cypress sb3 20100826 main - texas

166
CYPRESS FLOWS PROJECT ENVIRONMENTAL FLOW REGIME AND ANALYSIS RECOMMENDATION REPORT AUGUST, 2010

Upload: others

Post on 12-Nov-2021

2 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: Cypress SB3 20100826 Main - Texas

 

 

CYPRESS FLOWS PROJECT  

 

 

 

 

 

 

ENVIRONMENTAL FLOW 

REGIME AND ANALYSIS 

RECOMMENDATION REPORT  

 

 

 

 

AUGUST, 2010 

 

   

Page 2: Cypress SB3 20100826 Main - Texas

 

 

 

Page 3: Cypress SB3 20100826 Main - Texas

 

 i

ENVIRONMENTAL FLOWS REGIME AND ANALYSIS RECOMMENDATION REPORT 

TABLE OF CONTENTS 1  Introduction ........................................................................................................................................................... 1 

1.1  Cypress Flow Project and SB 3 ..................................................................................................................... 1 

1.2  Sound Ecological Environment ..................................................................................................................... 6 

1.3  Geographic Scope ........................................................................................................................................ 6 

2  Development of Scientifically Based Environmental Flow Regime and Analysis .................................................. 9 

2.1  Development of Building Blocks (Environmental Flow Regimes) ................................................................ 9 

2.1.1  Literature Review and Summary Report (Reasonably Available Science) ............................................... 9 2.1.2  Flows Workshops and Building Blocks (Preliminary Flow Regime Matrices) ......................................... 27 

2.2  Environmental Flow Analysis (Overlays) .................................................................................................... 33 

2.2.1  Biology ................................................................................................................................................... 34 2.2.2  Geomorphology ..................................................................................................................................... 49 2.2.3  Water Quality ........................................................................................................................................ 50 2.2.4  Connectivity ........................................................................................................................................... 52 

2.3  Environmental Flow Regime Recommendation ......................................................................................... 56 

3  Conclusions .......................................................................................................................................................... 59 

References ................................................................................................................................................................... 60 

List of Available Appendices ........................................................................................................................................ 63 

 

TABLES Table 1  Cypress Basin watershed areas. ....................................................................................................................... 9 

Table 2 Geomorphic surfaces in the Big Cypress drainage basin (USACOE, 1994). ..................................................... 16 

Table 3  Stream power of a 2‐year recurrence interval flow before and after dam construction. ............................. 18 

Table 4  Critical shear stresses required to entrain sediments ranging from medium sand to clay. .......................... 19 

Table 5  Average depths required to have sufficient shear stresses to entrain sediments ranging from medium 

sand to clay. ........................................................................................................................................................... 20 

Table 6  Required discharges to entrain sediments ranging from medium sand to clay. ........................................... 21 

Table 7  Impairments in the Cypress Basin. ................................................................................................................. 23 

Table 8  Indicator species with flow dependencies. .................................................................................................... 35 

Table 9  Habitat guilds for Cypress and Twelve‐mile Creek fishes, based on preferred velocities (horizontal axis 

and spawning substrate (vertical axis). Evaluation species are indicated in red bold. (USACE 1994). .................. 36 

Table 10  Trends in reproductive guilds in terms of relative abundances.  (Pelagophils: Obligate riverine species, 

broadcast‐pawn buoyant eggs within current, Lithophils:  Includes most Centrarchidae, spawn elliptical egg 

envelopes over rock or gravel nests.) .................................................................................................................... 38 

Table 11  Segment, reach, and transect‐scale geomorphic and stream habitat measures. ........................................ 41 

Table 12   Summary of biotic responses to altered flow regimes  in relation to flow‐induced changes  in habitat 

(principle 1). (Bunn and Arthington 2002). ............................................................................................................ 43 

Table 13  Summary of life history responses to altered flow regimes (principle 2). (Bunn and Arthington 2002). .... 43 

Table 14   Summary of biotic  responses  to  loss of  longitudinal or  lateral connectivity  (principle 3).  (Bunn and 

Arthington 2002). ................................................................................................................................................... 44 

Page 4: Cypress SB3 20100826 Main - Texas

 

 ii

Table 15  Summary of biotic responses to altered flow regimes in relation to invasion and success of exotic and 

introduced species (principle 4) (Bunn and Arthington 2002). .............................................................................. 44 

Table 16  Percent of maximum habitat BG 02 produced by building blocks recommended flow. ............................. 48 

 

FIGURES Figure 1  Sustainable Rivers Project process diagram. .................................................................................................. 2 

Figure 2  TCEQ segments in the Cypress Basin in Texas. ............................................................................................... 8 

Figure 3  Flow data for USGS gage 07346000 Big Cypress Creek near Jefferson (gage was not active from 1960‐

1979). ..................................................................................................................................................................... 10 

Figure 4  Flow data for USGS gage 07346070 Little Cypress Creek near Jefferson. .................................................... 11 

Figure 5  Flow data for USGS gage 07346045 Black Cypress Creek at Jefferson. ........................................................ 11 

Figure 6  1‐day maximum flows for USGS gage 07346000 Big Cypress Creek near Jefferson. .................................... 12 

Figure 7  1‐day maximum flows for USGS gage 07346070 Little Cypress Creek near Jefferson. ................................. 12 

Figure 8  1‐day maximum flows for USGS gage 07346045 Black Cypress Creek at Jefferson. .................................... 13 

Figure 9  Flow recurrence graph for Big Cypress Creek near Jefferson for pre and post‐dam years. ......................... 13 

Figure 10  Flow recurrence for Black Cypress Creek and Little Cypress Creek at Jefferson. ....................................... 14 

Figure 11  Date of maximum flow for USGS gage 07346000 Big Cypress Creek near Jefferson. ................................ 14 

Figure 12  7‐day minimum flows for USGS gage 07346000 Big Cypress Creek near Jefferson ................................... 15 

Figure 13  Date of minimum flow for USGS gage 07346000 Big Cypress Creek near Jefferson. ................................. 15 

Figure 14   Generalized block diagram of Big Cypress Drainage Basin  showing geomorphic  features  (USACOE, 

1994). ..................................................................................................................................................................... 17 

Figure 15  Depth‐discharge relationship at cross‐section downstream of Ferrells Bridge Dam. ................................ 20 

Figure 16  Initial building blocks for Big Cypress Creek, May 2005. ............................................................................ 29 

Figure 17  Initial building blocks for Caddo Lake, May 2005. ...................................................................................... 31 

Figure 18  Initial building blocks for Little Cypress Creek, October 2006. ................................................................... 32 

Figure 19  Initial building blocks for Black Cypress Creek, October 2006. ................................................................... 33 

Figure 20  Chain pickerel (backwater‐dependent species) life cycle relation to seasonal flow (portrayed relative 

to pre‐1957 median flows in Big Cypress Creek) (Winemiller and others 2005). .................................................. 35 

Figure 21  Habitat suitability criteria. (USACE 1994). .................................................................................................. 37 

Figure 22  Map of USGS study sites. ............................................................................................................................ 40 

Figure 23  Map of previous Instream flow study sites. ................................................................................................ 41 

Figure 24  Comparison of water surface elevations produced by base dry flows to instream structure (snags) at 

BC03. ...................................................................................................................................................................... 45 

Figure 25  Comparison of water surface elevations produced by base wet flows to instream structure (Cypress 

knees) at BC03. ...................................................................................................................................................... 46 

Figure 26  Weighted usable area versus discharge at BG 02. ...................................................................................... 47 

Figure 27  Bottomland Hardwood and Cypress forests associated with Cypress Creeks. ........................................... 52 

Figure 28  Pressure Transducers installed to measure water surface elevations. ...................................................... 53 

Figure 29  Flow rate measured at nearby gage during experimental releases from Lake O' the Pines. ..................... 54 

Figure 30  Longitudinal profile of water surface elevation in Big Cypress Creek. ....................................................... 55 

Figure 31  Area inundated at 3,000 cfs release. .......................................................................................................... 56 

Figure 32  Big Cypress Creek Flow Regime Recommendation. .................................................................................... 57 

 

Page 5: Cypress SB3 20100826 Main - Texas

 

 1

1 INTRODUCTION This report is the culmination of an effort begun in 2004 to develop recommendations for environmental flows in 

the Cypress River Basin and Caddo Lake based on the best available science. 

The Cypress Flows Project (CFP) was originally initiated as part of the Sustainable Rivers Project (SRP) partnership 

developed by the Nature Conservancy  (TNC) and the U.S. Army Corps of Engineers (USACE). The purpose of this 

initiative is to restore and preserve rivers across the country (Richter and others 2006).  The CFP was expanded in 

the initial CFP orientation meeting in December 2004 to reflect the actions and proposals of the Texas Legislature 

to  evaluate  environmental  flow  needs  in  all  river  basins  in  Texas.    It was  further  expanded  in  2006 with  its 

integration with  a new Watershed  Protection  Planning process  that  focused on water quality,  aquatic  invasive 

species  and  related  issues  in  the  Cypress  basin.    The  CFP  has  benefited  from  the  participation  of  dozens  of 

scientists and stakeholders. 

With  the  continued  assistance  from  the USACE, U.S. Geological  Survey  (USGS),  the Northeast  Texas Municipal 

Water District and many others, the scientists and stakeholders who are participating as the "working group" for 

the Project are proceeding with implementation using an adaptive management approach. 

The documents prepared for and summarizing the results of the major meetings and other work on this project are 

available on the website of the Caddo Lake Institute (www.caddolakeinstitute.us). This report includes a number of 

appendices some of which contain information that might be considered beyond the scope of what might normally 

be expected as part of the development of a purely science based flow regime as defined by Senate Bill 3 (SB 3). 

1.1 CYPRESS FLOW PROJECT AND SB 3 

In  2007,  the  80th  Regular  Session  of  the  Texas  Legislature  passed  SB  3,  a  basin‐by‐basin  process  to  develop 

environmental  flow recommendations  throughout  the state. At  this  time, and even earlier  in anticipation of the 

passage of SB 3,  the CFP began adopting  the direction and guidance developed  for SB 3 and  incorporating  the 

legislation's central elements. Throughout these various  initiatives, the CFP has striven for consistency with SB 3 

and respectfully submits this report as the culmination of a voluntary consensus‐building process that satisfies the 

SB 3 legislative mandate. 

The  Texas  Legislature  enacted  SB  3  to  create  a process  for  reserving water  for  environmental  flows.    The  law 

provides  a  state  policy  for  protecting  environmental  flows,  including  a  process  for  developing  flow 

recommendations  for  each  river  basin  and  a  framework  for  final  decisions  by  the  Texas  Commission  on 

Environmental Quality (TCEQ) for a set aside of unappropriated water. The CFP began prior to the passage of SB 3, 

and therefore, was not executed in exactly the same way as the process was defined in SB 3; however, the CFP is 

consistent with the goals and outcomes of SB 3. 

While the Cypress basin was not  included  in the schedule of basins to be addressed by SB 3, the  law anticipates 

that some basins may develop their own processes. It provides: 

 “...in a river basin and bay system for which the [state environmental flows] advisory group has not  yet  established  a  schedule  for  the  development  of  environmental  flow  regime recommendations  and  the  adoption  of  environmental  flow  standards,  an  effort  to  develop information  on  environmental  flow  needs  and ways  in which  those  needs  can  be met  by  a voluntary consensus‐building process.” [§Sec. 11.02362 (e)] 

Page 6: Cypress SB3 20100826 Main - Texas

 

 2

Participants  in the CFP asked that this type of  language be added to SB 3 to open the door  for the CFP work to 

move  forward  to  obtain  a  set  aside  if  the  CFP  process was  accepted  as  the  functional  equivalent  of  the  SB  3 

process.    When  the  language  was  added,  scientists  and  stakeholders  proceeded  with  the  CFP  under  the 

assumption that SB 3 provided for this type of alternative approach and that the CFP is using a process and seeking 

results consistent with SB 3.   

Representatives  from TCEQ,  the Texas Water Development Board  (TWDB) and Texas Parks and Wildlife  (TPWD) 

attended  all  of  the  flows  meetings.  Throughout  the  process,  these  agencies  were  consulted  and  a  very 

conscientious effort was made to ensure that the work of the CFP would be consistent with expectations of the SB 

3 process and goals. 

