d esign and d emonstration of the m ars o rganic m olecule a nalyzer (moma) on the e xo m ars 2018 r...

28
DESIGN AND DEMONSTRATION OF THE MARS ORGANIC MOLECULE ANALYZER (MOMA) ON THE EXOMARS 2018 ROVER Xiang Li 4 , Ricardo Arevalo Jr. 1 , Will Brinckerhoff 1 , Paul Mahaffy 1 , Friso van Amerom 2 ; Ryan Danell 3 ; Veronica Pinnick 4 ,, Lars Hovmand 5 , Stephanie Getty 1 ; Fred Goesmann 6 ; Harald Steininger 6 ; and, the MOMA Team 1-6 1 NASA GSFC, Greenbelt, MD; 2 Mini-Mass Consulting, Inc., Hyattsville, MD; 3 Danell Consulting, Inc., Winterville, NC; 4 University of Maryland, Baltimore County, Greenbelt, MD; 5 Linear Labs LLC, Washington, DC; 6 MPS, Lindau, Germany

Upload: virgil-johns

Post on 24-Dec-2015

216 views

Category:

Documents


1 download

TRANSCRIPT

DESIGN AND DEMONSTRATION OF THE MARS ORGANIC MOLECULE ANALYZER

(MOMA) ON THE EXOMARS 2018 ROVERXiang Li4 , Ricardo Arevalo Jr.1, Will Brinckerhoff1,

Paul Mahaffy1, Friso van Amerom2; Ryan Danell3; Veronica Pinnick4,, Lars Hovmand5, Stephanie

Getty1; Fred Goesmann6; Harald Steininger6; and, the MOMA Team1-6

1NASA GSFC, Greenbelt, MD; 2Mini-Mass Consulting, Inc., Hyattsville, MD; 3Danell Consulting, Inc., Winterville, NC; 4University

of Maryland, Baltimore County, Greenbelt, MD; 5Linear Labs LLC, Washington, DC; 6MPS, Lindau, Germany

Planetary Exploration: An Historical Perspective• Since the Pioneer Venus Program (1970’s), quadrupole

mass spectrometers (QMS) have served as our primary means to explore the inner and outer reaches of the solar system

2

Pioneer Venus ONMS Galileo Probe MSCassini INMSHuygens GCMS

LADEE NMSMAVEN NGIMSMSL SAM

Mars Phoenix TEGA

Giotto IMSDelivered by and/or in collaboration with NASA GSFC

Mass Spectrometers

3

An analytical chemistry technique that helps identify the amount and type of chemicals present in a sample by measuring the mass-to-charge ratio and abundance of gas-phase ions.

• Compound Introduction

Gas chromatography(GC), Liquid chromatography(LC)……

• Ion Source

Electron ionization (EI), Laser desorption(LD), Inductively coupled plasma, Chemical ionization (CI)……

• Mass analyzer• Data collection Spiraltron, Microchannel plate, Faraday

cups……

• Data analysis

Mass Analyzer

• Sector Instrument

• Time-of-Flight

• Quadrupole mass filter

4

Along came the ion trap…• Ion trap mass analyzers offer advanced

analytical capabilities, plus mechanical packaging benefits, for spaceflight applications and planetary exploration, including (but not limited to):

5

Modified from Stafford (2002)• Ion storage & mass filtering• Compactness (small footprint)• Structural information (MSn)• Selective ion isolation/enrichment • Operation at elevated pressures io

nsou

rce.

com

• BONUS: Ion traps have already been qualified in space– MARINE trap measured ppb-level gases for air quality on the ISS (VCAM)– Ptolemy on the Philae lander set to characterize comet 67P/C-G composition

Mars Exploration in This Decade

• Future Planni

ng

MOMA Investigation Science Goals1. Detect and characterize organic molecular structures

• Measure and identify/disambiguate potential organic signatures

2. Analyze a range of volatile and nonvolatile compounds• Search for low-mass organics/evolved gases and high mass more refractory phases

3. Derive the inorganic geochemical context of organics • Provide supporting measurements of mineralogical and bulk chemical composition

Mode of Operation Pyr/GCMS LDMS

Flight HeritageLinked to Viking, Phoenix, and SAM/MSL science NEW!!

