d2 q4 corrector - cern...18 integration with d2 q4 ’...

40
D2 Q4 corrector Update 25 th Nov 2015 Glyn Kirby, Juho Rys=, Jeroen Van Nugteren, Luca Gen=ni

Upload: others

Post on 23-Mar-2020

2 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: D2 Q4 corrector - CERN...18 Integration with D2 Q4 ’ HL_LHC’C&S’Review’#1’–March’2015 ’ 20 40 60 80 100 120 140 160 180 distance to IP (m) Q1 Q2a Q2b Q3 D1 D2 Q4

D2 Q4 corrector Update  25th  Nov  2015  

 Glyn  Kirby,  

Juho  Rys=,            Jeroen  Van  Nugteren,        Luca  Gen=ni  

Page 2: D2 Q4 corrector - CERN...18 Integration with D2 Q4 ’ HL_LHC’C&S’Review’#1’–March’2015 ’ 20 40 60 80 100 120 140 160 180 distance to IP (m) Q1 Q2a Q2b Q3 D1 D2 Q4

Specification •  Integrated  field  5.0  Tm.  Magne=c  length  <1.79m.  Magnet  <  2  m  long  • Mul=poles   design   =<10   units?   at   all   opera=onal   fields   and  configura=ons.  Apertures  independent.  

• Aperture:  105  mm.  • Beam  distance:  188/194  mm.  •  Faster  Ramps  rates  ~100  s  is  the  target  value  !    • Opera=ng  current  <  600  A).    (450  to  500  A)  • Dose  of  5  to  10  MGy  so  we  need  a  radia=on  hard  insula=on.    

2  

Page 3: D2 Q4 corrector - CERN...18 Integration with D2 Q4 ’ HL_LHC’C&S’Review’#1’–March’2015 ’ 20 40 60 80 100 120 140 160 180 distance to IP (m) Q1 Q2a Q2b Q3 D1 D2 Q4

CCT design D2 – Q4 Corrector

Page 4: D2 Q4 corrector - CERN...18 Integration with D2 Q4 ’ HL_LHC’C&S’Review’#1’–March’2015 ’ 20 40 60 80 100 120 140 160 180 distance to IP (m) Q1 Q2a Q2b Q3 D1 D2 Q4

0  

0.5  

1  

1.5  

2  

2.5  

3  

0   50   100   150   200   250   300   350   400   450   500  

B1  (T

)  

Longitudinal  distance,  z  (mm)  

Main  field  component  B1,  with  iron  

Page 5: D2 Q4 corrector - CERN...18 Integration with D2 Q4 ’ HL_LHC’C&S’Review’#1’–March’2015 ’ 20 40 60 80 100 120 140 160 180 distance to IP (m) Q1 Q2a Q2b Q3 D1 D2 Q4

-­‐800  

-­‐600  

-­‐400  

-­‐200  

0  

200  

400  

600  

800  

-­‐1100   -­‐1050   -­‐1000   -­‐950   -­‐900   -­‐850   -­‐800   -­‐750   -­‐700   -­‐650   -­‐600  

Mul=p

oles,  normalize

d  by  nom

inal  B1  

Longitudinal  distance,  z  (mm)  

Normalized  mul=poles,  no  iron  

b3   b5   b7   b9  

Page 6: D2 Q4 corrector - CERN...18 Integration with D2 Q4 ’ HL_LHC’C&S’Review’#1’–March’2015 ’ 20 40 60 80 100 120 140 160 180 distance to IP (m) Q1 Q2a Q2b Q3 D1 D2 Q4

MCBX LHC corrector

Page 7: D2 Q4 corrector - CERN...18 Integration with D2 Q4 ’ HL_LHC’C&S’Review’#1’–March’2015 ’ 20 40 60 80 100 120 140 160 180 distance to IP (m) Q1 Q2a Q2b Q3 D1 D2 Q4