The work of the CFP was also presented to the Texas Environmental Flows Scientific Advisory Committee (SAC) on 

October 1, 2008, prior to the  last stakeholder‐scientist workshop of December 2008. Some work of the CFP was 

also presented to the SAC on March 4, 2009.  These presentations were mainly intended to advise SAC members 

and others of the work of  the CFP, but  they were also efforts  to seek  input  from  the SAC members and others.  

Since then, every effort has been made to provide the type of scientific analysis that the SAC recommended for 

other basins. 

Thus, the work of the CFP by the stakeholders and scientists of the working group was always focused on the same 

basic goals and process as SB 3.   The similarities and differences between the two approaches will be discussed 

briefly.    The  SAC has outlined  the  technical  activities  to be performed by  the Bay Basin  Expert  Science  Teams 

(BBESTs) (SAC 2010).   These steps are closely mirrored by the process created for the SRP and used to guide the 

work of the CFP. 

 

Figure 1  Sustainable Rivers Project process diagram. 

The process that was developed for the CFP began before anyone knew what process an environmental flows bill 

would provide. There was, for example, no formal process available for appointing stakeholders to the CFP.  There 

was  no  process  for  determining which  scientists  or  stakeholder would  participate.    Instead,  the  process was 

opened to all who wanted to participate.  Recruiting the scientists needed for the work was a three‐step process.  

The first step was to identify institutions or individuals with a history of working in the watershed, including those 

who have studied  the ecology of  the system and  those who have conducted studies  related  to proposed water 

Page 7: Cypress SB3 20100826 Main - Texas

 

 3

development projects.  Next, other institutions that were likely to have an interest in this process were identified. 

This included local, state and federal agencies, university researchers and private consultants.   Finally, the experts 

identified were then asked to identify others who might be needed or otherwise should be invited to participate. 

The Cypress Basin has attracted scientific studies  for many years. Given  that Caddo Lake  is Texas’ only naturally 

formed  large  lake, there have been strong  interests  in the Cypress Basin. For example, an expert at the National 

Wetland Resource Center  in Lafayette, Louisiana had worked on regeneration of cypress trees  in the basin  for a 

number of years.   There were also a number of  studies associated with  the water projects  in  the basin. These 

include studies  for existing projects such as Lake O’  the Pines and Bob Sandlin Lake and projects  that were not 

completed, such as  the proposal  for a  reservoir on Little Cypress Creek and one  for a barge canal across Caddo 

Lake.  A few of these studies included instream flow studies.   The studies, and importantly, many of the scientists 

who participated in them were available to assist with the Project. 

Stakeholders were identified in a similar way.  The process began with those known to be interested, and with the 

obvious governmental and non‐governmental organizations working  in the watershed.   That was followed up by 

requests that stakeholders help  identify other potential stakeholder‐participants.   A number of stakeholders not 

only played  their  role of helping  set goals  for  the process  to add practical  limits  to  the  flow  regimes,  they also 

brought their practical experience and observations to help with the technical evaluations and development of the 

flow regimes.  

Anyone  was  allowed  to  participate  in  the  meetings,  as  they  were  open  and  all  materials  prepared  for  or 

summarizing  the  work  at  the  meetings  were  posted  on  the  website  for  review  and  comments.    In  all, 

approximately  200  individuals  participated  in  one way  or  another.  The  agencies  that  participated  are  listed  in 

Appendix A. 

In Step 1 of the SRP process (Figure 1), experts in riverine, wetland and lake science were invited to participate in a 

3‐day orientation meeting to discuss using the SRP process to develop environmental flow recommendations for 

the streams in the Cypress Basin and Caddo Lake and associated wetlands. In December 2004, 60‐70 scientists and 

stakeholders,  including  representatives  from  state  and  federal  agencies,  university  scientists,  regional  water 

suppliers, conservation groups and local stakeholders, attended the initial orientation meeting for the CFP. While 

SRP encourages stakeholder participation and sharing local expertise and concerns throughout the process, it was 

repeatedly  stressed  that  the  process  is  firmly  rooted  in  the  development  of  the  science  to  meet  technical 

challenges of developing building blocks for flows based on ecological needs without consideration of the practical 

limitations or other needs for the water.  Therefore, while limitations on implementation, such as flooding urban 

areas were  certainly  raised,  these were  set  aside  in  the  process  until  the  science‐based  recommendations  for 

environmental flow regimes were developed.  The building blocks were not constrained nor did they consider such 

physical or legal limitations or broader goals of stakeholders.  Similar to the legislation in SB3, which drew a sharp 

distinction between the development of the science to determine the  flow needs and a recognition that this be 

done "without regard to the need for the water for other uses" and the consideration of "other factors, including 

the present and  future needs  for water  for other uses related  to water supply planning," participants agreed  to 

table,  for consideration after  the development of scientifically determined  flow  from an ecosystem perspective, 

issues related to implementation. The existence of dams creating Caddo Lake and Lake O’ the Pines were taken as 

basic  limitations, but the  limitations on current operations or releases were not.   The other goals and  limitations 

were later added to the discussion for the development of the recommended environmental flow standards after 

the science‐based regimes had been developed. 

Page 8: Cypress SB3 20100826 Main - Texas

 

 4

The preliminary orientation meeting  included  an overview of  the  SRP process,  including a  case  study  from  the 

Savannah River (Richter and others, 2006). Using that study as a basic framework, it was emphasized early in the 

orientation meeting  that  the  purpose  of  the  process  is  to  develop  flow  recommendations  for maintaining  or 

restoring the health of the whole river–floodplain–lake system. Specifically, this implied the development of a flow 

regime "expressed as a range of magnitudes for each flow component at specific locations, at specific times during 

the year, and with a specified frequency of occurrence among years." The objectives to achieve these goals were: 

1. To  engage  interdisciplinary  scientists  in  a  collaborative  process  for  developing  environmental  flow 

recommendations. 

2. To  facilitate  interaction among a variety of agencies, academic  institutions, and organizations  to gain a 

shared understanding of the water needs of the basin. 

3. To identify critical linkages between various components of the flow regime (low flows, high pulse flows, 

and over‐bank flows), lake level fluctuations, and plant and animal species. 

4. To  develop  initial  environmental  flow  recommendations  to  protect  the  health  of  Caddo  Lake  and  its 

tributaries 

5. To  identify  research  and monitoring  activities  necessary  to  fill  information  gaps  and  address  critical 

uncertainties in flow‐ecology relationships. 

6. To  provide  scientifically  credible  information  about  environmental  flow  needs  to water managers  and 

thereby promote the adoption of "ecologically sustainable water management.” 

7. To demonstrate a process  for developing environmental  flow  recommendations  that can be applied  in 

other aquatic ecosystems. 

Participants  worked  in  breakout  groups  and  discussions  focused  on  ensuring  common  understanding  of  the 

process that was being proposed, including the level of commitment required to effectively participate, a process 

for reaching consensus, and recognition of some of the  implementation  issues that would need to be addressed 

after the preliminary flow recommendations were developed. Participants reached consensus on adopting the SRP 

process to develop environmental flows for Caddo Lake and Big Cypress Creek. Action items included identification 

of personnel and resources (data and analyses) needed to complete the objectives of the study and identification 

of components to be included in the literature review and summary report. 

Steps 2 and 3 are analogous to key aspects of the SB 3 process of developing preliminary flow matrices and the 

initial application of overlays  from  the various environmental  flow disciplines  to produce an environmental  flow 

analysis  and ultimately  feed back  into  a  refinement of  the preliminary matrices based on  reasonably  available 

science.  Steps  4  and  5  are  an  adaptive management  process  that  is  primarily  analogous  to  the workplan  and 

adaptive management provisions of SB 3.  However, because this learning process has already been initiated below 

LOP, the CFP has also been able to utilize this process to do  further overlay analysis and  further refine the  flow 

matrices.  The technical components of these steps are described in detail in the remainder of this report. 

It  is worth noting and  clarifying  some differences  in  the  terminology used by  the SRP and SB 3 processes.   For 

example, SB 3 defines “environmental flow regimes” in terms similar to what the SRP refers to as “building blocks."  

The  terms are not however  identical.   The scientists working on the CFP developed building blocks as  the  initial 

determination of the numerical flow regimes, but they also recommended narrative conditions to convert some of 

the building blocks to the final flow regimes. 

For  SB  3,  SAC  guidance has  adopted  the  term  "overlay"  for  the  application of  expertise  and  analysis  from  the 

multiple disciplines related to riverine science.   SB 3 overlays are most synonymous with the work that goes  into 

producing the Literature Survey and Summary Report (Step 2) and applying this information in the development of 

Page 9: Cypress SB3 20100826 Main - Texas

 

 5

preliminary flow matrices.  Time and resources have allowed the working group to go beyond what is described as 

reasonably  available  data  for  SB  3  overlays,  to  collect  data  and  perform  analysis  that would  not  typically  be 

possible under the time and funding constraints on BBESTs for SB 3.  This work (Steps 4 and 5) primarily includes 

components of what might be  included  as  elements of  a  SB 3 work plan but  also  includes part of  the overlay 

analysis.   This work  is  therefore  summarized  in  the  section of  this  report  that addresses overlay  tasks  that are 

undertaken by  the BBEST  (Section 2.2). Differences  in  terminology are unfortunate,  in  some cases unavoidable.  

The working  group  has moved  to  adopting  the  conventions  of  SB  3  and will  use  that  terminology whenever 

possible. 

While the SRP and SB 3 processes produce the same outcomes or “functional equivalents" there are several other 

differences  that  are  also worth  noting. One  difference  is  that  the  CFP  included  scientists  and  stakeholders  in 

combined meetings, while SB 3 provides for separate meetings.   One reason for separating these groups  in SB 3 

may have been to help protect the integrity of the science. Protecting the ability of the participating scientists to 

develop flow regimes based on science is also central to the SRP process.  It was strictly adhered to throughout the 

development of the environmental flow regime and analysis. It should also be noted that, the CFP did benefit from 

the input of many of the stakeholders who brought with them real world experience, observations and information 

on conditions and functioning of the rivers, streams and lakes that may not have otherwise been available to the 

scientists.  The stakeholders also received the benefit of getting a better understanding of the inputs, debates and 

results of the science process.   This  interaction  is consistent with the BBEST‐BBASC  interactions suggested by the 

SAC Lessons Learned document (SAC 2010). 

This strong science‐based approach with stakeholder participation was explained by Brian Richter of the TNC when 

he led the CFP orientation meeting in 2004.  He said, in essence, what he had written the year before:  

"Initial  estimates  of  ecosystem  flow  requirements  should  be  defined  without  regard  to  the 

perceived  feasibility of  attaining  them  through near‐term  changes  in water management. We 

reiterate our assertion  that ecological  sustainability  should be presumed  to be attainable over 

the long run, until conclusive evidence suggests otherwise. We have been involved in numerous 

water management conflicts in which initial perceptions of unfeasibility were overcome through 

creativity  and  deeper  analysis,  or  a  change  in  the  socioeconomic  or  political  landscapes  that 

made possible what had seemed impossible a decade or two earlier. 

Inviting  water  managers  and  other  interested  parties  to  observe  the  process  of  defining 

ecosystem flow requirements can have important benefits.  Water managers can help scientists 

understand  how  to  prescribe  flow  targets  in  a  manner  that  can  be  implemented.  Water 

managers can learn a  lot about the possible effects of water management on river ecosystems, 

thereby  increasing  their ecological  literacy. Perhaps more  important, water managers will gain 

insight into the nature of the uncertainties in this knowledge, thereby helping them understand 

the  need  for  experiments  and  flexibility  in  water  management.  It  is  important  for  water 

managers,  conservationists,  and water users  to  understand  that  scientists will  not  be  able  to 

provide comprehensive and exact estimates of the flows required by particular species, aquatic 

and  riparian  communities,  or  the whole  river  ecosystem.  Rather,  scientists  should  be  able  to 

provide  initial estimates of ecosystem  flow  requirements  that need  to be  subsequently  tested 

and refined, as described later."  (Richter and other 2003) 

When SB 3 was passed and the Cypress Basin was not scheduled, the CFP decided to proceed without revising its 

historic process to fit all of the specifics of the SB 3,  in  large part because the work had provided a solid basis to 

Page 10: Cypress SB3 20100826 Main - Texas

 

 6

develop the flow regimes and recommendations for standards and strategies called for by SB 3.   Both processes 

focus on the same goals, i.e., a sound scientific basis for the flow recommendations and consensus on the process.  