Targeted Analytes(semi-)volatile organics & thermally evolved gases

nonvolatile organics & inorganic species

Mass Range 50 – 500 Daltons 50 – 1000+ Daltons

Sampling Processing & Ionization Source

ramp heating rock powder & ionization by e- beam

Direct laser desorption/ ionization of crushed rock10 100 1000

0

20

40

60

80

100

120

140

160

Molecular Weight (Da)

Enth

alpy

of V

apor

izati

on D

Hv

(kJ m

ol-1

)

Lase

r Des

orpt

ion

kerogen

macromolecular carbon

atmosphere

Pyr

olys

isDer

ivat

izat

ion

MOMA Mode Optimal Range

50

7

The Next Spaceflight Ion Trap: MOMAMission: ExoMars 2016/2018Destination: Mars orbit/surfaceRover Launch: May, 2018Rover Landing: Feb., 20192018 Duration: 218 sols surface ops

ExoMars Program Objective:• Establish if life ever existed on Mars

ExoMars 2018 Rover Science Goals:1. Search for signs of past and

present life in the Mars (sub)surface

2. Investigate the water/geochemical environment versus depth (notional concept)

“Mother MOMA” Hardware Contributions

8

GC MEB LPU RFWRP

Laser

MSSEB

Tapping

Ovens

ESA’s ExoMars rover will carry onboard the next space-borne ITMS: MOMA

The MOMA-MS Engineering Test Unit (ETU)

9

ETU Linear Ion Trap

266 nmpulsedUV laser

Wide-rangeturbo pump

Multipin &HV headers

MS housing

RF supply

µPiraniheader

EI Source

Rods

GC InletHV Shield

The MOMA-MS Engineering Test Unit (ETU)

10

WRPHousing

Micropirani gauge

(bottom-side)Aperture Valve

316L DET shield(HV field control)

316L High-voltagefield bushing

Channel ElectronMultiplier (CEM)

Ion trap endplate(TiN coated)

Dual e-gun EI source

Dynode HVfeedthrough

Alumina mount/electrical isolator

Flight Model (FM) of the MOMA MS Ion Trap

11

MOMA-MSSource

*Identical Dual E-Guns**Modified Ion Optics*

HERITAGE DESIGN

SAMSource

1 cm 1 cm

Redundantelectron gun

assemblies

Key Technology: Electron Ionization Source

12

• Heritage-derived closed source, modified from the Sample Analysis at Mars (SAM) design (operating on Mars now…)

• Fully redundant electron guns employ 0.003” diameter W:Re filaments, producing 10 – 100 µA emission

Valve “open”Valve in“closed” position

Ion guide

Check ball

Pull-type solenoid

Hall sensorThermal sink

Ball “seat”

Magnetic windings

Recoil spring Sample sideion guide

Key Technology: Aperture Valve

13

• Fast actuating (<50 ms open/close) check-ball aperture valve delivers robust performance during LDMS particulate generation

Leak Rate:<1E-6 cc/sec He(at atmosphere)

14

Key Technology: Electron Multiplier Detectors

Ion opticalaperture

Discretedynode

Shield

Pulse-countingcoax connector anode

Conical cathode(-1.8 kV to -3.0 kV)

HV bushing

1 cm

Spira

ltron

(6 c

hann

el)

Prea

mpl

ifier

Custom Photonis Spiraltron 4219 CEM

Ground connection

Faraday Cage Shield*Field control bushing

Low-VoltageBaseplate

AluminaMount

Contact Sleeve*Electrical continuity CEM Detector Weld Flange (Flight Model)

Why a 2D Ion Trap versus a 3D?• An ion trap was required for the MOMA Investigation in order

to enable LDMS at Mars ambient pressures (4 – 8 Torr, primarily CO2)

• Compared to a 3D trap with a similar physical volume, a 2D linear ion trap (LIT) offers the following advantages:– Increased ion storage volume, and by extension reduced space-charge

effects – Symmetrical ion injection pathways, supporting multiple ion sources– Higher trapping efficiency (increased sensitivity)– Redundant detection subassemblies– Link to heritage QMS design/assembly (in the case of MOMA)

• Hyperbolic rod design, alignment tolerances, electrical connections, etc.

15

SAM QMS (6” rods)

Cassini INMS (4”)Huygens GCMSLADEE NMSMAVEN INMS

MOMA(1” rods)

2.8

cm

MOMA LIT rod assembly

2.7

cm

MAVEN switching lens

Modes of Operation (and Sequence of Events)

16

Linear Ion Trap (LIT)

Effluent from the gas chromatograph

Pyr/GC-MS ion introduction

~10 cm (a very small mass spectrometer!)

