d ii ft ri ntn egative refractive index in...

42
Birck Nanotechnology Center N ti R f ti Id Negative Refractive Index in Optics in Optics

Upload: others

Post on 16-Aug-2020

4 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: d Ii ft Ri NtN egative Refractive Index in Opticsesperia.iesl.forth.gr/~kafesaki/Meta-School/pdfs/Shalaev2.pdf · Phys. Rev. Lett. (2005) 2 2.0 m 0.5 Nano-fishnet with round voids

Birck Nanotechnology Center

N ti R f ti I d Negative Refractive Index in Opticsin Optics

Page 2: d Ii ft Ri NtN egative Refractive Index in Opticsesperia.iesl.forth.gr/~kafesaki/Meta-School/pdfs/Shalaev2.pdf · Phys. Rev. Lett. (2005) 2 2.0 m 0.5 Nano-fishnet with round voids

Birck Nanotechnology Center

Negative refractive index: A historical reviewg

… energy can be carried forward at the group velocity but in a direction that is group velocity but in a direction that is anti-parallel to the phase velocity…

Schuster, 1904

Sir Arthur Schuster Sir Horace Lamb

Negative refraction and backward propagation of waves

Mandel’stam, 1945

L. I. Mandel’stam

,

Left-handed materials: the electrodynamics of substances with simultaneously negative of substances with simultaneously negative values of and

Veselago, 1968

V. G. Veselago

Pendry, the one who whipped up the recent boom of NIM researches

Sir John Pendry

Perfect lens (2000)EM cloaking (2006)

Page 3: d Ii ft Ri NtN egative Refractive Index in Opticsesperia.iesl.forth.gr/~kafesaki/Meta-School/pdfs/Shalaev2.pdf · Phys. Rev. Lett. (2005) 2 2.0 m 0.5 Nano-fishnet with round voids

Birck Nanotechnology Center

Metamaterials with Negative Refraction g

εμn

2

Refraction:θ1

θ2

εμn

Figure of merit

θ1

n < 0, if ε′|μ| + μ′|ε| < 0

F = |n’|/n”

Single-negative:n<0 when ε′ < 0 whereas μ′ > 0 (F is low)

Double-negative:

θ1 θ2

n<0 with both ε′ < 0 and μ′ < 0 (F can be large)

Page 4: d Ii ft Ri NtN egative Refractive Index in Opticsesperia.iesl.forth.gr/~kafesaki/Meta-School/pdfs/Shalaev2.pdf · Phys. Rev. Lett. (2005) 2 2.0 m 0.5 Nano-fishnet with round voids

Birck Nanotechnology Center

Negative Refractive Index in Optics: State of the Art g p

Year and Research group

1st time posted and publication

Refractive index, n

Wavelength

Figure of MeritF=|n|/n Structure usedg oup publicatio index, n |n |/n

2005:

PurdueApril 13 (2005)arXiv:physics/0504091O L (2005)

0.3 1.5 m 0.1 Paired nanorodsOpt. Lett. (2005)

UNM & ColumbiaApril 28 (2005)arXiv:physics/0504208Phys. Rev. Lett. (2005)

2 2.0 m 0.5 Nano-fishnet with round voids

2006:2006:

UNM & Columbia J. of OSA B (2006) 4 1.8 m 2.0 Nano-fishnet with round voids

Karlsruhe & ISU OL (2006) 1 1 4 m 3 0 Nano fishnetKarlsruhe & ISU OL. (2006) 1 1.4 m 3.0 Nano-fishnet

Karlsruhe & ISU OL (2006) 0.6 780 nm 0.5 Nano-fishnet

Purdue MRS Bulletin (2008) -0.8 725nm 1.1 Nano-fishnet Purdue MRS Bulletin (2008) -0.6 710nm 0.6

Purdue In preparation (2009) -0.25 580nm 0.3 Nano-fishnet

CalTech: negative refraction in the visible for MIM waveguide SPPs (2007)

Page 5: d Ii ft Ri NtN egative Refractive Index in Opticsesperia.iesl.forth.gr/~kafesaki/Meta-School/pdfs/Shalaev2.pdf · Phys. Rev. Lett. (2005) 2 2.0 m 0.5 Nano-fishnet with round voids