1.2 SOUND ECOLOGICAL ENVIRONMENT 

The SAC defines a sound ecological environment as one that: 

Sustains the full complement of native species in perpetuity, 

Sustains key habitat features required by these species, 

Retains key features of the natural flow regime required by these species to complete their life cycles, and 

Sustains  key  ecosystem  processes  and  services,  such  as  elemental  cycling  and  the  productivity  of 

important plant and animal populations. 

Consistent with  the  above  definition  is  the  definition  from  the  Texas  Instream  Flow  Program  (TIFP)  Technical 

Overview document that defines a sound ecological environment as  

“A  resilient,  functioning ecosystem  characterized by  intact, natural processes, and a balanced, 

integrated, and adaptive community of organisms comparable to that of the natural habitat of a 

region.”   

Instream flow regimes should  include flows to provide for  instream aquatic habitats, transport of sediments and 

maintenance of water quality needed to support diverse plant and wildlife assemblages (SAC 2004). The SAC has 

adopted  a description of  a  flow  regime  that  is  consistent with  the majority of  the  literature on  instream  flow 

science (NAS 1992; NRC 2005; Locke et al. 2008; Annear et al. 2004; TCEQ, TPWD and TWDB 2008) that includes a 

range of flows from subsistence, base, high flow pulse and overbank.  These flow components are typically defined 

in terms of magnitudes, durations,  frequencies and timing. The CFP has adopted a similar set of flows with only 

slight modifications.  The CFP did not specifically define a subsistence flow because the functions associated with 

subsistence flows are captured by what is defined as the dry low flow in the CFP.  The CFP also chose to employ the 

term  "low  flow"  rather  than  "base  flow."   While  the  ecological  function  to  be maintained  by  these  terms  is 

identical, the term "base flow" sometimes carries with it a connotation of being groundwater derived whereas the 

meaning of  "low  flow"  in  the CFP environmental  flow analysis  is  intended  to be based  solely on  the ecological 

function expected from these flows and does not connote a source of those flows. 

1.3 GEOGRAPHIC SCOPE  

SB 3 defines  geographic  scope based on basin  areas and  states  that  flow  regimes be developed  that  "typically 

would vary geographically, by specific  locations  in the watershed."   SB 3 does not specify the  level of resolution 

(number of gages or  stream segments)  for which  flow  recommendations must be developed. Clearly,  resources 

and time prohibit the development of site‐specific recommendations for every river segment.  

The entire Cypress basin is within the Austroriparian biotic province and the South Central Plains ecoregion. Most 

of the  land area within the basin drains primarily from the northwest to the southeast and eventually feeds  into 

Caddo  Lake.  It  extends  upstream  from  Caddo  Lake  at  the  Texas‐Louisiana  state  border,  to  the  westernmost 

extreme of the Cypress Creek Basin, near Winnsboro, Texas. This watershed, which includes several reservoirs,  is 

formed  in  the southern part of Hopkins and Franklin and northern part of Wood Counties and  flows eastwardly 

into Camp, Titus, Morris, Upshur Marion, and Harrison Counties. Black Cypress  is to the north of Big Cypress and 

begins in Morris County. It flows through Cass and joins Big Cypress in Marion County. Little Cypress is to the south 

of Big Cypress and begins  in Wood County.  It  flows  through Upshur and Gregg and converges with Big Cypress 

Page 11: Cypress SB3 20100826 Main - Texas

 

 7

along the Marion and Harrison County boundary. Big Cypress Creek, above Lake O’ the Pines, is intermittent in its 

headwaters.  It  forms  the  boundary  line  between  Camp  and  Titus,  Camp  and Morris,  and Morris  and  Upshur 

counties.  The  stream  runs  through  flat,  rolling  terrain  surfaced  by  sandy  and  clay  loams  that  support water‐

tolerant  hardwoods,  conifers  and  grasses.  Big  Cypress  Creek  flows  into  Caddo  Lake  through  a  jungle‐like 

bottomland where cypress trees are common.  

The navigable waters of Big Cypress Creek contributed to the rise of the City of Jefferson as a commercial center 

prior  to  the railroads. Between 1842 and 1872,  the  town was a principal port  in Texas, serving as a distribution 

point for much of North and East Texas. Once the railroads arrived in the early 1870s, river traffic declined. Since 

World War  II, Big Cypress Creek has been dammed to form a series of reservoirs  including Lake Cypress Springs, 

Lake  Bob  Sandlin, Monticello  Reservoir  and  Lake  O'  the  Pines.  Caddo  Lake  has  undergone  several  very  large 

changes  in  the  last  200  years.  It  originally was  a  natural  lake  formed  by  the  presence  of  a  tremendous  and 

apparently ancient  logjam.  In  the 1800s,  the original natural dam was removed. This caused  the original  lake  to 

shrink with  typically  very  shallow water.  This  condition persisted  for more  than 100  years, when,  in 1917,  the 

USACE  completed  the  first dam and  spillway  to  raise  the water  level. That dam was  replaced  in 1971 with  the 

current weir.  Outflow cannot be manipulated from the Caddo Lake dam. Water leaves the lake when it overtops 

the spillway. 

Caddo Lake drains roughly 2,800 square miles, the vast majority of it in Texas. Major tributaries into the Lake are 

Big Cypress, Little Cypress and Black Cypress Creeks1 (Figure 2). Together these account for about 70% of the total 

drainage area of Caddo Lake. Input from the other 30% of the drainage area is not monitored on a routine basis. 

It  is  up  to  both  the  scientists  and  stakeholders  to make  some  basic  decisions  on  the  geographic  scope.  The 

scientists should define a sufficient number of points in keeping with the spirit and intent of the legislation. This is 

also an area where stakeholder values play a  legitimate and valuable role, as stakeholders may wish to focus on 

particular segments or issues. The options for the scope should be sufficient to find an approach that satisfies the 

scientific and stakeholders’ needs. Thus, for example, one of the CFP Stakeholders’ initial goals was protection of 

Caddo Lake. 

CFP defined a geographic scope focused initially on flows into and in Caddo Lake.  This focus is partially the result 

of the initial impetus of the project, namely the application of the SRP on Big Cypress Creek and Caddo Lake.  The 

SRP program, as  it was developed by  the USACE and TNC  focuses on changes  to reservoir operations  to restore 

ecosystems  that  have  been  impacted  by  dams.    Given  the  high  resource  value  associated with  the  lake  and 

surrounding  wetlands,  this  area  was  identified  as  a  priority.  Caddo  has  been  designated  as  a  Wetland  of 

International  Importance under  the 1971  International Ramsar Convention, which has now been  ratified by 160 

countries including the U.S. Specifics on the designation, its role and impact on the Caddo wetlands can be found 

at http://www.caddolakeinstitute.us/ramsar.html.  As Texas’ only naturally formed large lake, Caddo Lake also has 

important environmental, historic and social values, all of which add to the economic base of the area. 

After the orientation meeting in 2004, it became clear that maintaining a healthy ecosystem could not be limited 

to a consideration of only Big Cypress Creek, which only represents one third of the watershed for Caddo Lake. (Big 

Cypress Creek drains approximately 940 square miles out of the 2,800 total drainage area for Caddo Lake). 

                                                                 1 The terms "Creek" and "Bayou" are used somewhat interchangeably in the Cypress Basin. For ease of writing the term "Creek" will be used in this document although it should be noted that the USGS gage on Black Cypress uses the term "Bayou". 

Page 12: Cypress SB3 20100826 Main - Texas

 

 8

With gages on Black and Little Cypress Creeks, those streams became obvious systems to  include.   There was,  in 

fact, an assumption that the Cypress Basin was small enough and its watershed similar enough that other stream 

contributions to Caddo Lake, such as James Bayou, and streams that flow  into Louisiana outside the Caddo Lake 

Watershed could be evaluated initially based on work done in Big, Little and Black Cypress Creeks.  This approach is 

necessary because none of  these other streams are gaged. By  the  third  flows workshop  in December 2008,  this 

approach  led  to  flow  regime  recommendations  for  the  ungaged  streams  in  the  Cypress  Basin.  Although  the 

working group did not make specific recommendations at every gage in the basin (notably at a gage near Pittsburg 

on Big Cypress Creek between Lake Bob Sandlin and Lake O' the Pines see Figure 2), they did recommend that the 

approach used in the CFP could be used at other locations. 

 

Figure 2  TCEQ segments in the Cypress Basin in Texas. 

TCEQ has divided  the Cypress Creek Basin  into 9 classified segments2. There are currently  five active USGS  flow 

gages in the Cypress Basin and, of these, three are part of the core gage network (Big Cypress Creek near Jefferson, 

Black  Cypress  Creek  at  Jefferson,  and  Little  Cypress  Creek  near  Jefferson).  The  three  USGS  core  gages  were 

selected as primarily sites for the development of instream flow recommendations.  The USGS gage at Karnak is a 

relatively recent gage with very short period of record. The working group also recommended that flow targets be 

                                                                 2 A  TCEQ  segment  is  a  section  of  a  river,  creek,  or  stream  that  has  relatively  similar  chemical,  physical,  and hydrological characteristics. 

Page 13: Cypress SB3 20100826 Main - Texas

 

 9

developed for major ungaged tributaries to Caddo Lake (James, Kitchen and Harrison) based on the size of their 

drainage  areas.    In  addition,  although  there  was  only  limited  discussion,  the  group  also  recognized  that  the 

approach used at the three primary gages could be applied at other segments in the basin, such as Black Bayou. 

Table 1  Cypress Basin watershed areas. 

 

2 DEVELOPMENT OF SCIENTIFICALLY BASED ENVIRONMENTAL FLOW REGIME 

AND ANALYSIS 

2.1 DEVELOPMENT OF BUILDING BLOCKS (ENVIRONMENTAL FLOW REGIMES) 

"Environmental  flow  regime" means a  schedule of  flow quantities  that  reflects  seasonal and yearly  fluctuations 

that typically would vary geographically, by specific location in a watershed, and that are shown to be adequate to 

support a sound ecological environment and to maintain the productivity, extent, and persistence of key aquatic 

habitats in and along the affected water bodies. [§Sec. 11.002 (16)] 

What were called Building Blocks at the beginning of the CFP is generally synonymous with what SB 3 refers to as 

preliminary flow regime matrices.    In the CFP, the Building Blocks were developed after compiling all reasonably 

available data (SRP Step 2 ‐ Literature Review and Summary Report) and then assembling scientists with expertise 

in  hydrology  and  hydraulics,  water  quality,  fluvial  geomorphology  and  aquatic  ecology  at  a  series  of  flows 

workshops (SRP Step 3 ‐ Flow Recommendation Workshops). The scientists analyzed available data and developed 

preliminary flow matrices based on an application of expert judgment. 

2.1.1 LITERATURE REVIEW AND SUMMARY REPORT (REASONABLY AVAILABLE SCIENCE) A team of scientists from Texas A&M University was contracted to conduct literature review and write a summary 

report.  (Winemiller and others, 2005) Consistent with  state  (TIFP 2008) and national  (Annear and others 2008) 

guidelines,  this  report  included  sections  on  the  important  river  and    lake  components  including  Hydrology, 

Geomorphology, Water Quality  and Macrophytes,  Floodplain  Vegetation,  Aquatic  Fauna,  Terrestrial  and  Semi‐

Aquatic Wildlife as well as a summary of Environmental Flow Relationships.  