MCBX coil

Page 8: D2 Q4 corrector - CERN...18 Integration with D2 Q4 ’ HL_LHC’C&S’Review’#1’–March’2015 ’ 20 40 60 80 100 120 140 160 180 distance to IP (m) Q1 Q2a Q2b Q3 D1 D2 Q4
Page 9: D2 Q4 corrector - CERN...18 Integration with D2 Q4 ’ HL_LHC’C&S’Review’#1’–March’2015 ’ 20 40 60 80 100 120 140 160 180 distance to IP (m) Q1 Q2a Q2b Q3 D1 D2 Q4

Magnetization & IFCC

-­‐30  

-­‐25  

-­‐20  

-­‐15  

-­‐10  

-­‐5  

0  

5  

10  

15  

20  

-­‐3   -­‐2   -­‐1   0   1   2   3  

Rela=ve  a 3

 

Main  field  component  (T)  

Rela=ve  mul=pole,  normalized  by  maximum  main  component  (3  T)  

10  µm   50  µm   100  µm  

Page 10: D2 Q4 corrector - CERN...18 Integration with D2 Q4 ’ HL_LHC’C&S’Review’#1’–March’2015 ’ 20 40 60 80 100 120 140 160 180 distance to IP (m) Q1 Q2a Q2b Q3 D1 D2 Q4

Two Insulation Systems

S2  glass  sleeve  impregnated  with  resin    

Two  layers  Kapton  tape  with  adhesive  outer  layer  no  impregna=on  coil  filled  with  liquid  helium      

Aluminium    7000  or  6000  series  ~  10mm  Thk.        

Alum

inium-­‐Bronze  

98%  Cu    

G10  /  Kapton  sheets      &    Ground  Insula=on      

Page 11: D2 Q4 corrector - CERN...18 Integration with D2 Q4 ’ HL_LHC’C&S’Review’#1’–March’2015 ’ 20 40 60 80 100 120 140 160 180 distance to IP (m) Q1 Q2a Q2b Q3 D1 D2 Q4

Wire  and  insula,on  is  held  in  channel  so  if  damaged  by  radia,on  the  material  cannot  fall  out!    

Page 12: D2 Q4 corrector - CERN...18 Integration with D2 Q4 ’ HL_LHC’C&S’Review’#1’–March’2015 ’ 20 40 60 80 100 120 140 160 180 distance to IP (m) Q1 Q2a Q2b Q3 D1 D2 Q4

Voltage Map, an overview + joints

-­‐L  di/dt  

IR   -­‐L  di/dt  

Two  layer  CCT  with  5  wires  on  each  layer.  

Only  one  layer  quenching     Joints  at  both  ends  od  the  magnet  

5  joints    Start  and  End  +  4  joints    

Page 13: D2 Q4 corrector - CERN...18 Integration with D2 Q4 ’ HL_LHC’C&S’Review’#1’–March’2015 ’ 20 40 60 80 100 120 140 160 180 distance to IP (m) Q1 Q2a Q2b Q3 D1 D2 Q4

Quench & Cu:Sc Self Protecting No dump, No QH, No CLIQ

0  

100  

200  

300  

400  

500  

0   0.5   1   1.5   2   2.5   3  

Curren

t  [A]  ,    

Que

nch  Ho

t  spo

t  [⁰K]  

Time  [Sec]  

Cu4:Sc1  wire  copper  content    

Icoil  [A]  Tpeak  [K]  

0  

100  

200  

300  

400  

0   0.5   1   1.5   2   2.5   3  

PEAK

 TEM

PERA

TURE

 [K]  

TIME  [S]  

fcu2sc  =  1   fcu2sc  =  2   fcu2sc  =  3  

fcu2sc  =  4   fcu2sc  =  5   fcu2sc  =  6  

1:1  4:1  

6:1  

434  A  quench  

Rectangular  or  round,  heat  transfer  ,wind-­‐ability,  PF.  