Birck Nanotechnology Center

Negative permeability and negative permittivityg p y g p y

Dielectric

E

HDielectric

Metal

k

Nanostrip pair (TM)

< 0 (resonant)

Nanostrip pair (TE)

< 0 (non-resonant)

Fishnet

and < 0 < 0 (resonant) < 0 (non-resonant) and < 0

S. Zhang, et al., PRL (2005)

Page 6: d Ii ft Ri NtN egative Refractive Index in Opticsesperia.iesl.forth.gr/~kafesaki/Meta-School/pdfs/Shalaev2.pdf · Phys. Rev. Lett. (2005) 2 2.0 m 0.5 Nano-fishnet with round voids

Birck Nanotechnology Center

Sample A: Double Negative NIM (n’=-0.8, FOM=1.1, at 725 nm) Sample B: Single Negative NIM (n’ 0 25 FOM 0 3 at 580 nm)Sample B: Single Negative NIM (n =-0.25, FOM=0.3, at 580 nm)

Sample A. period- E: 250 nm; H: 280 nm2

MRS Bulletin (2008)

1

2

vity

bili

ty2

42

-1

0

FOMRe(n)

Perm

ittiv

Perm

eab

-4

-2

0

0

1

500 nm

SampleB. period- E:220nm H:220nm

400 500 600 700 800 900-2

Wavelength (nm)

P P

400 500 600 700 800 900

-4

400 500 600 700 800 900Wavelength (nm)

500 nm

E

H

Stacking:E Stacking:

8 nm of Al2O343 nm of Ag45 nm of Al2O3

500 nm45 nm of Al2O343 nm of Ag8 nm of Al2O3

Page 7: d Ii ft Ri NtN egative Refractive Index in Opticsesperia.iesl.forth.gr/~kafesaki/Meta-School/pdfs/Shalaev2.pdf · Phys. Rev. Lett. (2005) 2 2.0 m 0.5 Nano-fishnet with round voids

Birck Nanotechnology Center

T iti M t t i l Transition Metamaterials

Litchinitser Gabitov Maimistov Sagdeev & Litchinitser, Gabitov, Maimistov, Sagdeev, & Shalaev (OL v. 33, 2350 (2008))

Page 8: d Ii ft Ri NtN egative Refractive Index in Opticsesperia.iesl.forth.gr/~kafesaki/Meta-School/pdfs/Shalaev2.pdf · Phys. Rev. Lett. (2005) 2 2.0 m 0.5 Nano-fishnet with round voids

Birck Nanotechnology Center

Transition LayerTransition Layer

RHM LHMTransitionRHM LHMTransition0,, n 0,, n

0

Layer0,, n 0,, n

0

Layer

0

0 0

x or

0

0 0

x or

0

0 x

0

or

0

0 x

0

or

00

x

22

hx

1

hx

00

x

22

hx

1

hx

Page 9: d Ii ft Ri NtN egative Refractive Index in Opticsesperia.iesl.forth.gr/~kafesaki/Meta-School/pdfs/Shalaev2.pdf · Phys. Rev. Lett. (2005) 2 2.0 m 0.5 Nano-fishnet with round voids

Birck Nanotechnology Center

Simple explanationSimple explanation

PIM NIM(x)(x)

Page 10: d Ii ft Ri NtN egative Refractive Index in Opticsesperia.iesl.forth.gr/~kafesaki/Meta-School/pdfs/Shalaev2.pdf · Phys. Rev. Lett. (2005) 2 2.0 m 0.5 Nano-fishnet with round voids

Birck Nanotechnology Center

GeometryGeometry

zE H H

TE-wave

q0

Ey, Hz,Hx

PIM NIM

n = 0 x

Page 11: d Ii ft Ri NtN egative Refractive Index in Opticsesperia.iesl.forth.gr/~kafesaki/Meta-School/pdfs/Shalaev2.pdf · Phys. Rev. Lett. (2005) 2 2.0 m 0.5 Nano-fishnet with round voids

Birck Nanotechnology Center

Electromagnetic enhancementElectromagnetic enhancement

Litchinitser et al., OL (2008)

Page 12: d Ii ft Ri NtN egative Refractive Index in Opticsesperia.iesl.forth.gr/~kafesaki/Meta-School/pdfs/Shalaev2.pdf · Phys. Rev. Lett. (2005) 2 2.0 m 0.5 Nano-fishnet with round voids