The purpose of the  literature report was to synthesize available data and  literature associated with Caddo Lake, 

Lake O’ the Pines and the streams flowing into Caddo Lake.  It was prepared after the orientation meeting in order 

to  arm  initial  workshop  participants  with  sufficient  information  to  develop  ecologically  based  flow 

Watershed Square Miles Percent TCEQ Segment

Big Cypress 937 32%

above LOP 875 30% 0404

below LOP 63 2% 0402

Little Cypress 719 25% 0409

Black Cypress 399 14% 0402A

James  Bayou 322 11% 0407

Kitchen Creek 47 2% 0401B

Harrison Bayou 47 2% 0401A

Caddo (Unspecified) 206 7%

Black Bayou 137 5% 0406

Paw Paw 99 3%

Cypress, Texas 2,911

Page 14: Cypress SB3 20100826 Main - Texas

 

 10

recommendations  for the Big Cypress Creek below Lake O’  the Pines Dam and Caddo Lake. Supplements  to this 

initial report were added as the CFP expanded the geographic scope to include the stream s in the Cypress Basin. 

It  should be pointed out  that hydrologic modifications have not been  the only negative  impact  to  this  system. 

Other perturbations, such as nutrient and contaminant loading, altered sediment transport, logging, drainage and 

conversion  to agriculture or residential development, have altered  the system  to varying degrees. However,  the 

consensus is that some restoration of the timing, magnitude, and duration of flows in Big Cypress Creek together 

with  the  protection  of  some  flows  in  the  other  rivers  and  streams  that  flow  to  Caddo  are  critical  to  the 

sustainability of the lotic, lentic, and floodplain habitats as well as beneficial ecosystem functions. 

The  following  sections were  largely extracted  from  the  Literature Survey and Summary Report  (Winemiller and 

others 2005) 

2.1.1.1  HYDROLOGY 

With the notable exception of Big Cypress Creek, most of the Cypress Basin is largely unaltered by major instream 

impoundments. The major disruption of natural flows into Caddo Lake was caused by the closure of Ferrells Bridge 

Dam and creation of Lake O'  the Pines on Big Cypress Creek, upstream  from Caddo Lake. The Lake O’  the Pines 

reservoir was completed  in  late 1959 and has dramatically altered the flow regime of Big Cypress Creek directly 

below Lake O' the Pines. The annual hydrograph for post‐dam conditions is very damped in comparison to pre‐dam 

conditions with increased summer low flows, reduced high flow pulses and elimination of larger flood flows (Figure 

3). 

0

10000

20000

30000

40000

50000

60000

1924 1938 1951 1965 1979 1993 2006

Flow (cfs)

Year

 

Figure 3  Flow data for USGS gage 07346000 Big Cypress Creek near Jefferson (gage was not active from 1960‐1979). 

The natural  variability of  the  flow  regime of  Little  and Black Cypress has been  largely unaltered.  (Figure 4 and 

Figure 5) 

Page 15: Cypress SB3 20100826 Main - Texas

 

 11

0

5000

10000

15000

20000

25000

30000

35000

1946 1960 1973 1987 2001

Flow (cfs)

Year

 

Figure 4  Flow data for USGS gage 07346070 Little Cypress Creek near Jefferson. 

0

2000

4000

6000

8000

10000

12000

1968 1974 1979 1985 1990 1996 2001 2007

Flow (cfs)

Year

 

Figure 5  Flow data for USGS gage 07346045 Black Cypress Creek at Jefferson. 

The largest change to flows on Big Cypress has been the change in peak or flood flows as highlighted in Figure 6. 

Prior  to dam  construction,  the annual peak  flow was as high as 57,000  cfs as occurred  in 1945. Following dam 

construction peak flows remained around 3,000 cfs with very little variation. The median annual peak flow for Big 

Cypress prior to the dam was around 15,000 cfs. 

Page 16: Cypress SB3 20100826 Main - Texas

 

 12

 

Figure 6  1‐day maximum flows for USGS gage 07346000 Big Cypress Creek near Jefferson. 

Peak flows at Little Cypress are as high as 30,000 cfs and for Black Cypress are as high as 10,000 cfs. 

 

Figure 7  1‐day maximum flows for USGS gage 07346070 Little Cypress Creek near Jefferson. 

Page 17: Cypress SB3 20100826 Main - Texas

 

 13

 

Figure 8  1‐day maximum flows for USGS gage 07346045 Black Cypress Creek at Jefferson. 

Recurrence  interval  calculations  demonstrate  the  dramatic  changes  in  peak  flows  that  have  occurred  on  Big 

Cypress  (Figure 9). Prior  to dam construction, peak  flow of at  least 6,000 cfs occurred on an  interval of every 2 

years. A 20,000  cfs  flow occurred on average about every 10 years. The  two‐year  recurrence  interval  flows  for 

Little and Black Cypress are 3,000 and 4,000 cfs respectively. 

 

Figure 9  Flow recurrence graph for Big Cypress Creek near Jefferson for pre and post‐dam years. 

Page 18: Cypress SB3 20100826 Main - Texas

 

 14

 

Figure 10  Flow recurrence for Black Cypress Creek and Little Cypress Creek at Jefferson. 

Prior  to dam construction at  the Lake O'  the Pines, most peak  flows  in Big Cypress were concentrated between 

April and May. After the dam construction, the timing of peak flows was shifted more towards the beginning of the 

year (Figure 11) 

 

Figure 11  Date of maximum flow for USGS gage 07346000 Big Cypress Creek near Jefferson. 

Low flow conditions in Big Cypress Creek have also changed since the Lake O’ the Pines reservoir was constructed. 

Figure 12 highlights how the 7‐day  low  flows have  increased  in  the post‐dam years. The median 7‐day  low  flow 

prior to the dam was around 5 cfs. After the dam, it is around 20 cfs. Of equal if not more importance is that the 

timing of  low  flow conditions has changed dramatically as highlighted  in Figure 13. Prior  to  the dam,  low  flows 

Page 19: Cypress SB3 20100826 Main - Texas

 

 15

were consistently around the first part of September (Julian day 250). Following construction of the dam, the date 

of low flow conditions became much more variable. 

 

Figure 12  7‐day minimum flows for USGS gage 07346000 Big Cypress Creek near Jefferson 

 

Figure 13  Date of minimum flow for USGS gage 07346000 Big Cypress Creek near Jefferson. 

From  an  annual  average  inflow perspective,  flow  in Big Cypress has been  reduced by  about 5%  following dam 

construction, probably because of increases in evaporation from the lake surface. The complete results of the IHA 

analysis for Big, Little and Black Cypress are available at caddolakeinstitute.us/flows.html. 

Page 20: Cypress SB3 20100826 Main - Texas

 

 16

2.1.1.2 GEOMORPHOLOGY 

Changes in Geomorphological Processes 

The  Cypress  drainage  basin  reflects  geomorphological  processes  active  during  the  past  2  million  years.  The 

geomorphology of Big Cypress Creek (reach between Lake of the Pines and Caddo Lake) was mapped by the U.S. 

Army  Corps  of  Engineers, Vicksburg District  as  part  of  the  Red  River Waterway  Project  (USACOE  1994).  Three 

geomorphic  surfaces  were  identified  according  to  their  physical  characteristics,  apparent  age,  and  types  of 

processes active on the surfaces: floodplain, terrace, and valley slopes (Table 2). 

Table 2 Geomorphic surfaces in the Big Cypress drainage basin (USACOE, 1994). 

 

Whereas valley slopes are Tertiary in age (65 to 2 million years), the terrace and floodplain were formed primarily 

in  the  Quaternary  (2 million  years  to  present)  and  specifically  during  the  Holocene.  Terraces  are  abandoned 

floodplains elevated above the present river’s floodplain; they flood on the order of 100 to 500 years. Floodplains 

form by deposition of  sediments  transported by  the  stream.  In  the geomorphic analysis  conducted by  the U.S. 

Army Corps of  Engineers  (1994),  floodplains were defined  as  the  area  subject  to  inundation by  a  flood with  a 

recurrence  interval of 2 years,  following Leopold, Wolman and Miller  (1964). The  floodplain contains point bars 

(which range in thickness from 25 to 30 feet and in texture from sand at the base to finer silts and clays toward the 

surface), levees (formed by vertical accretion when the stream floods and deposits suspended sediments along the 

banks), and numerous abandoned channels and courses as well as oxbow lakes that form when river channels cut 

across their point bars (Figure 14). The Big Cypress is therefore characteristic of a lowland meandering river. 

Page 21: Cypress SB3 20100826 Main - Texas

 

 17

 

Figure 14  Generalized block diagram of Big Cypress Drainage Basin showing geomorphic features (USACOE, 1994). 

Channel‐Floodplain De‐coupling 

The  geomorphological  features  present  on  the  floodplain  are  evidence  of  active  river  migration  and  a  tight 

channel‐floodplain coupling under natural conditions. Before closure of Ferrells Bridge Dam in 1960, the floodplain 

upstream of Caddo Lake was  inundated every 1‐2 years at a discharge of 6,000 cfs (Figure 9). This flow occupied 

the bankfull river channel and  is the dominant discharge necessary to form and maintain an equilibrium channel 

geometry  (Knighton  1998).  This  is  also  the  discharge  needed  to  sustain  floodplain  development  and  riparian 

ecosystem. 

The  immediate  result of  flow  regulation by Ferrells Bridge Dam has been  the decoupling of  the  floodplain  from 

river channel processes. The closure of Ferrells Bridge Dam has changed frequency‐magnitude relations so that at 

present, little variation in flow magnitude exists, and maximum flows do not exceed ~3,000 cfs (Figure 6 and Figure 

9). Floodplains are  therefore not  inundated under  the present  flow regime.  (Quantification of bankfull  flow was 

identified as a priority  research  issue early  in  the CFP. Subsequent  field observations  indicate  that  riparian and 

flood  plain  inundation  begins  at  significantly  lower  flows;  between  1,800  and  2,500  cfs  in  the  segment  of Big 

Cypress  Creek  above  the  City  of  Jefferson.    This  flow  validation  work  is  discussed  in  detail  in  Section  2.2.4) 

Maximum flows of ~3,000 cfs are also below the dominant discharge necessary to maintain an equilibrium channel 

geometry. 

Page 22: Cypress SB3 20100826 Main - Texas

 

 18

Sediment Trapping by Lake O’ the Pines Reservoir 

Construction  of  Ferrells  Bridge  Dam  has  also  affected  sediment movement  and  delivery  into  Caddo  Lake.  As 

expected,  sediment  trapping by  Lake O’  the Pines Reservoir has  reduced  sediment  input  into  the downstream 

channel  reach  and ultimately  into Caddo  Lake. The extent of  sediment  trapping  can be estimated by  assessing 

changes  in  storage  capacity  in  the  reservoir  (Phillips  et  al.  2004).  In  1958,  the  original  conservation  reservoir 

storage capacity of Lake O’ the Pines Reservoir was 254,900 acre‐feet. By 1998, the reservoir capacity as reported 

by  the USGS was 238,933 acre‐feet  (TWDB 2004). This represents a decrease of 6%  in reservoir capacity due  to 

sedimentation, equaling 492,378 cubic meters of trapped sediments per year behind the reservoir. In some cases, 

such as the nearby Trinity River (Phillips et al. 2004) and Sabine Rivers (Phillips 2003), this reduction  in sediment 

supply  downstream  of  reservoirs  is  partly  offset  by  increased  bank  and  bed  erosion.  However,  insufficient 

information is available for Cypress Creek to determine whether similar erosion processes are producing additional 

sediments for delivery into Caddo Lake. 

Reduced Transport Capacities 

The  drastic  reduction  in  flood  peaks  (Figure  6)  is  also  expected  to  decrease  sediment  transport  capacities 

downstream of Ferrells Bridge Dam. Stream power  for a cross‐section represents  the  total  transport capacity of 

the river at a given cross‐section and can be calculated for the pre‐dam and post‐dam period. These calculations 

were performed for the cross‐section immediately downstream of the dam, where USGS gauging station 07346000 

is located. 

Stream power is  = wQS 

  where   = stream power (N/s) 

    w = specific weight of water = 9807 kgm‐2s‐2 

    Q = discharge (m3/s) 

    S = slope 

Using  a  slope  of  2.47  feet/mile  or  0.000468  (Slack  et  al.  2001),  the  stream  power  for  the  pre‐dam  bankfull 

discharge of 6,000 cfs (that occurred every 2 years, and that inundated the floodplain) is ~779 N/s (Table 3). 