Mars sample

Aperture valve (closes off tube

after ions captured)

Ions drawn into capillary ion guide tube

LDMS ion introduction

Detectors

2. Laser Desorption/ Ionization (LDI) source

1. Electron Ionization (EI) source

Prototype GC, Tapping Station and Pyro Oven

coupled to MS breadboard:

1. Interface testing

2. Functional demo

3. Prelim testing of S/W

17

Pyr/GCMS: Volatile Organics Detection

CALIBRATION: 5 ppm (w/w) Perfluorotributylamine (PFTBA) in 3 mTorr He

0.46 Da

0.41 Da

0.58 Da

0.46 Da

CF3+

C5F10N+

C9F20N+

C3F5+

MS

SIG

NAL

GC

TCD

Hexane

Benzene

Selected Ion Chromatograms from MSGC + MS CouplingTotal Ion Chromatogram

butane

pentane

hexane

benzene

LDMS: Nonvolatile Organic/Inorganic Detection

18

Matrix ion clusters

FWHM1.46 Da

1 pmol/mm2 Angiotensin II7 Torr CO2 Mars Pressure

• Functional/Performance Requirements:– ≤1 pmol/mm2 of analyte (Angiotensin II) with

SNR ≥ 10– ≤2 Da mass resolution across 500 – 1000 Da

mass range[M+H]+

m/z = 1047

LDMS: Nonvolatile Organic/Inorganic Detection

Cs(CsI)n+

n=0

2

3 4

5

6

7

89

10

1

19

m. w. = 151

LDMS: Nonvolatile Organic-Neat

Adenine[A+H]+

[A2+H]+

[A3+H]+

Guanine

[G+H]+

[G2+H]+

[G3+H]+

20

LDMS: Nonvolatile Organics in Mars Analogs

Brucite (Mg(OH)2)+ 1%w Adenine

[A+H]+

[A2+H]+

[A3+H]+

Forsterite(Mg2SiO4)+ 1%w Adenine

[A+H]+

[A2+H]+

[A3+H]+

21

Rela

tive

Inte

nsity

Rela

tive

Inte

nsity

LDMS: Nonvolatile Organics in Mars Analogs

MgCO3 (reagent)+ 1 wt.% Ca(ClO4)2

+ 10 ppm (w/w) coronene

Coronene (PAH)MW = 300.4 Da

BCR-2 (basalt)+ 1 wt.% Ca(ClO4)2

+ 10 ppm (w/w) coronene

SWy-2 (montmorillonite)+ 1 wt.% Ca(ClO4)2

+ 10 ppm (w/w) coronene

PLUS,

PLUS,

PLUS,

Ca+

Ca+

Ca+

22

Magnesite(secondary

mineral)

Basalt(primary

rock)

Smectite clay

100 200 300 400 500 600 700Mass-to-charge ratio (m/z) in Daltons

Rela

tive

Inte

nsity

ASTROBIOLOGY, Volume 15, Number 2,104-110, 2015. DOI: 10.1089/ast.2014.1203

Special Tools: SWIFT Isolation/Enrichment

23

Linear Ion Trap (LIT)

Mars sample

Aperture valve (closes off tube

after ions captured)

Ions drawn into capillary ion guide tube

LDMS ion introduction

Laser Desorption/ Ionization (LDI) source

Apply SWIFT waveform

~10 cm (a very small mass spectrometer!)

Special Tools: SWIFT Isolation/Enrichment

24

1 laser shotTIC = 1396

NAu-2 (nontronite) + 10 ppm (w/w) coronene

Eject

1 laser shotSWIFT during trapping

TIC = 386

2 laser shotsSWIFT during trapping

TIC = 1457

Special Tools: SWIFT Isolation/Enrichment

Full SpectrumSWIFT spectrum

25

SWIFT ion enrichment and MS/MS analysis• MOMA’s SWIFT and MSn capabilities can

be employed for ion enhancement and deriving structural information

26

10 pmol/mm2 Angiotensin IIFull Mass Scan

[M+H]+

Isolation of [M+H]+ at 1047 Da via SWIFT [M+H]+

y7

SNR = 40

b7+H2O

b6b6-NH3

b5y3 b4b3-NH3

Fragmentation of [M+H]+

Summary/Conclusions• Ion traps have only begun to be exploited for spaceflight

applications• MOMA (via ExoMars 2018) is charged with searching for extinct

and/or extant life on Mars through the chemical characterization of near-surface samples (from ≤2 meters depth)– Pyr/GCMS to measure (semi-)volatile organics and evolved gases

• Direct link to Huygens/Phoenix/MSL science, operations and data products

– LDMS at Mars ambient pressures to detect nonvolatile organics and inorganic mineralogical signatures • Innovative technique for searching for organics even in the presence of

perchlorate

– SWIFT and MSn capabilities enable enhanced performance and structural information to be derived from samples analyzed in situ

• The MOMA instrument architecture is already being leveraged:– LITMS (GSFC): Anion detection, high-T pyrolysis and LDMS mapping– AROMA (GSFC): High mass resolution for molecular disambiguation

2706 March 2015 It’s a Trap! (R. Arevalo Jr.)

Questions? Comments?

Contact InformationXiang [email protected]

28