Birck Nanotechnology Center

with Alex K. Popov p

Nonlinear Optics of NIMs: O ti l P t i A lifi ti (OPA) Optical Parametric Amplification (OPA)

• OPA: compensating losses with OPA • OPA: compensating losses with OPA (with χ(2) – Opt. Lett. 2006; with χ(3) – OL 2007)

A.K. Popov and V.M. Shalaev - OL 31, 2169 (2006) and OL (2007)

Laser Physics Letts 3, 293 (2006); APB 84, 131 (2006); JOSA B 23 535 (2006) ( ith G bit Lit hi t t l) JOSA B 23, 535 (2006) (with Gabitov, Litchintser, et al)

early work on SHG: Kivshar, et al; Zakhidov et al (2005)SHG Experiment in SRRs: Klein et al, Science 313, 502 (2006)

Page 13: d Ii ft Ri NtN egative Refractive Index in Opticsesperia.iesl.forth.gr/~kafesaki/Meta-School/pdfs/Shalaev2.pdf · Phys. Rev. Lett. (2005) 2 2.0 m 0.5 Nano-fishnet with round voids

Birck Nanotechnology Center

Three-dimensional Optical Metamaterials with a N ti R f ti I d Negative Refractive Index

Schematic and Sem image of 21-layer fishnet, p= 860nm, a= 565,b= 265nm

Stacking: alternating layersSem image of 3D fishnet NIM prism

Stacking: alternating layers50 nm of MgF2 and 30 nm of Ag

.Valentine, et al., Nature (2008)

also work by the Wegner & Giessen groups .

3D NIMs enable new means .to compensate for loss – OPA!

Page 14: d Ii ft Ri NtN egative Refractive Index in Opticsesperia.iesl.forth.gr/~kafesaki/Meta-School/pdfs/Shalaev2.pdf · Phys. Rev. Lett. (2005) 2 2.0 m 0.5 Nano-fishnet with round voids

Birck Nanotechnology Center

Optical Parametric Amplification (OPA) in NIMsp p ( )

213 3S - Control Field (pump)(n1 < 0, n2,n3 > 0)213

4x 107

2g

gL=4.805k=0

LHM

3

2η 1a,2

g Δk=0

0 0.5 10 z/L0 0.5 10 z/L

2122

22011

2111 /)(,/)(,/)( LggLa azaazaaza 3

)2(4212121 /8/ hcg

Manley-Rowe Relations:

21

SSd 0

2

2

1

1

SS

dzd

Page 15: d Ii ft Ri NtN egative Refractive Index in Opticsesperia.iesl.forth.gr/~kafesaki/Meta-School/pdfs/Shalaev2.pdf · Phys. Rev. Lett. (2005) 2 2.0 m 0.5 Nano-fishnet with round voids

Birck Nanotechnology Center

OPA in NIMs:Loss Compensator and Cavity Free Oscillator Loss-Compensator and Cavity-Free Oscillator

B k d i NIM Backward waves in NIMs ->Distributed feedback & cavity-like amplification and gene ationamplification and generation

0k α1L = 1, α2L = 1/2

22011

2111 /)(,/)( azaaza gLa 3

)2(4212121 /8/ hcg

Resonances in output amplification and DFG

• OPA-Compensated Losses• Cavity free (no mirrors) Parametric Oscillations • Cavity-free (no mirrors) Parametric Oscillations • Generation of Entangled Counter-propagating LH and RH photons

Page 16: d Ii ft Ri NtN egative Refractive Index in Opticsesperia.iesl.forth.gr/~kafesaki/Meta-School/pdfs/Shalaev2.pdf · Phys. Rev. Lett. (2005) 2 2.0 m 0.5 Nano-fishnet with round voids

Birck Nanotechnology Center

Optical Cloaking& &

Transformation OpticsTransformation Optics

VMS, Science, Oct. 17, 2008

Page 17: d Ii ft Ri NtN egative Refractive Index in Opticsesperia.iesl.forth.gr/~kafesaki/Meta-School/pdfs/Shalaev2.pdf · Phys. Rev. Lett. (2005) 2 2.0 m 0.5 Nano-fishnet with round voids