π/4  loss  In  packing  factor    

Page 14: D2 Q4 corrector - CERN...18 Integration with D2 Q4 ’ HL_LHC’C&S’Review’#1’–March’2015 ’ 20 40 60 80 100 120 140 160 180 distance to IP (m) Q1 Q2a Q2b Q3 D1 D2 Q4

S2 Class 0.05mm thick, Resin Impregnates

0  

50  

100  

150  

200  

250  

0   1   2   3   4   5  

Tpeak  [K[  

,me  [s]  

No  Fins  

With  Fins  

Quench.  Axial  quench  velocity  is  insufficient  to  protect  coil    Radial  turn  to  turn  Thermal  capacity  of  former  looks  to  be  okay  Need  more  work!        

Page 15: D2 Q4 corrector - CERN...18 Integration with D2 Q4 ’ HL_LHC’C&S’Review’#1’–March’2015 ’ 20 40 60 80 100 120 140 160 180 distance to IP (m) Q1 Q2a Q2b Q3 D1 D2 Q4

200A or 434 A designs hot spot & voltage

0  

50  

100  

150  

200  

250  

300  

0   0.5   1   1.5   2   2.5   3  

Peak  Tem

perature  [K

]  

=me  [s]  

Hot  spot  f(current)  

Iop  =  200  Amps   Iop  =  434  Amps  

434  A  hot  spot  212  K  

Conductor  Specifica=ons  434  A   Conductor  Specifica=ons  200  A  n1   1060  turns   n1   2300  turns  n2   6  layers   n2   6  layers  d1   1.7  mm   d1   0.7834  mm  d2   1  mm   d2   1  mm  dfibre   0.1  mm   dfibre   0.1  mm  

0  100  200  300  400  500  600  700  800  

0   0.5   1   1.5   2   2.5   3  

Layer  2

 Layer  Voltage  [V

]  

=me  [s]  

Inter-­‐layer  Voltage    

Iop  =  200  Amps   Iop  =  434  Amps  

Reducing  current  from  434  A  to  200A  would  reduce  power  supply  cost  by  approximately  40KCHF  x  16=  640  KCHF.  However  interlayer  voltage  moves  into  problema=c  area  above  insula=on  nominal  values.      600A  we  save  4.4  Mchf  over  the  4  KA  design  (  just  PSU  saving)  

200A  hot  spot  268  K   747  V  ,

200  A  

120  V,  434  A  

4:1  Cu:Sc  wire  

Quench  model  taking  into  account  the  thermal  propaga=on  along  wire  and  radially:  turn  to  turn,  and    layer  to  layer.  

Conclusion:  we  need  to  select  600  A  power  supply  op=on  running  at  approximately  450  A    

200A  quench   Thanks  to  Jeroen  for  Quench  model    

Page 16: D2 Q4 corrector - CERN...18 Integration with D2 Q4 ’ HL_LHC’C&S’Review’#1’–March’2015 ’ 20 40 60 80 100 120 140 160 180 distance to IP (m) Q1 Q2a Q2b Q3 D1 D2 Q4

Yoke Radii vs. Multipoles

510  mm  

570  mm  

Page 17: D2 Q4 corrector - CERN...18 Integration with D2 Q4 ’ HL_LHC’C&S’Review’#1’–March’2015 ’ 20 40 60 80 100 120 140 160 180 distance to IP (m) Q1 Q2a Q2b Q3 D1 D2 Q4

Yoke radius vs. Multipoles (aperture 2)

-­‐25  

-­‐20  

-­‐15  

-­‐10  

-­‐5  

0  

5  

10  

15  

510   520   530   540   550   560   570   580   590  

Normalize

d  mul=p

oles  

Yoke  diameter  (mm)  

Ribbon,  2.8  T  bore  field  

b2   b3   a2   a3  

-­‐25  

-­‐20  

-­‐15  

-­‐10  

-­‐5  

0  

5  

10  

15  

510   520   530   540   550   560   570   580   590  

Normalize

d  mul=p

oles  

Yoke  diameter  (mm)  