Table 3  Stream power of a 2‐year recurrence interval flow before and after dam construction. 

 

Now, under the present flow regime, because the maximum discharge has been reduced to 3,000 cfs (Figure 6), 

the maximum  transport  capacity  is  ~390  N/s.  These  results  show  that  sediment  transport  capacity  has  been 

reduced by 50%.  Thus,  although  increased  erosion has been demonstrated  to occur below  some dams due  to 

clear‐water or  “hungry‐water” effects  (Kondolf 1997),  these effects  tend  to be  limited  to  the area  immediately 

below the dam (Phillips 2003), and the overall effect of reduced flood peaks are decreased transport capacities. A 

similar decrease in transport capacities in Yegua Creek downstream of Somerville Dam in south‐central Texas has 

resulted in reduced channel capacities over time (Chin and Bowman 2005, Chin et al. 2002). 

Time Period Q with 2‐yr R.I. cfs  (cms) N/s

Pre‐dam (12924‐1959) 6000 (169.8) 779.33

Post‐dam (1980‐present) 3,000 (84.9) 389.66

Page 23: Cypress SB3 20100826 Main - Texas

 

 19

Sediment Entrainment 

To answer the question of whether sediments present in the channel downstream of Lake O’ the Pines are being 

transported  into Caddo  Lake,  sediment entrainment  calculations were performed. Because quantitative particle 

size data are unavailable for Cypress Creek, these calculations were performed for a series of particle sizes ranging 

from clay to  fine sand, which are known  to be  typical  for  this channel reach  (Barrett, personal communication). 

Two sediment samples collected and analyzed in November 2004 by a student at Texas A&M University were also 

in  the  fine sand  range  (median sizes of 0.165 mm and 0.097);  they corroborate qualitative estimates of particle 

size. These samples were collected  in  the channel close  to  the banks at  locations near  Jefferson and at Hwy 43 

upstream of Caddo Lake. 

Critical  shear  stresses  required  to  entrain  clay,  silt,  very  fine  sand,  and  fine  sand  were  therefore  calculated 

(diameter  equal  to  0.0015 mm,  0.02 mm,  0.075 mm,  and  0.175 mm,  respectively).  Two  equations were used, 

which produced similar results. 

Shield’s equation is: 

c0.045(s1)gD 

  where   c = critical shear stress (N/m2 or Pa) 

    D = median diameter of sediments (mm) 

    s = relative density of sediments to water = 2.65 

g = specific weight of water = 9807 kg m‐2 s‐2 

Church’s equation is (Church 1978): 

c 0.89D 

  where   c = critical shear stress (N/m2 or Pa) 

    D = median diameter of sediments (mm) 

Table 4 shows that, for sediments ranging from medium sand to clay, flows with shear stresses ranging from 0.274 

N/m2 to 0.001 N/m2 are required to entrain them. 

Table 4  Critical shear stresses required to entrain sediments ranging from medium sand to clay. 

 

To  determine  flow  depths  needed  to  generate  the  critical  shear  stresses  required  to  entrain  sediments,  the 

DuBoy’s equation was used: 

Class  Name Diameter (mm) Shield's  c (N/m2) Church's  c (N/m

2)

Medium Sand 0.375 0.274 0.334

Fine Sand 0.175 0.128 0.156

Very Fine Sand 0.075 0.055 0.067

Silt 0.02 0.015 0.018

Clay 0.0015 0.001 0.001

Page 24: Cypress SB3 20100826 Main - Texas

 

 20

o = g ds 

  where   o = shear stress     (critical shear stress calculated for various sediment sizes using Shield’s and Church’s equations,  

    Table 4) 

g = specific weight of water     d = depth (m) 

    s = slope 

Application of the DuBoys equation indicated that, for sediments ranging from medium sand to clay, flow depths 

of 60 m to ~0.3 m would have sufficient shear stresses to entrain these sediments (Table 5). 

Table 5  Average depths required to have sufficient shear stresses to entrain sediments ranging from medium sand to clay. 

 

The final step to determine whether sediments are capable of being moved under the present flow regime  is to 

relate  the  average  depths  to  discharges.  Using  data  available  at  the  channel  cross‐section  immediately 

downstream of Ferrells Bridge dam, where USGS gauging station 07346000  is  located,  the  relationship between 

average depth and discharge was established  (Figure 15). This  relationship enables discharges corresponding  to 

the calculated critical depths for sediment entrainment (Table 5) to be determined. 

 

Figure 15  Depth‐discharge relationship at cross‐section downstream of Ferrells Bridge Dam. 

Combining Table 5 and Figure 15, results  indicate that the present flow regime  is capable of entraining only silts 

and  clays.  Clays  are mobilized  at  a  discharge  of  ~25  cfs, whereas  silts  require  a  discharge  of  1,250  cfs  to  be 

entrained (Table 6). Because sands (very fine, fine, and medium) require flow depths corresponding to discharges 

that exceed 3000 cfs, which is the maximum flow under the present regulated regime (Figures 2 and 5), they are 

not being mobilized by present flows. 

Class  NameAvg. Depth based on Shield's

m (ft) 

Avg. Depth based on Church's

m (ft) 

Medium Sand 59.6 (195.7) 72.7 (238.6)

Fine Sand 27.8 (91.3) 33.9 (111.3)

Very Fine Sand 11.9 (39.1) 14.5 (47.7)

Silt 3.2 (10.4) 3.9 (12.7)

Clay 0.24 (0.78) 0.29 (0.95)

Page 25: Cypress SB3 20100826 Main - Texas

 

 21

Table 6  Required discharges to entrain sediments ranging from medium sand to clay. 

 

Sediment Delivery into Caddo Lake 

The  last piece of  available data  to give  insight  to  the  issue of  sediment delivery  into Caddo  Lake  is  analysis of 

sedimentation rates within Caddo Lake (Barrett 1995, Lisanti 2001). Modern sedimentation rates (1963 to present) 

were  measured  using  gamma  ray  spectroscopy  at  seven  sites  within  Caddo  Lake  (Lisanti  2001),  yielding 

sedimentation rates ranging from 0.22 cm/year to 0.56 cm/year, with two sites not measurable. Although Caddo 

Lake receives sediment input from sources other than Cypress Creek, and thus sedimentation rates within the lake 

are  not  perfect  analogs  for  sediment  delivery  through  Cypress  Creek,  variations  in  sedimentation  rates 

nevertheless give additional  information to corroborate previous analyses. It  is worthy to note that the two sites 

located  immediately at  the outlet of Cypress Creek  (Cypress Bayou delta) have  the  lowest  sedimentation  rates 

(both 0.22 cm/year). These sedimentation rates are only half of the rate of 0.56 cm/year at the outlet from James 

Bayou.  Low  sedimentation  rates  at  the  Cypress  Creek  outlet  support  previous  conclusions  that  1)  sediment 

supplies  are  reduced downstream of  Lake O’  the Pines; 2)  sediment  transport  capacities  are  reduced due  to  a 

drastic reduction in flood peaks; 3) only the finest sediments (clays and silts) are being mobilized under the current 

flow regime. 

In summary, both flow regime and sediment regime have been altered by flow regulation at Ferrells Bridge Dam 

since 1960. The overall result is a river floodplain disconnected from the river channel at present. 

The  high  flow  regime  does  not  appear  to  have  changed  in  Black  and  Little  Cypress  Creeks  and  therefore  it  is 

expected that natural sediment transport characteristics remain largely unchanged in these drainages.  The caveat 

to  this  is  that  the sediment  load characteristics may have changed because of  timber and agricultural activities; 

however, these land use alterations have not been investigated as part of this study. 

2.1.1.3 WATER QUALITY AND MACROPHYTES 

The analysis of  the  relationship of  flows and water quality  relied upon  several documents and  the work of  the 

Watershed Protection Planning Process.  The basic documents included: 

Texas  A&M  Summary  Report  Supporting  the  Development  of  Flow  Recommendations,  2005 

(http://www.caddolakeinstitute.us/Docs/TAMU_SummaryReport_April2005.pdf) 

Cypress Creek Basin Summary and Highlights Reports (http://www.netmwd.com) 

Analyses prepared for the Caddo Lake Watershed Protection Plan (http://www.netmwd.com) 

Draft  Discussion  Paper  on  Flows  and  Water  Quality  by  Tim  Osting,  Espey  Consultants,  Inc.  2008. 

(http://www.caddolakeinstitute.us/docs/flows/dec08meeting/draft_discussion_paper_on_flows_and_wa

ter_quality.pdf) 

The Cypress Creek Basin appears to be at the transition zone between a mesotrophic and eutrophic system. The 

process of eutrophication seems to be accelerated in some of the subbasins due to anthropogenic activities within 

Class  NameAvg. Depth based on Shield's

m (ft)

USGS x‐sctn

cfs

Medium Sand 59.6 (195.7) >3000

Fine Sand 27.8 (91.3) >3000

Very Fine Sand 11.9 (39.1) >3000

Silt 3.2 (10.4) 1250

Clay 0.24 (0.78) 25

Page 26: Cypress SB3 20100826 Main - Texas

 

 22

the  watershed,  including  nutrient  loadings.  (NETMWD  2010)   Many  other  water  quality  parameters,  such  as 

dissolved oxygen, bacteria, mercury and pH have become problematic.  According to the state’s 303(d) listings, the 

number of impairments in the Cypress Creek Basin continues to increase. 

The  latest Basin Summary Report for the Cypress Creek watershed, by Water Monitoring Solutions,  Inc.,  in 2009 

provides a  review of  the historical water quality data and  trends based on  the TCEQ Surface Water Monitoring 

Information  System  database.  The  Basin  Summary  states  that  water  quality  over  the  period  of  record  has 

remained  relatively  stable  in  the  Little Cypress Creek and Black Cypress Creek watersheds. However,  significant 

trends were found in Big Cypress Creek beginning in Lake Cypress Springs and Lake Bob Sandlin and ending in the 

upper end of Caddo Lake. The report identifies five statistical trends: 

Increasing trends for specific conductance/TDS throughout the Big Cypress Creek watershed, 

Increasing trends for pH in Big Cypress Creek and James Bayou, 

Increasing  trends  for  phosphorus  in  Big  Cypress  Creek  below  Lake  Bob  Sandlin  and  corresponding 

increasing chlorophyll a trends in Lake O’ the Pines, 

Decreasing DO in the upper portion of Caddo Lake, and 

Decreasing DO and pH along with increasing chlorophyll a in Black Bayou. 

Fourteen stream segments in the Cypress Creek watershed have been listed as impaired or not supportive of water 

quality  criteria  for  one  or more  parameters.  The  number  of  impairments  generally  continues  to  increase with 

several added by TCEQ in 2010.  The most common parameters listed were dissolved oxygen, pH, E. coli, bacteria 

and mercury  in  fish  tissue.   Nutrients  and  chlorophyll  a were  also  identified  in  the  2008  Texas Water Quality 

Inventory as water quality concerns in the watershed. 

Page 27: Cypress SB3 20100826 Main - Texas

 

 23

Table 7  Impairments in the Cypress Basin. 

  

Located at the bottom of much of the Cypress watershed, Caddo Lake receives contaminants from a wide variety 

of activities.    In addition to the trends toward eutrophication, a major concern has been the rampant growth of 

macrophytes, especially  in the upper reaches of Caddo Lake.   These have created significant problems for use of 

the Lake and, with decay, they  increase the accumulated biomass, which adds to the conditions of  low dissolved 

oxygen and may fuel summer phytoplankton blooms and fish kills.  Levels of mercury in bass and some other large 

fish has lead to fish consumption advisories, warning of the risks of eating too much of these fish. 

High inflows during the summer months when temperatures are highest and dissolved oxygen and pH are lowest 

appear  to be  the most beneficial  to water quality problems,  including nutrients,  in  the  Lake.  It  is unclear  from 

available  data whether  high  flushing  during winter  and  spring months will  have  a  strong  impact  on  summer 

months. 

High  inflow and  lake‐level  lowering are possible strategies that should be examined to address water quality and 

macrophytes. There are not likely to alleviate the problems entirely. Control options involving mechanical removal 

and the application of chemicals and biological controls are also likely to be needed. 