Birck Nanotechnology Center

Designing Space for Light with T f ti O tiTransformation Optics

Fermat:Fermat:δ∫ndl = 0√ ( ) ( )n = √ε(r)μ(r)

“curving” optical space

Straight field line in Cartesian coordinate

Distorted field line in distorted coordinate

Spatial profile of & tensors determines the distortion of

optical space

p p coordinate

Seeking for profile of & to make light avoid particular region in space — optical cloaking Pendry et al., Science, 2006Pendry et al., Science, 2006

Leonhard, Science, 2006Greenleaf et al (2003)L. S. Dolin, Izv. VUZ, 1961

Page 18: d Ii ft Ri NtN egative Refractive Index in Opticsesperia.iesl.forth.gr/~kafesaki/Meta-School/pdfs/Shalaev2.pdf · Phys. Rev. Lett. (2005) 2 2.0 m 0.5 Nano-fishnet with round voids

Birck Nanotechnology Center

Form-invariance of Maxwell’s equationsq

Coordinate transformation from x to coordinate x is described Coordinate transformation from x to coordinate x is described

using the Jacobian matrix G: ij i jg x x

( )E

Maxwell’s equation in xT TG G G G

Transformation of variables

( )( ) 0EH

1 1

;

( ) ; ( )T T

G G

E G E H G H

HE tE

( ) ; ( )

;

E G E H G HGJJG G

EH Jt G G

Ward and Pendry, J. Mod.Opt. 43, 777 (1996)Ward and Pendry, J. Mod.Opt. 43, 777 (1996)

Solutions to MEs -> works in near-zone (nanoscale) too)!

Page 19: d Ii ft Ri NtN egative Refractive Index in Opticsesperia.iesl.forth.gr/~kafesaki/Meta-School/pdfs/Shalaev2.pdf · Phys. Rev. Lett. (2005) 2 2.0 m 0.5 Nano-fishnet with round voids

Birck Nanotechnology Center

Invisibility in nature, physics and technologyy , p y gy

• Natural camouflage Natural camouflage • Black hole• …

h l i hi i i ibiliCurrent technologies to achieve invisibility: Stealth technique:Radar cross-section reductions by absorbing

Optical camouflage:Projecting background image onto masked objecty g

paint / non-metallic frame / shape effect…Projecting background image onto masked object.

F-117 “Nighthawk” Stealth Fighter Optical Camouflage, Tachi Lab, U. of Tokyo, Japan

Page 20: d Ii ft Ri NtN egative Refractive Index in Opticsesperia.iesl.forth.gr/~kafesaki/Meta-School/pdfs/Shalaev2.pdf · Phys. Rev. Lett. (2005) 2 2.0 m 0.5 Nano-fishnet with round voids

Birck Nanotechnology Center

Invisibility: from fiction to fact?Invisibility: from fiction to fact?

Examples with scientific elements:

The Invisible Man by H. G. Wells (1897)

“The invisible woman” in The Fantastic 4 by Lee & Kirby (1961)

"... it was an idea ... to lower the "... she achieves these feats by t as a dea to o e t erefractive index of a substance, solid or liquid, to that of air — so f ll ti l

s e ac e es t ese eats bybending all wavelengths of light in the vicinity around herself ...

ith t i i ibl far as all practical purposes are concerned.” -- Chapter 19 "Certain First Principles"

without causing any visible distortion.” -- Introduction from Wikipedia

Pendry et al.; Leonhard, Science, 2006

40

(Earlier work: cloak of thermal conductivity by Greenleaf et al., 2003)

Page 21: d Ii ft Ri NtN egative Refractive Index in Opticsesperia.iesl.forth.gr/~kafesaki/Meta-School/pdfs/Shalaev2.pdf · Phys. Rev. Lett. (2005) 2 2.0 m 0.5 Nano-fishnet with round voids

Birck Nanotechnology Center

Transformation Optics and CloakingTransformation Optics and Cloaking

Page 22: d Ii ft Ri NtN egative Refractive Index in Opticsesperia.iesl.forth.gr/~kafesaki/Meta-School/pdfs/Shalaev2.pdf · Phys. Rev. Lett. (2005) 2 2.0 m 0.5 Nano-fishnet with round voids