CCT,  2.8  T  bore  field  

b2   b3   a2   a3  

Page 18: D2 Q4 corrector - CERN...18 Integration with D2 Q4 ’ HL_LHC’C&S’Review’#1’–March’2015 ’ 20 40 60 80 100 120 140 160 180 distance to IP (m) Q1 Q2a Q2b Q3 D1 D2 Q4

18  

Integration with D2 Q4

 

HL-­‐LHC  C&S  Review  #1  –  March  2015  

20 40 60 80 100 120 140 160 180distance to IP (m)

Q1 Q3Q2a Q2b D1 D2 Q4

MC

BX

FB

MC

BX

FB

MC

BX

FA

MC

BR

B

MC

BY

YM

QY

Y

MB

RB

MB

XF

the  D2  outer  iron  yoke  profile  is  an  ellipse  whose  Xmax  is  624  and    Ymax  554  mm  (see  above).  The  outer  shell  has  not  been  fixed  yet,  but  it  will  likely  be  an  ellip=cal  "skin"  around  the  yoke  ~5  mm  thick.  

To  summarise,  the  available  external  diameters  for  the  cold  masses  we  have  or  will  have  are:  •  570mm  used  for  the  main  dipole  and  MBH  11T  dipole  •  495mm  used  for  the  inser=on  cold  masses  (series  600  also  called  MQM  or  

MQY  cold  masses)  •  630mm  that  will  be  used  for  the  HL-­‐LHC  triplet  quadrupole  cold  masses  

Beam  separa=on    194  mm  Beam  separa=on    

188  mm  

Page 19: D2 Q4 corrector - CERN...18 Integration with D2 Q4 ’ HL_LHC’C&S’Review’#1’–March’2015 ’ 20 40 60 80 100 120 140 160 180 distance to IP (m) Q1 Q2a Q2b Q3 D1 D2 Q4

D2 corrector integration ? Aluminium  outer  support  ring?  

Page 20: D2 Q4 corrector - CERN...18 Integration with D2 Q4 ’ HL_LHC’C&S’Review’#1’–March’2015 ’ 20 40 60 80 100 120 140 160 180 distance to IP (m) Q1 Q2a Q2b Q3 D1 D2 Q4

0  

1000  

2000  

3000  

4000  

5000  

6000  

0.0   2.0   4.0   6.0   8.0   10.0   12.0   14.0  

Jsc  (A/m

m2 )  

Bp  (T)  

Load  lines  

1.9  K  

4.2  K  

CCT  

Ribbon  

Page 21: D2 Q4 corrector - CERN...18 Integration with D2 Q4 ’ HL_LHC’C&S’Review’#1’–March’2015 ’ 20 40 60 80 100 120 140 160 180 distance to IP (m) Q1 Q2a Q2b Q3 D1 D2 Q4

-­‐20  

-­‐15  

-­‐10  

-­‐5  

0  

5  

10  

15  

20  

2.0   2.1   2.2   2.3   2.4   2.5   2.6   2.7   2.8   2.9   3.0  

Wire  3,  10.5  mm  Al  

a2   a3   b2   b3  

Cross  pollu=on  from  adjacent  aperture  

Satura=on  from  proximity  of  self  aperture  yoke    

Page 22: D2 Q4 corrector - CERN...18 Integration with D2 Q4 ’ HL_LHC’C&S’Review’#1’–March’2015 ’ 20 40 60 80 100 120 140 160 180 distance to IP (m) Q1 Q2a Q2b Q3 D1 D2 Q4

1.60  

1.65  

1.70  

1.75  

1.80  

1.85  

1.90  

1.95  

2.00  

2.05  

2.10  

2.5   2.55   2.6   2.65   2.7   2.75   2.8   2.85   2.9   2.95   3  

Magne

=c  length  (m

)  

Bore  field  (T)  