Lower  inflows  will  not  flush  nutrients  from  Caddo  Lake  as  quickly  as  higher  inflows.  For  the  same  reasons 

mentioned above, intermediate and low flows will be more effective at flushing nutrients from the system during 

the summer months. Low inflows would likely have very little impact on alleviating potential problems associated 

with low dissolved oxygen and pH. In other words, during conditions of low inflow Caddo Lake will likely continue 

Segment  Description  Parameter 

401 Caddo Lake  Low DO, Low pH, High  Mercury in Tissue 

0401A  Harrison Bayou  Low DO 

402 Big Cypress  Bayou below Lake O’ the Pines   Low pH, High Mercury in Tissue 

0402A  Black Cypress  Bayou  Low DO, High Bacteria, High Mercury in Tissue, 

High Copper* 

404 Big Cypress  Creek below Lake Bob Sandlin  High Bacteria, Low DO*

High PCBs  in Tissue, High Sediment Toxicity 

High Copper* 

0404B  Tankersley Creek  High Bacteria 

0404C  Hart Creek  High Bacteria 

0404N Lake Daingerfield  High Mercury in Tissue 

0404O  Dragoo Creek High Bacteria*

0404P Unnamed tributary to Tankersley Creek High Bacteria*

0404Q Unnamed tributary to Tankersley Creek High Bacteria*

0404R Unnamed tributary to Dragoo Creek High Bacteria*

405 Lake Cypress  Springs   Low DO (has  been removed)

406 Black Bayou  Low DO, Low pH, High Bacteria 

407 James’ Bayou  Low DO, Low pH, High Bacteria 

409 Little Cypress  Bayou (Creek)  Low DO, High Bacteria, High Copper*

0409B  South Lil ly Creek  High Bacteria 

*Added in 2010.

0404A  Ellison Creek Reservoir 

Page 28: Cypress SB3 20100826 Main - Texas

 

 24

to  be  plagued  by  periodic  conditions  of  poor  water  quality.  It  is  not  clear,  however,  whether  these  were 

characteristic  traits  of  the  system which  occurred  during  historical  (i.e.  pre‐Lake  O’  the  Pines  Dam)  low  flow 

periods. 

Lake drawdown has been an effective tool to help control growth of submerged and floating macrophytes in some 

lakes. For Caddo Lake this might not be a viable option in the future, but releases from the current dam only occur 

as water flows over the spill way. 

2.1.1.4 FLOODPLAIN VEGETATION 

In  the  Cypress  Creek  Basin  and  around  the  greater  Caddo  Lake  area,  bottomland  hardwood  and  bald  cypress 

forests occupy areas of the floodplain ranging from low areas that are permanently inundated to higher areas that 

are infrequently inundated, yet may still have saturated soils. It is widely accepted that the structure and function 

of these alluvial river swamps  is tightly coupled with hydrologic energy. In fact, hydrologic variability may be the 

single most important factor affecting the local distribution of bottomland tree species within their natural ranges. 

In alluvial settings such as the Big Cypress Creek floodplain, these forested wetlands receive periodic disturbances 

in the form of a flood pulse that is important in delivering nutrients and altering soil physico‐chemical properties to 

the point that upland species are excluded. The high flows typical of these events are also  important  in scouring 

and dispersing many of the seeds produced in alluvial river swamps. 

The key to the establishment and long‐term maintenance of these wetland forests is through seedling recruitment. 

Without periodic, successful recruitment of new seedlings, these systems may become more even‐aged and more 

susceptible  to human perturbations.  For most of  the  species  found  in  these  forests,  seeds  are  released  in  late 

summer/early  fall—usually between September and October. For  the Caddo Lake  region,  this period historically 

was  the dry season and corresponded with  low  flows  in  the Big Cypress Creek basin. Rapid growth—from seed 

germination–seedling  stage—up  to  the  next  flood  pulse  (usually  in  late winter/early  spring)  is  needed  for  the 

successful establishment of a new cohort of saplings in the forest. These hydrologic conditions prevailed up to the 

installation of the dam for Lake O’ the Pines in the 1950s. In fact, it has been suggested that seedling recruitment 

has  been  depressed  in  some  areas  of  the  Big  Cypress  and  Caddo  Lake  region  because  of  these  hydrologic 

alterations. Still other past  impacts such as  logging and drainage and fill of adjacent floodplain area and nutrient 

enrichment need to be considered in addition to biotic processes such as herbivory and exotic species invasion. 

Recommendations are for high flows to occur during the historic early spring flood pulse period. These high flows 

will  scour  and  distribute  seeds  to  a  large  area  of  the  floodplain  and  should  start  to  decline  into  late  spring, 

bottoming out  in  early  summer.  Low  flows  in Big Cypress Creek during  the historical dry  summer will  then be 

needed to allow for the establishment (i.e. germination) of seeds and growth to a level at which many will be able 

to  survive  the  following  year’s  spring  high water  period.  Periodic draw  down  in  Caddo  Lake will  also  likely  be 

important in recruiting a new generation of bald cypress to this perennially lentic environment. 

2.1.1.5 AQUATIC FAUNA 

Fishes obviously depend on in‐stream flows to provide aquatic habitats in which to live, but there are many other 

direct and indirect effects of water availability, flow characteristics, and water quality on fish behavior and ecology. 

In lowland floodplain rivers, such as the major tributaries that deliver water to Caddo Lake, the annual hydrological 

regime  greatly  influences  the  quantity,  quality,  and  connectivity  of  aquatic  habitats  that  are  required  by  the 

various fish species during each stage of their  life cycles. The fish fauna of the Cypress Basin can be divided  into 

four groups: 1) fishes directly dependent on flowing channel habitats, 2) fishes directly dependent on non‐flowing 

backwater habitats, 3) fishes not directly dependent on flowing or backwater habitats but which may use either to 

varying degrees, and 4) migratory fish. 

Page 29: Cypress SB3 20100826 Main - Texas

 

 25

Rather than develop an exhaustive assessment of each fish species, we have developed a list of “indicator” species 

under  each  category  that  may  be  useful  in  establishing  targets  for  restoration.  Some  of  these  species  are 

threatened,  in a few  instances are now  locally extinct, as a result of hydrologic modifications and perhaps other 

impacts. 

The paddlefish (Polyodon spathula) has been greatly reduced in abundance and distribution throughout its range 

due to pollution and especially construction of dams that block migration routes, regulate flow, and alter channel 

geomorphology and substrate composition. Paddlefish spawn  in  the spring when water  levels  rise  rapidly. After 

the  larvae develop within deep pools of  the main  channel,  the  juveniles move  into backwater  (lentic) habitats. 

Spring floods have been greatly curtailed in Big Cypress Creek, and this may have eliminated cues and conditions 

needed for spawning. In addition, the lack of floods has likely resulted in the degradation of shoal habitats that are 

critical spawning habitat for this species. 

The chain pickerel  (Esox niger)  spawns during  late February and early March and  requires  lentic habitats  for all 

stages of its life cycle, even during the egg‐laying stage when eggs are typically scattered in littoral vegetation. In 

terms  of  its  in‐stream  flow  requirements,  the  chain  pickerel  would  benefit  from  flow  regimes  that maintain 

permanent aquatic habitat in the floodplain. Periodic pulsed flows would be important for dispersal of juvenile and 

adult pickerels  among  lentic  (backwater) habitats  along  the margins of  the main  channel  as well  as within  the 

floodplain. 

The largemouth bass (Micropterus salmoides) nests in backwater areas lacking current, either along river or stream 

margins or  in  floodplain habitats  such as oxbow  lakes.  It  spawns  from April until  June, with  spawning  initiated 

when the water temperature rises above 65°F. Caddo Lake provides an outstanding habitat for this species, which 

would only be enhanced by maintenance of a flow regime on Big Cypress Creek that maintains oxbows and other 

permanent lentic habitats in the floodplains and facilitates dispersal. 

The  freshwater  drum,  or  gaspergou,  (Aplodinotus  grunniens)  occurs  in  pools  where  it  feeds  on  benthic 

invertebrates. The drum spawns during April or May near the surface of the water column and buoyant eggs float 

with  the  current before hatching  into  larvae,  that also  float. At  the post‐larval  stage,  they move  to  the bottom 

where they begin feeding as juveniles. The freshwater drum has flow requirements for spawning and dispersal of 

early life stages that are very similar to those described for paddlefish. It might also benefit from extended periods 

of low flow during summer, as this should enhance benthic foraging opportunities. 

The bluehead shiner (Pteronotropis hubbsi) is a threatened species that schools in backwaters and marginal areas 

away  from significant current and seems  to spawn  from early May  to  July.  It appears  that  late spring and early 

summer low flow conditions may be most conducive to successful spawning and recruitment by this rare species, 

but its presence in oxbow lakes reveals a necessity for periodic overbank flows allowing dispersal between channel 

and oxbow habitats. 

The Bigmouth buffalo  (Ictiobus cyprinellus) and smallmouth buffalo  (Ictiobus bubalus) do not seem  to be strictly 

dependent on  flow  regime, but may  show enhanced  recruitment under appropriate  flow  regimes. Both  species 

initiate spawning around April in shallow, lentic backwaters after spring floods raise water levels. Therefore, pulsed 

flows during spring or other periods of the year would allow dispersal of  immatures and adults between channel 

and floodplain habitats. 

The ironcolor shiner (Notropis chalybaeus) spawns from mid April until late September, and eggs are scattered in 

stream  pools  over  sand  substrate.  It  seems  unlikely  that  reproduction  and  recruitment  by  this  small  stream‐

Page 30: Cypress SB3 20100826 Main - Texas

 

 26

dwelling minnow are highly dependent on pulse flows during spring. One could even hypothesize that extended 

periods of low flow over the summer could enhance recruitment in this spring‐summer spawning species. 

Big Cypress Bayou and other associated drainages are home to a very diverse freshwater mussel assemblage with a 

least  26  species  identified  since  1913  (Howells  1996). One  species,  the  Louisiana  pigtoe  (Pleurobema  riddellii), 

documented by Mather and Bergmann  (1994)  is one of  the  rarest Texas unionids and has a state  ranking of S1 

(critically imperiled). Another S1 ranked unionid, the sandbank pocketbook (Lampsilis satura), is thought to inhabit 

the Cypress Bayou  system  (Marsha Mays, personal  communication), but has never been documented. Howells 

(1996)  suggested  that, while  the  Cypress  Bayou  systems  still  support  relatively  abundant  unionid  populations, 

habitat alteration and degradation have reduced populations from historic levels. In addition, he states that many 

species  tolerant  of  soft  bottom  habitats  and  eutrophication were  represented  by multiyear  classes  indicating 

successful  reproduction.  In contrast, heavily shelled species were  represented by older adults only and no signs 

were found of recent reproductive success  in these species. Because many mussel species require a host fish for 

their  parasitic  glochidial  stage  of  development,  and  rely  on  flow  for  dispersal  of  offspring  and  settlement  of 

juveniles, environmental flows that favor fishes will also favor mussels. 

2.1.1.6 TERRESTRIAL AND SEMI‐AQUATIC WILDLIFE 

The  streams,  wetlands,  open  water  bodies,  and  bottomland  forests  of  the  Cypress  Basin  support  a  rich  and 

abundant  herpetofauna, with  45  species  documented  by  a  study  that  surveyed  a  relatively  small  area. Many, 

perhaps most species, would respond to restoration of aquatic floodplain habitats with enhanced populations. In 

some cases, this population enhancement would result from creation of additional breeding and rearing habitats, 

and  in other cases,  it would be a response to additional food availability and foraging opportunities.  In addition, 

pulse flows provide connectivity of aquatic habitats that permit dispersal by semi‐aquatic species.  