Birck Nanotechnology Center

Camouflaging bumps on a metal surfaceCamouflaging bumps on a metal surface

P f t C d tPerfect ConductorJ. Li, J. B. Pendry, “Hiding under the carpet: a new strategy for cloaking”

D. Smith, et al – MW experiment (Science -2009)Zhang et al – optical experiment(Nature Materials -2009)

Page 23: d Ii ft Ri NtN egative Refractive Index in Opticsesperia.iesl.forth.gr/~kafesaki/Meta-School/pdfs/Shalaev2.pdf · Phys. Rev. Lett. (2005) 2 2.0 m 0.5 Nano-fishnet with round voids

Birck Nanotechnology Center

Optical Cloaking with Metamaterials:C Obj t b I i ibl i th Vi ibl ?Can Objects be Invisible in the Visible?

λ = 632 nm

Nature Photonics (April, 2007)[GHz-cloak: Duke team]

Page 24: d Ii ft Ri NtN egative Refractive Index in Opticsesperia.iesl.forth.gr/~kafesaki/Meta-School/pdfs/Shalaev2.pdf · Phys. Rev. Lett. (2005) 2 2.0 m 0.5 Nano-fishnet with round voids

Birck Nanotechnology Center

Structure of optical cloak: “Round brush” Structure of optical cloak: Round brush

Cai, et al., Nature Photonics, 1, 224 (2007)

Unit cell:

Fle ible cont ol of Flexible control of r ;

Negligible perturbation in

metal needles embedded in dielectric host

Page 25: d Ii ft Ri NtN egative Refractive Index in Opticsesperia.iesl.forth.gr/~kafesaki/Meta-School/pdfs/Shalaev2.pdf · Phys. Rev. Lett. (2005) 2 2.0 m 0.5 Nano-fishnet with round voids

Birck Nanotechnology Center

Cloaking performance: Field mapping moviesg p pp g

Example:Example:Non-magnetic cloak @ 632.8nm with silver wires in silica

Cloak ONCloak OFF Cloak ONCloak OFF

Page 26: d Ii ft Ri NtN egative Refractive Index in Opticsesperia.iesl.forth.gr/~kafesaki/Meta-School/pdfs/Shalaev2.pdf · Phys. Rev. Lett. (2005) 2 2.0 m 0.5 Nano-fishnet with round voids

Birck Nanotechnology Center

Scattering issue in a linear non-magnetic cloakScattering issue in a linear non magnetic cloak

Linear transformation HE

b ar r ab

E

k

E

Ideal cloak:

kH1z

r br b

Z

Perfectly matched impedance results

E

in zero scattering

Linear non-magnetic cloak:

kH1z

r br b

aZ b

Detrimental scattering due to impedance mismatch

46

impedance mismatch

Nonlinear transformation –> no scattering

Page 27: d Ii ft Ri NtN egative Refractive Index in Opticsesperia.iesl.forth.gr/~kafesaki/Meta-School/pdfs/Shalaev2.pdf · Phys. Rev. Lett. (2005) 2 2.0 m 0.5 Nano-fishnet with round voids

Birck Nanotechnology Center

High-order transformation for cloakingg g

( ) 2( ) 1 b b ith bé ù¢ ¢ ¢+ +

2-nd order transformation for non-magnetic cloak:

( ) 2( ) 1r g r a b p r b r a with p a bé ù¢ ¢ ¢= = - + - + =ê úë û

47

W. Cai et al (APL 91, 111105, 2007); with G. Milton

Page 28: d Ii ft Ri NtN egative Refractive Index in Opticsesperia.iesl.forth.gr/~kafesaki/Meta-School/pdfs/Shalaev2.pdf · Phys. Rev. Lett. (2005) 2 2.0 m 0.5 Nano-fishnet with round voids

Birck Nanotechnology Center

Towards experimental realizationTowards experimental realization

We need a design that is …g

Less complicated in fabricationCompatibility with mature fabrication techniques like direct deposition and direct etching

Better loss featuresLoss might be ultimate limiting issue for cloaking

0.1r 0.03r

4848

Page 29: d Ii ft Ri NtN egative Refractive Index in Opticsesperia.iesl.forth.gr/~kafesaki/Meta-School/pdfs/Shalaev2.pdf · Phys. Rev. Lett. (2005) 2 2.0 m 0.5 Nano-fishnet with round voids