Bore  field  vs.  magne=c  length  for  5  Tm  integrated  field  

Page 23: D2 Q4 corrector - CERN...18 Integration with D2 Q4 ’ HL_LHC’C&S’Review’#1’–March’2015 ’ 20 40 60 80 100 120 140 160 180 distance to IP (m) Q1 Q2a Q2b Q3 D1 D2 Q4

Project Planning

Detail  drawings  2016  

Conceptual  design  

End  2015  

Page 24: D2 Q4 corrector - CERN...18 Integration with D2 Q4 ’ HL_LHC’C&S’Review’#1’–March’2015 ’ 20 40 60 80 100 120 140 160 180 distance to IP (m) Q1 Q2a Q2b Q3 D1 D2 Q4

Model & Prototype Planning 2015

4th  quarter   1st  quarter   2nd  quarter   3rd  quarter   4th  quarter   1st  quarter   2nd  quarter   3rd  quarter   4th  quarter   1st  quarter   2nd  quarter   3rd  quarter   4th  quarter   1st  quarter   2nd  quarter   3rd  quarter   4th  quarter  

CCT  LHC  wire  for  models    CCT ?????????? ??????????Tender  &  order-­‐delivery  CCTTest  length  of  Conductor  CCT

CCT  coil  design  1.?m  modelformer  manufactuerCoil  winding,  impregantion,  jointing1  in  1  yoke  design  (SMC  outer  tube)cold  test test

2nd  appertuer

build  2-­‐in-­‐1          1.?  m  model  coil  test test

Complete  2m  full  design  tendering  with  industry

2-­‐in-­‐1  yoke  2m  design  (interchangable  for  both)  Manufactuer  yoke

RibbonLHC  wire  for  models    Ribbon ?????????? ??????????Tender  &  order-­‐delivery  RibbonTest  length  of  Conductor  Ribbon

Ribbon  coil  designcoil  component  manufactuer  tooling    designtooling  manufactuer  

Coil  winding,  impregantion,  jointing1  in  1  yoke  design  (SMC  outer  tube)cold  test test

2nd  appertuerbuild  2-­‐in-­‐1          1.?  m  model  coil  test test

2016 2017 2018 2019

Page 25: D2 Q4 corrector - CERN...18 Integration with D2 Q4 ’ HL_LHC’C&S’Review’#1’–March’2015 ’ 20 40 60 80 100 120 140 160 180 distance to IP (m) Q1 Q2a Q2b Q3 D1 D2 Q4

Comparison Table

*  to  be  'inalized  –not  yet  added  in

    D2  orbit  corrector  MCBRB  

Q4  orbit  corrector  MCBYY  

CCT   CosQ-­‐ribbon   CCT   CosQ-­‐ribbon  

Aperture   (mm)   105   105   105   105  Central  Field   (T)   2,78   2,78   2,78   2,78  Magne,c  length   (m)   1.8   1.8   1.8   1.8  Field  Integral       (TM)   5.0   5.0   5.0   5.0  Number  of  apertures       2   2   2   2  Distance  between  Ap   (mm)   188   188   194   194  Number  of  circuits       16   16   16   16  Units  needed       8   8   8   8  Spares       2   2   2   2  

Cable  data  Material       Nb-­‐Ti   Nb-­‐Ti   Nb-­‐Ti   Nb-­‐Ti  Ribbon  thick.   (mm)       1.2  *       1.2  *  ribbon  width   (mm)       14.4*       14.4*  Insul.  thickness  radial   (mm)   0.05  *   0.05  *   0.05  *   0.05  *  Insul.  Thickness  azim.   (mm)   0.05  *   0.05  *   0.05  *   0.05  *  No.  strands       1   8   1   8  Strand  dimensions   (mm)  X,Y,   1.2  x  0.94*   1.1  x  1.7  *   1.2  x  0.94*   1.1  x  1.7*  Strand  area   (mm2)   1.128*   1.97*   1.128*   1.97*  Cu/Non  Cu       4*   4  *   4  *   4  *  Filament  size         <  10um   <  10um   <  10um   <  10um  