Two of the state’s “threatened” reptiles occur within the basin—alligator snapping turtle (Macrochelys timminckii) 

and  the  timber  rattlesnake  (Crotalus  horridus).  The  bird  assemblage  of  the  basin  is  estimated  to  contain  313 

species. Two of the state’s threatened bird species are likely to use habitats present in the basin—whitefaced ibis 

(Plegadis  chihi)  and woodstork  (Mycteria  americana).  The  region  is  an  important migratory  corridor  for many 

species, with  several  lakes  in  the basin used by wintering waterfowl  for  foraging  and  resting. Degradation  and 

losses of wetland habitat are considered  the major  threats  to waterfowl. Although many waterfowl now obtain 

significant  food  resources  from  flooded  agricultural  fields,  forested  wetlands  are  required  to  meet  the  full 

biological  requirements  of most  species.  Little  research  has  been  conducted  on mammals  of  the  Caddo  Lake 

region. Historically,  the  red wolf  (Canis  rufus) and  Louisiana black bear  (Ursus americanus  luteolus) would have 

inhabited  the  region.  A  two‐year  survey  of  the  Longhorn  Army  Ammunition  Plant  recorded  10  species,  with 

taxonomic diversity greatest  in the pure pine areas, and abundance greatest  in the mixed pine‐hardwood. Semi‐

aquatic mammals in the basin include the beaver (Castor candadensis) and river otter (Lutra canadensis). 

2.1.1.7 SUMMARY OF ENVIRONMENTAL FLOW RELATIONSHIPS 

A major alteration of the natural flow regime in the basin occurred when Ferrells Bridge Dam was constructed on 

the main  stem of  the upper Big Cypress Creek  in  the  late 1950s. Flow  regulation  results  in elimination of  flood 

flows during late winter‐early spring and greatly reduced pulse flows year‐round and increased summer low‐flows. 

This  in  turn  results  in  reduced bed  scouring  (yielding  loss of  structural habitat diversity within  the  channel and 

creation of backwater habitats), sediment delivery, sediment deposition on floodplains, and over‐bank flooding. All 

of these changes have detrimental effects on aquatic and riparian population dynamics, which ultimately results in 

reduced  species diversity and  smaller populations of  species of plants, and animals  that depend on  the natural 

flow  regime  for  creation  of  essential  habitat  for  foraging  and  reproduction,  maintenance  of  ecosystem 

Page 31: Cypress SB3 20100826 Main - Texas

 

 27

productivity, and/or dispersal. For example, the paddlefish (breeding population was extirpated in the early 1960s) 

required flood flows to maintain shoals and to provide cues for spawning. This species also required periodic pulse 

flows  to  allow movement  between  channel  and  backwater  habitats  used  by  juveniles  and  adults  for  foraging. 

Similarly,  the  major  bottomland  hardwood  tree  species  required  high  flows  for  seed  dispersal  and  to  limit 

encroachment of upland tree species into floodplains. Flow regulation also results in higher daily flow fluctuations 

and higher  late spring and early summer flows, which result  in  lower water temperatures. These changes  impact 

benthic  ecosystem  productivity  in  the  channel,  foraging  opportunities  for  benthivorous  organisms,  fish  growth 

rates, and spawning by aquatic species that depend on stable,  low flows during summer. These  impacts result  in 

degraded  fisheries,  decline  of  sensitive  and  rare  species,  alteration  of  aquatic  and  riparian  communities  and 

ecosystems. Although  it provides about a  third of  the  total  inflow  to Caddo Lake,  flow  regulation  in Big Cypress 

Creek  probably  has  major  effects  on  the  lake  ecosystem.  Sufficiently  high  inflows  would  influence  nutrient 

concentrations  and  phytoplankton  dynamics. During  periods  of  low  flow,  internal  nutrient  dynamics  (involving 

sediments, bacteria, water column, macrophytes and algae) would be prevalent. Prolonged periods of  low‐flow, 

uninterrupted by pulse  flows, during  late  summer  result  in acute aquatic hypoxia  in  the  shallow  (deltaic) upper 

segment of the Lake. 

2.1.2 FLOWS WORKSHOPS AND BUILDING BLOCKS (PRELIMINARY FLOW REGIME MATRICES) Flow regime matrices were developed and revised at three multi‐day flow workshops and at numerous subgroup 

meetings, which occurred between the full workshops.  

First Workshop ‐ May 2005 

At the first workshop, three days in early May 2005, the initial work was the development of a first cut at building 

blocks  for  Big  Cypress  Creek  downstream  of  Lake O’  the  Pines  and  for  Caddo  Lake.  The  goal was  to  develop 

proposals  that  could  be  tested  with  releases  from  Lake  O’  the  Pines,  while  the  CFP  gathered  additional 

information, including information on whether building blocks for other rivers and streams could be based on the 

approach taken with Big Cypress Creek.  The building blocks were intended to enhance the ecological structure and 

function of Big Cypress Creek, its floodplain, and Caddo Lake, with the ultimate goal of providing benefits to local 

flora, fauna, and stakeholders in the region. Document reports on the historical flow conditions (i.e., pre‐dam) in 

Big Cypress Creek and their role in shaping the lotic, lentic, and floodplain ecosystems of this region.  

Over eighty  scientists, water managers, and  local community members participated  in  the  first workshop. After 

reviewing the data and analysis included in the literature survey and summary report, including presentations on 

each of  the major disciplines, participants worked  together  in breakout groups  to qualitatively define necessary 

dimensions  of  the  flow  component  patterns  including magnitudes  frequencies,  durations  and  timing  for  a  full 

range of hydrologic conditions and inter and intra‐annual variation. The workgroup also identified knowledge gaps 

and  prioritized  research  tasks  that  would  be  necessary  to  validate  or,  if  necessary,  refine  these  preliminary 

recommendations. 

Second Workshop ‐ October 2006 

The second multi‐day workshop was held in October 2006, and the work focused on developing building blocks for 

Little and Black Cypress Creeks, after considering possible changes to the building blocks for Big Cypress and Caddo 

Lake.   Because of drought conditions, the CFP had not had the opportunity to test assumptions and the building 

blocks with  releases  from Lake O’  the Pines. The needed  rains came  in  January 2007.   Thus,  the building blocks 

developed in the May 2005 workshop were not changed. 

Page 32: Cypress SB3 20100826 Main - Texas

 

 28

To prepare for the work on Little and Black Cypress Creeks, a supplement to the literature survey was completed, 

including IHA and recurrence interval flow statistics for these streams.  There was first a discussion of whether the 

building blocks for Black and Little Cypress could be developed by using the approach used for the building blocks 

for Big Cypress Creek.  The consensus was that this approach was appropriate. 

Third Workshop ‐ December 2008 

A third flows workshop was held  in December 2008 at which time the results of targeted research facilitated an 

environmental  flow  regime  analyses  (application of overlays)  leading  to  several  refinements of  the preliminary 

flow regime matrices. The working group also decided  to make a significant adjustment to the  form of  the  flow 

recommendations on the unregulated sites on Little and Black Cypress by adopting a narrative approach for Black 

Cypress and hybrid (part Building Block, part narrative) approach for Little Cypress.  This decision was motivated by 

the  recognition  that  the wetlands  associated with  Caddo  Lake  have  very  high  resource  value  and  the  concern 

expressed at the second workshop that the  limited high flow events defined by the building blocks might not be 

satisfactory  to maintain  the ecological health of  these  streams  that  currently experience  largely unaltered  flow 

regimes.  At this third flows workshop, the working group also made recommendations to develop flow regimes at 

ungaged sites based on drainage area adjustment. Having reached consensus on the science‐based environmental 

flow  regime  recommendations;  the  CFP  began  the  process  of  developing  flow  standards  and  strategies.    The 

results of this process will be presented in a subsequent report. 

2.1.2.1 BIG CYPRESS CREEK 

The initial building blocks for Big Cypress Creek, developed in May 2005, are presented in Figure 16.  (The revised 

final flow recommendations are in Figure 32) The flows portrayed in this figure include magnitudes, duration and 

seasonal  timing as well as a prediction of  the ecological outcome  that would be expected  if  the  flow  condition 

were attained. 

Page 33: Cypress SB3 20100826 Main - Texas

 

 29

 

Figure 16  Initial building blocks for Big Cypress Creek, May 2005. 

The low‐flow targets are based upon a variety of ecological objectives. The fish habitat objectives are based upon 

on overlay of fish habitat simulation modeling performed by the USFWS and USACE  (Cloud, 1984, USACE 1994). 

Other  targets were based upon  the  fish habitat modeling  results  as well  as  a  review of  the pre‐dam  low‐flow 

conditions for each month, as derived from the “Indicators of Hydrologic Alteration” (IHA) software. For instance, 

the 25th percentiles of the pre‐dam flows were  largely used as a basis for the July‐September flows  in dry years, 

medians were  used  for  setting  the October‐February  average  flows,  and  the  75th  percentiles were  used  as  a 

reference in setting wet year flows. 

The high‐pulse flows in December‐June were based upon pre‐dam flow records, ecological information provided in 

the Summary Report, and professional judgment. Based on analysis of pre‐dam flow data, historical durations and 

frequencies of these high flow events were somewhat larger than what is recommended by this matrix, however 

biologists  participating  in  these  discussions  felt  that  fish  and  other mobile  aquatic  and  amphibious  organisms 

would be able to move into or out of secondary channels and oxbow lakes fairly quickly (e.g., during a single day) 

during these high‐flow pulses. The duration of these events was set at 2‐3 days to allow for some ramping time on 

the  rising  and  falling  limbs  of  these  high‐flow  pulses.  Fluvial  geomorphologists  similarly  felt  that  necessary 

sediment  transport  could  also  occur  during  these  short  pulses.  After  some  discussion  about  the  fact  that  the 

median duration of high‐flow pulses was 11 days during the pre‐dam period, workshop participants agreed that 

the high‐flow pulse duration deserved close attention during the implementation and adaptive management phase 

Page 34: Cypress SB3 20100826 Main - Texas

 

 30

of the project. Similarly, because high‐flow pulses occurred with a median frequency of seven times per year in the 

pre‐dam period, the number of pulses to be targeted should be closely examined. 

The  6,000  cfs  target  for  channel maintenance  is  based  upon  the  assumption  that  the  pre‐dam  2‐year  flood 

magnitude approximates the bankfull discharge  level.  It  is well established  in the geomorphic  literature that the 

bankfull  discharge  is  the  level  at which  the majority  of  sediment  transport  occurs,  and  is  therefore  a  primary 

determinant of channel geometry  (i.e., width and depth of the river channel). An accurate determination of the 

bankfull discharge level has been identified as a top‐priority research need (Appendix B). Based upon this research, 

the flow magnitude and necessary recurrence interval for this building block was later refined. 

Somewhat  less  frequently  (i.e.,  at  3‐5  year  intervals),  a  flow  of  6,000‐10,000  cfs would  be  needed  to  provide 

additional ecological benefits including riparian seed dispersal, maintenance of aquatic habitats  in the floodplain, 

and maintenance of  riparian vegetation diversity. Even  less  frequently  (10 year  intervals), a  flood of 20,000  cfs 

would be needed to drive channel migration across the floodplain, which is an important mechanism for creating 

or maintaining habitat for both aquatic and terrestrial organisms. 

2.1.2.2 CADDO LAKE 

Caddo Lake received special attention because of its location at the bottom of the Cypress Basin.  It also has been 

designated as a “Wetland of International Importance” under the Ramsar Convention, now signed by 160 nations. 

(see caddolakeinstitute.us/ramsar.html) 

One outcome of the first workshop was an initial finding that management of flows in Big Cypress Creek may not 

need  to be adjusted  to benefit Caddo  Lake.   This was based  largely upon  the  fact  that Big Cypress  contributes 

about one‐third of  the  total  inflow  to Caddo Lake. The other  two‐thirds entering Caddo Lake comes  from other 

tributaries that are currently largely unaffected by dams or diversions. These relatively natural inflows from other 

tributaries  result  in a considerable  rise  in  lake  levels during  floods and can provide  flows  to Caddo sufficient  to 

inundate most of the wetlands around the lake. 

The dam for Caddo Lake, which  is a weir,  is fixed with the  lowest spillway at an elevation of 168.5 NGVD. Under 

present conditions, the lake level will drop below that elevation during low flows, but these reduced levels of the 

lake do not often exceed 2 feet. 

