PreliminarychapterfromMarinesoft,2013/06/19

/2/ Rowen,Gardner,Femenia,Chapman,Wiggins,IntroductiontoPracticalMarineEngineering,TheSocietyofNavalArchitectsandMarineEnginers,2005

/3/ VerfügbarkeitvonTreibstoffen,DryEGCS,QuelleRobinMeech,2009

/4/ MANB&W,OperatingManuals;ProjectGuides

/5/ WärtsiläRTFlex,Brochures

/6/ MANB&W,ProjectGuideK80ME,P9042,02‐01.05‐DK

/7/ Marinetechnologiesforreducedemissions,Wärtsilä,2005

/8/ MANB&Wpaper,Uni‐conceptauxiliarysystems,2001

/9/ MAKCaterpillarProjectguides,Generatorset

/10/ MAN‐AlphaFPPbrochure,Jan.2012

/11/ Jahresbericht,BerufsgenossenschaftfürTransportundVerkehrswirtschaft,DienststelleSchiffssicherheit,2011