Coil  design  N  layers   #   5+5   1   5+5   1  N  turn  ,  poles   #   5510,  na   672  ,  2   5510,  na   672  ,  2  Cable  length/pole   (m)   3230   2670   3230   2670  

    D2  orbit  corrector  MCBRB  

Q4  orbit  corrector  MCBYY  

CCT   CosQ-­‐ribbon  

CCT   CosQ-­‐ribbon  

Opera,onal  parameters  Peak  field   (T)   3.2   3.3*   3.2   3.3*  Temperature   (K)   1.9   1.9   1.9   1.9  Current   (A)   502   485   502   485  J  overall   (A/mm2)   371   224   371   224  Load  line  frac,on         55%   45%   55%   45%  Temp  margin   (K)   -­‐   -­‐   -­‐   -­‐  Stored  energy/m   (kJ)   44   41   44   41  Inductance/m   (mH/m)   0.36   0.35   0.36   0.35  Stored  energy/  app   kJ   79   74   79   74  

Mechanical  structure  Forces  x   (MN/m)   -­‐   -­‐   -­‐   -­‐  Forces  y   (MN/m)   -­‐   -­‐   -­‐   -­‐  F  max  stress   (MPa)   -­‐   -­‐   -­‐   -­‐  

Protec,on  Circuit  inductance   (mH)   -­‐   -­‐   -­‐   -­‐  Coil  energy  density   (J/mm2)   -­‐   -­‐   -­‐   -­‐  Dump  resistor   (mW)   -­‐   -­‐   -­‐   -­‐  Heater  circuits       0   0   0   0  

Dose  and  heat  load  given  by  collision  debris  Coil  peak  power   (mW/cm3)                  Heat  load  col  mass   (W)                  Heat  load  beam  screen   (W)                  Peak  dose   (MGy)                  

Page 26: D2 Q4 corrector - CERN...18 Integration with D2 Q4 ’ HL_LHC’C&S’Review’#1’–March’2015 ’ 20 40 60 80 100 120 140 160 180 distance to IP (m) Q1 Q2a Q2b Q3 D1 D2 Q4

: Desired Iopp at given B and T , 550A @ 1.9K Max magnetization at given B and T Desired Cu fraction 4:1 to 6:1 Desired wire size not yet decides Desired wire shape (round or rectangular) not yet decides need test but 1st choice rectangular Unit length for series (and for proto) 3070 m / 10 +10% = 350 to 400 m individual wires ? Total quantity for series (and for proto) 3230 m / aperture x 2 x 4 = ~26km models and prototypes

3230 m/ Aperture x 2 x 20 +20 % = ~ 155 km ? Wire cost guess 0.8 to 1 euros/m = 156 to 200 k euros.   Desired dates for availability of wire (and associated quantities)

models : Jan 2016 (so use out wire type 3 in stock) prototypes: April 2016 production : Jan 2017

Wire  outline  data.  

Page 27: D2 Q4 corrector - CERN...18 Integration with D2 Q4 ’ HL_LHC’C&S’Review’#1’–March’2015 ’ 20 40 60 80 100 120 140 160 180 distance to IP (m) Q1 Q2a Q2b Q3 D1 D2 Q4

Short model test coil 0.5m long -­‐        Short  test  to  assess  assembly  techniques  and  quench  training  -­‐  Main  workshop  are  machining  formers  -­‐  Former  due  this  year!  Main  work  shop.  

Page 28: D2 Q4 corrector - CERN...18 Integration with D2 Q4 ’ HL_LHC’C&S’Review’#1’–March’2015 ’ 20 40 60 80 100 120 140 160 180 distance to IP (m) Q1 Q2a Q2b Q3 D1 D2 Q4

Just started

Page 29: D2 Q4 corrector - CERN...18 Integration with D2 Q4 ’ HL_LHC’C&S’Review’#1’–March’2015 ’ 20 40 60 80 100 120 140 160 180 distance to IP (m) Q1 Q2a Q2b Q3 D1 D2 Q4

 We  now  plan  to  close  the  gaps  at  cold  and  work  on  the  design.    We  may  s=ll  go  back  to  the  scissor  lams  but  not  before  taking  this  further.        