Birck Nanotechnology Center

Structures of realistic high-order TO cloaks g

0.03

0 02

0.025 ||

0.015

0.02

mag

( )

0 005

0.01

i

(a) (b)

(b) (a)

-1 0 1 2 30

0.005

real( )

r(a) r(b)

real()

ε found from Wiener’s bounds

l k @ 530 ith lt ti il ili Cai, et al, (OE, 2008)

cloak @ 530 nm with alternating silver- silica slices based on nonlinear transformations-ε >>1 - problem

Page 30: d Ii ft Ri NtN egative Refractive Index in Opticsesperia.iesl.forth.gr/~kafesaki/Meta-School/pdfs/Shalaev2.pdf · Phys. Rev. Lett. (2005) 2 2.0 m 0.5 Nano-fishnet with round voids

Birck Nanotechnology Center

Bandwidth problem in electromagnetic cloakBandwidth problem in electromagnetic cloak

F t’ Fermat’s principle

vp = c/n vs ≤ c

Curved wave Refractive Phase velocityvp vs

Di i trajectory index n<1

yvp>c

Dispersive material

s

- operating frequency - operating bandwidth

s s – geometrical cross-section

s - scattering cross-section

50

Chen, et al., PRB, 76, 241104 (2007)

Page 31: d Ii ft Ri NtN egative Refractive Index in Opticsesperia.iesl.forth.gr/~kafesaki/Meta-School/pdfs/Shalaev2.pdf · Phys. Rev. Lett. (2005) 2 2.0 m 0.5 Nano-fishnet with round voids

Birck Nanotechnology Center

Wavelength Multiplexing CloakWavelength Multiplexing Cloak

1 32

Combination of techniques: Virtual inner boundary

Di i t lPhysical boundaries the cloaking device

Dispersion control Active medium or EIT?

Virtual inner boundary for 0z r

51

different wavelengths Kildishev, et al (NJP, 2008)

Page 32: d Ii ft Ri NtN egative Refractive Index in Opticsesperia.iesl.forth.gr/~kafesaki/Meta-School/pdfs/Shalaev2.pdf · Phys. Rev. Lett. (2005) 2 2.0 m 0.5 Nano-fishnet with round voids

Birck Nanotechnology Center

Broadband Optical Cloakingp gin Tapered Waveguides

I I Smolayninov V N Smolyaninova A V KildishevI.I. Smolayninov, V.N. Smolyaninova, A.V. Kildishevand V.M. Shalaev

(PRL , May 29, 2009)

Page 33: d Ii ft Ri NtN egative Refractive Index in Opticsesperia.iesl.forth.gr/~kafesaki/Meta-School/pdfs/Shalaev2.pdf · Phys. Rev. Lett. (2005) 2 2.0 m 0.5 Nano-fishnet with round voids

Birck Nanotechnology Center

Emulating Anisotropic Metamaterials i h T d W id

ss

~~ 2~

,

with Tapered Waveguides ,

A space between a spherical and a planar surface (a) mapped onto a planar anisotropic MM (b)onto a planar anisotropic MM (b)

(c) Distribution of radial (top),(c) st but o o ad a (top),azimuthal (middle), and axial components of ε = μ in equivalent planar MM. Dashed lines show same components in the ideal cloak. same components in the ideal cloak.

(d) Normalized profile of optimal and “plane-sphere” waveguides for a cloak with radius of b0 = 172 µm. cloak with radius of b0 172 µm.

Page 34: d Ii ft Ri NtN egative Refractive Index in Opticsesperia.iesl.forth.gr/~kafesaki/Meta-School/pdfs/Shalaev2.pdf · Phys. Rev. Lett. (2005) 2 2.0 m 0.5 Nano-fishnet with round voids

Birck Nanotechnology Center

Broadband Optical Cloaki T d W idin Tapered Waveguide

Page 35: d Ii ft Ri NtN egative Refractive Index in Opticsesperia.iesl.forth.gr/~kafesaki/Meta-School/pdfs/Shalaev2.pdf · Phys. Rev. Lett. (2005) 2 2.0 m 0.5 Nano-fishnet with round voids

Birck Nanotechnology Center

Fermat Principle and Waveguide Cloak

Cloaking Hamiltonian: (Narimanov, OE, 2008 )

p g

neff L = const

Dispersion law of a guided mode:

(Fermat)

guided mode

cphase = / k cgroup = d/ dk

=ck

neff = c / cphase = ck / ff

light line

near cutoff

k

neff = 0cgroup = 0

Page 36: d Ii ft Ri NtN egative Refractive Index in Opticsesperia.iesl.forth.gr/~kafesaki/Meta-School/pdfs/Shalaev2.pdf · Phys. Rev. Lett. (2005) 2 2.0 m 0.5 Nano-fishnet with round voids

Birck Nanotechnology Center

Fermat principle:

cgroup = d/ dk 0 light tries to avoid the “slow regionnear cutoffgroup /

near cutoffnear cutoff

light propagation in a waveguideg p p g gnear cutoff:

Page 37: d Ii ft Ri NtN egative Refractive Index in Opticsesperia.iesl.forth.gr/~kafesaki/Meta-School/pdfs/Shalaev2.pdf · Phys. Rev. Lett. (2005) 2 2.0 m 0.5 Nano-fishnet with round voids

Birck Nanotechnology Center

Broadband Cloaking in Tapered Waveguide g p g

Cloaked area

( ) ( )2 2 2

2 2 2 2( ) ( )c k m l d k k br r fw r p r r -é ù= + + = + -ê úë û( ) ( )r r fê úë û

Page 38: d Ii ft Ri NtN egative Refractive Index in Opticsesperia.iesl.forth.gr/~kafesaki/Meta-School/pdfs/Shalaev2.pdf · Phys. Rev. Lett. (2005) 2 2.0 m 0.5 Nano-fishnet with round voids

Birck Nanotechnology Center

Broadband Optical Cloakp

λ=515nm λ=488nm

( ) ( )2 2 2

2 ( )c k m l dw r p ré ù+ +( ) ( )2 2 2

( )

( )

c k m l d

k k b

r

r f

w r p r

r -

é ù= + + ê úë û= + -( )r f r

Page 39: d Ii ft Ri NtN egative Refractive Index in Opticsesperia.iesl.forth.gr/~kafesaki/Meta-School/pdfs/Shalaev2.pdf · Phys. Rev. Lett. (2005) 2 2.0 m 0.5 Nano-fishnet with round voids

Birck Nanotechnology Center

Engineering Meta-Space for Light:g g a pa o gvia Transformation Optics

ildi h ( ) i

Fermat: δ∫ndl = 0

Kildishev, VMS (OL, 2008); VMS, Science 322, 384 (2008)

(b)

n = √ε(r)μ(r)curving &

nano”crafting”Light concentrator

nano”crafting”optical space

Light concentrator Optical Black Hole (also, Schurig et al) (Narimanov, Kildishev)

Planar hyperlensMagnifies; no loss problem

Page 40: d Ii ft Ri NtN egative Refractive Index in Opticsesperia.iesl.forth.gr/~kafesaki/Meta-School/pdfs/Shalaev2.pdf · Phys. Rev. Lett. (2005) 2 2.0 m 0.5 Nano-fishnet with round voids

Birck Nanotechnology Center

Highlights of Purdue “Meta-Research”Highlights of Purdue Meta Research

Purdue Photonic MetamaterialsPurdue Photonic Metamaterials(a) 1-st optical negative-index MM (1.5 µm; 2005) (b) Negative index MM at shortest λ (~580nm; 2009)(c) 1-st magnetic MM across entire visible (2007)

H

Transformation Optics with MMs:Flat hyperlens, concentrator, and cloak

E

500 nm

Page 41: d Ii ft Ri NtN egative Refractive Index in Opticsesperia.iesl.forth.gr/~kafesaki/Meta-School/pdfs/Shalaev2.pdf · Phys. Rev. Lett. (2005) 2 2.0 m 0.5 Nano-fishnet with round voids

Birck Nanotechnology Center

Cast of Characters:

Page 42: d Ii ft Ri NtN egative Refractive Index in Opticsesperia.iesl.forth.gr/~kafesaki/Meta-School/pdfs/Shalaev2.pdf · Phys. Rev. Lett. (2005) 2 2.0 m 0.5 Nano-fishnet with round voids

Birck Nanotechnology Center

Recently published