Page 30: D2 Q4 corrector - CERN...18 Integration with D2 Q4 ’ HL_LHC’C&S’Review’#1’–March’2015 ’ 20 40 60 80 100 120 140 160 180 distance to IP (m) Q1 Q2a Q2b Q3 D1 D2 Q4

Scissor lams •  Lamina=on  only  1  in  4  touch  • Crescent  shaped  loss  on  iron  packing  factor  

?  Two  way  touch  

Page 31: D2 Q4 corrector - CERN...18 Integration with D2 Q4 ’ HL_LHC’C&S’Review’#1’–March’2015 ’ 20 40 60 80 100 120 140 160 180 distance to IP (m) Q1 Q2a Q2b Q3 D1 D2 Q4
Page 32: D2 Q4 corrector - CERN...18 Integration with D2 Q4 ’ HL_LHC’C&S’Review’#1’–March’2015 ’ 20 40 60 80 100 120 140 160 180 distance to IP (m) Q1 Q2a Q2b Q3 D1 D2 Q4
Page 33: D2 Q4 corrector - CERN...18 Integration with D2 Q4 ’ HL_LHC’C&S’Review’#1’–March’2015 ’ 20 40 60 80 100 120 140 160 180 distance to IP (m) Q1 Q2a Q2b Q3 D1 D2 Q4
Page 34: D2 Q4 corrector - CERN...18 Integration with D2 Q4 ’ HL_LHC’C&S’Review’#1’–March’2015 ’ 20 40 60 80 100 120 140 160 180 distance to IP (m) Q1 Q2a Q2b Q3 D1 D2 Q4
Page 35: D2 Q4 corrector - CERN...18 Integration with D2 Q4 ’ HL_LHC’C&S’Review’#1’–March’2015 ’ 20 40 60 80 100 120 140 160 180 distance to IP (m) Q1 Q2a Q2b Q3 D1 D2 Q4

Comparison old and new

LHC  MCBC   LHC  MCBY   HL-­‐LHC  Correctors        Q4            -­‐          D2    MCBYY        MCBRB.  

Aperture     56  mm   70  mm   105  mm  

Magne=c  length   0.904  m   0.899  m   ~  1.73m  

Nom  Current   100  A  (1.9  K)   88  A  (1.9  K)   ~  450  A    

Field     3.1  T   3.0  T     ~  2.5  to  3  T  

Overall  length   1.1  m   1.1  m   <  2m    

Cu:Sc  ra=o  in  wire   4:1   4:1    4:1  to  5:1  target  

Inductance    (Stored  Energy)  

2.84  H    (14  kJ)  

5.27  H    (20  kJ)  

0.53  H/aperture    (63  kJ)  

Bore  field   Magne=c  length  2   2.25  2.1   2.14  2.2   2.05  2.3   1.96  2.4   1.88  2.5   1.80  2.6   1.73  2.7   1.67  2.8   1.61  2.9   1.55  3   1.50  3.1   1.45  3.2   1.41  3.3   1.36  3.4   1.32  3.5   1.29  3.6   1.25  3.7   1.22  3.8   1.18  

LHC  Corrector  Conductor  specs.    105m  

Page 36: D2 Q4 corrector - CERN...18 Integration with D2 Q4 ’ HL_LHC’C&S’Review’#1’–March’2015 ’ 20 40 60 80 100 120 140 160 180 distance to IP (m) Q1 Q2a Q2b Q3 D1 D2 Q4

Approximate Power supply Costs Power  converter   Current   Voltage   Quadrant   Unit  price  

KCHF  Type  1   16.5kA   20V   1   500  Type  2   13kA   18V   1   350  Type  3   6kA   8V   1   200  Type  4   ±2kA   ±10V   4   150  Type  5   ±600A   ±10V  or  ±40V   4   50  Type  6   ±200A   ±10V   4   10  Type  7   ±120A   ±10V   4   10  

h{p://te-­‐epc-­‐lpc.web.cern.ch/te-­‐epc-­‐lpc/general.stm  Power  In   3  ~  230V/16A  Power  Out   +/-­‐  600A  +/-­‐10V  (or  +/-­‐40V)  Converter  Type   4  Quadrant  Control  type   FGC2  /  WorldFip  Current  Accuracy   10  ppm@  30  mn  

50  ppm@  24  h  200  ppm@  1  year  (1  ppm=0.6mA)  

Selecting the Magnet Current

Page 37: D2 Q4 corrector - CERN...18 Integration with D2 Q4 ’ HL_LHC’C&S’Review’#1’–March’2015 ’ 20 40 60 80 100 120 140 160 180 distance to IP (m) Q1 Q2a Q2b Q3 D1 D2 Q4

Protection

High  Cu:Sc  4:1  or  5:1  

 Passive  system  

 No  

electronics          

Lower  Cu:Sc      

Resistor  with    Diode    circuit  

Shockley  diode    

1st  Op,on    2st  Op,on    

Page 38: D2 Q4 corrector - CERN...18 Integration with D2 Q4 ’ HL_LHC’C&S’Review’#1’–March’2015 ’ 20 40 60 80 100 120 140 160 180 distance to IP (m) Q1 Q2a Q2b Q3 D1 D2 Q4

20 40 60 80 100 120 140 160 180distance to IP (m)

Q1 Q3Q2a Q2b D1 D2 Q4

MC

BX

FB

MC

BX

FB

MC

BX

FA

MC

BR

B

MC

BY

YM

QY

Y

MB

RB

MB

XF

38  

Scope

• New  Nb-­‐Ti  magnets  to  be  built  for  IR1  and  IR5  •  D2:  4  units  +  2  spares,  105  mm,  4.5  T,  7.8  m  •  Q4:  4  units  +  2  spares,  90  mm,  115  T/m,  3.8  m    •  Double  aperture  correctors  MCBRB/YY:  8/8  units  +2/2  spares,  105  mm,  2.6  T,  1.7  m  

 

HL-­‐LHC  C&S  Review  #1  –  March  2015  

Page 39: D2 Q4 corrector - CERN...18 Integration with D2 Q4 ’ HL_LHC’C&S’Review’#1’–March’2015 ’ 20 40 60 80 100 120 140 160 180 distance to IP (m) Q1 Q2a Q2b Q3 D1 D2 Q4

Selecting magnet current

430,  1.47  

300,  1.03  

200,  0.68  

100,  0.34  

50,  0.17  

0.00  

0.20  

0.40  

0.60  

0.80  

1.00  

1.20  

1.40  

1.60  

0   100   200   300   400   500  

Nom

inal  W

ire  dia  (m

m)  

Magnet  Opera=ng  Current  (A)  

Non  insulated  Wire  Ref.    Dia  (mm)  f  (current)  

Wire  Ref    dia  0  

20000  

40000  

60000  

80000  

100000  

120000  

1  

10  

100  

0   100   200   300   400   500  

Indu

ctance  (H

)  ,    D

riveing  Voltage  (V

olts)  

Magnet  opera=onal  Current  (A)    

100  sec  driving  voltage  

inductance   voltage   turns  Turns  p

er  ape

rture    

Page 40: D2 Q4 corrector - CERN...18 Integration with D2 Q4 ’ HL_LHC’C&S’Review’#1’–March’2015 ’ 20 40 60 80 100 120 140 160 180 distance to IP (m) Q1 Q2a Q2b Q3 D1 D2 Q4

LHC wires

Wire  3  Wire  2  

Wire  1