The workshop  participants  recommended  an  evaluation  of  the  option  of  installing  an  outlet  that would  allow 

lowering lake levels for a number of purposes, including nutrient management, cypress regeneration, and invasive 

species control.  (In 2010, the U.S. Army Corps of Engineers announced a plan to begin a study that would include 

the feasibility of replacing the weir with a dam that includes an outlet for lowering lake levels.) 

The  consensus was  also  that  nutrient  levels  in  Caddo  Lake  are  contributing  to  the  undesirable  abundance  of 

aquatic plants, phytoplankton blooms and conditions of  low dissolved oxygen.   The participants  concluded  that 

lake flushing could more efficiently be accomplished by drawing down the lake and that any such nutrient removal 

effort  should  be  carried  out  adaptively,  using monitoring  to  inform  decisions  about  the  necessary  design  and 

duration of the Project. 

Another potential benefit of  lake  lowering could be bald cypress regeneration  in areas that presently do not dry 

sufficiently to allow seed germination and seedling recruitment.  Such a drawdown might need to occur in at least 

two consecutive growing seasons for this goal, and, thus, could have significant impacts on use of the lake and the 

local economy. 

Page 35: Cypress SB3 20100826 Main - Texas

 

 31

JAN FEB MAR APR MAY JUN JUL AUG SEP OCT NOV DEC

Lake Level Building BlocksCaddo Lake

Low Lake Levels

Normal Lake

Levels

High Lake

Levels

Key

Dry Year

Avg Year

Wet Year

Lake refillingfollowing nutirent and sediment

flushing(requires approx. 15 days?)

Inhibition of upland tree species from encroaching into lake

fringe areas (occurs naturally; requires xx days of

Inundation every xx years)

Lake level lowering fornutrient and sediment flushing

(once every year for up to 10 years)

Lake level lowering forcypress regeneration

(once every 10-20 years, for twoconsecutive growing seasons

 

Figure 17  Initial building blocks for Caddo Lake, May 2005. 

2.1.2.3 LITTLE CYPRESS AND BLACK CYPRESS CREEKS 

The  second  Flows  workshop  expanded  the  geographic  scope  of  the  CFP  to  include  the  other  major  gaged 

tributaries  to Caddo Lake. There was a consensus  that  the building blocks  for Black and Little Cypress could be 

developed by using the approach used for the building blocks for Big Cypress Creek. The original summary report 

included  data  from  the  entire  basin  and  was  again  used  to  inform  workshop  participants’  decisions.  A 

supplemental  report was prepared  to  include a hydrological analysis of  the historical data  from  these  tributary 

gages using the IHA software. Breakout groups were again relied upon to facilitate discussions. 

One breakout group proposed that Black Cypress Creek be designated an “untouchable” stream, essentially setting 

a narrative  flow  regime on  top of  the building blocks  that would assure adequate pulse and  flood  flows  for  the 

Creek and to help protect Caddo Lake.  The group felt that Black Cypress Creek should remain in the as pristine a 

state  as possible  to  serve  as:  (1)  a  source of unregulated  flows  to Caddo  Lake;  (2)  a  reference  state  for other 

creeks; and (3) a refuge for biota.  (In 2010, The North East Texas Regional Water Planning Group recommended 

that Black Cypress Creek also be designated an Ecologically Unique Stream Segment.) 

This  breakout  group  also  proposed  that  historically  large  flood  events  should  still  occur  on  Little  Cypress,  to 

maintain the wetlands associated with Caddo Lake, however there was also a consensus that this segment may not 

require the same level of protection was recommended for Black Cypress. 

There was  consensus  on  the  use  of  the  IHA‐EFC  25th,  50th  and  75th monthly  low  flow  percentile  values  as 

reasonable starting values for the base flows.  There was some discussion of augmenting the IHA‐derived monthly 

percentiles with values developed  in the Physical HABitat SIMulation  (PHABSIM) study conducted by the USFWS 

(USFWS 84) and  it was suggested  that  the same could be done  for Little Cypress. The  recommended  flow  from 

PHABSIM for Black Cypress in September was 75 cfs while the monthly median flow was 3 cfs and for Little Cypress 

Page 36: Cypress SB3 20100826 Main - Texas

 

 32

the PHABSIM recommended September flow was 75 cfs while the median was 11 cfs. Stipulating an August and 

September  low  flow of 75  (seven to twenty times greater than the median  flow) would change the creeks  from 

ones that frequently had intermittent flow during the dry season to ones that had consistent elevated base flows. 

Therefore, the flows recommended by that study were not adopted in the Building Blocks. 

It was recognized that very  low flows, specifically the 25th percentile flows for August‐October, might result  in a 

series  of  disconnected  pools.    In  order  to maintain  the  connectivity  between  pools,  it was  proposed  that  the 

absolute minimum flows for Little and Black Cypress should not be less than 5 and 4 cfs, respectively.  

While there was a consensus to follow the Big Cypress approach for the high‐flow pulse target at the 2‐year flood, 

there was again  considerable discussion about what  this  flow  represents, e.g. whether  it  reflected  the bankfull 

flow or the effective discharge.  Based on the USGS’s preliminary analysis on Big Cypress, it was felt that the 2‐year 

flood may overestimate the physical bankfull flow.  Therefore the lower bound on the 95th percentile confidence 

interval of the 1.5‐year flood, which in Big Cypress was close to the bankfull observed by the USGS, was selected as 

a lower range and an upper range, to ensure that the water will get up steep banks in some areas. 

There was also consensus to develop building blocks for large floods in a manner similar to the approach used for 

as the building block for Big Cypress.  For Big Cypress, a building block for a  large flood stipulated that a flood of 

20,000 cfs  (approximately 10‐year recurrence  interval) should occur once every ten years on average.   Thus,  for 

Little and Black Cypress, floods of approximately 13,000 and 8,000 cfs for 2‐3 days every ten years were proposed 

for late winter or spring. 

 

Figure 18  Initial building blocks for Little Cypress Creek, October 2006. 

Page 37: Cypress SB3 20100826 Main - Texas

 

 33

 

Figure 19  Initial building blocks for Black Cypress Creek, October 2006. 

2.1.2.4 KNOWLEDGE GAPS AND RESEARCH PRIORITIES 

At each workshop, after preliminary  flow matrices were developed, participants  identified knowledge gaps and 

prioritized research tasks.  These  issues were grouped under the various  instream flow disciplines and workplans 

were developed to address the highest priority issues (Appendix B). 

The CFP has been  able  to  initiate work on  some of  these workplans  in order  to  address high priority  research 

needs. This has been due  to  the participation  in  the CFP of water managers  that have been willing  to  facilitate 

some  limited  implementation experiments that are probably beyond what might be expected  in a regular BBEST 

process.  To the extent possible, the workgroup has used these experiments to inform further environmental flow 

analysis and overlays. 

2.2 ENVIRONMENTAL FLOW ANALYSIS (OVERLAYS) 

"Environmental flow analysis" “means the application of a scientifically‐derived process for predicting the response 

of  an  ecosystem  to  changes  in  instream  flows  or  freshwater  inflows.”  [§Sec.  11.002  (15)]  In  the  CFP,  the 

environmental  flow  analysis  has  included  all  reasonably  available  science  described  in  Section  2.1.1  and  the 

collection and additional data and development of predictive models. 

Beginning  in  2008,  the  SAC  produced  a  number  of  guidance  documents  describing  the  application  of  overlays 

relating  to  biology,  geomorphology,  and water  quality  (SAC  2009a‐e). Although  some  CFP  study  elements  had 

already been  initiated when  this guidance was produced, an effort was made  to  incorporate and,  to  the extent 

possible,  adapt  the CFP  to  follow  the direction provided  in  these documents. The essential direction  from  SAC 

guidance has been  to develop a preliminary  flow matrix  including a  full  regime of  flow  components employing 

hydrological  statistics as a  starting point.   The SAC  then proposes  that  the BBESTs apply knowledge  from other 

scientific disciplines to refine this preliminary flow regime matrix by overlaying information from other disciplines. 

Page 38: Cypress SB3 20100826 Main - Texas

 

 34

The application of overlays in the CFP is described in the following sections.  The section on Biology focuses on the 

relationship between base  flows and  instream aquatic habitat.   This relationship was determined based on site‐

specific data  collections  and  instream habitat modeling.    The  section on Water Quality  reviews  existing water 

quality data and known impairments, describes the relationship between flow and water quality issues of concern 

and describes the judgment as to whether the recommended flow would likely cause the stream to fail to maintain 

water quality standards. The section on Geomorphology is focused primarily on high flow events and their ability 

to  transport  sediments  and maintain  the  channel  and  riparian  areas.  Finally,  the  Connectivity  section  relates 

primarily  to  overbank  flows  needed  to  inundate  riparian  and wetland  areas  associated with  the  creeks.    The 

primary  tools  used  to  address  this  issue  have  been  the  collection  of  elevation  discharge  data, modeling  and 

analysis using Geographic Information Systems (GIS) tools. The overlay process in the CFP was developed in several 

stages. Initial overlay information was compiled in the Texas A&M report and was used to refine a subset of flow 

matrix  numbers  at  the  2005 workshop.  Subsequently,  fieldwork  and  flow  experiments  addressing  information 

needs identified at the 2005 workshop have provided additional information that has been overlain to refine the 

initial building blocks. These overlay steps are detailed below.  

2.2.1 BIOLOGY The SAC guidance document for conducting biological overlay provides a five‐step process for applying biological 

information to refine or validate preliminary environmental flow recommendations. 

STEP 1. Establish clear, operational objectives for support of a sound ecological environment and maintenance of 

the productivity, extent, and persistence of key aquatic habitats in and along the affected water bodies. 

The  objective  of  the  environmental  flow  regime  recommendations  is  defined  by  the  legislation  and  the  CFP 

interpretation of that legislation is provided in Section 1.2. With reference specifically to the habitat requirement 

of the biological community found  in the Cypress basin, the operational objective  is to provide  instream "habitat 

conditions,  including  variability,  to  support  the  natural  biological  community"  and  "include  ranges  of  flow 

appropriate for wet, average and dry hydrologic conditions." (TIFP 2008)   This section, Section 2.2.1, will address 

instream aquatic habitat needs that are the primary function of base flows.  The section on connectivity addresses 

biological issues as related to riparian and watershed communities and the flows needed to maintain their health. 

STEP 2. Compile and evaluate readily available biological information and identify a list of focal species. 

Compilation and evaluation of readily available biological information occurred in four areas:  

1. Literature survey and summary report produced by Texas A&M,  

2. Review  and  analysis  of  the  site  specific  instream  flow  studies  that  have  been  conducted  in  the  basin 

including correspondence and meetings with their principle authors, 

3. New basin and reach level biological sampling, and  

4. Review of all available historical fish collections to analyze historical trends in the fish community. 

In  the  literature  review  and  summary  report  section on  aquatic  fauna  (Winemiller  and others  2005),  indicator 

species were  identified  based  on  their  flow  dependency  and whether  they were  of  conservation  or  economic 

concern. (Table 8) 

Page 39: Cypress SB3 20100826 Main - Texas

 

 35

Table 8  Indicator species with flow dependencies. 

Scientific Name Common Name Flow Dependency

Polyodon spathula paddlefish Dependent ‐ T&E

Esox niger chain pickerel Dependent ‐ Sport

Micropterus salmoides largemouth bass Dependent ‐ Sport

Aplodinotus grunniens freshwater drum Dependent ‐ Sport

Pteronotropis hubbsi bluehead shiner Responsive ‐ T&E

Ictiobus bubalus smallmouth buffalo Responsive ‐ non T&E

Ictiobus cyprinellus bigmouth buffalo Responsive ‐ non T&E

Notropis chalybaeus ironcolor shiner Responsive ‐ non T&E  

Basic life history information, especially reproduction and spawning, was provided as well as life cycle relationships 

to intra‐annual variation in flow magnitude. These relationships were depicted for each of the indicator species in 

figures similar to Figure 20.   A complete Cypress basin species  list  including their general flow dependencies was 

provided  in  the appendix  to  the  literature survey.   A general conclusion of  this survey  is  that  the Cypress basin 

contains a very diverse fish community that exploits a wide range of instream habitat conditions. 

 

Figure 20  Chain pickerel (backwater‐dependent species) life cycle relation to seasonal flow (portrayed relative to pre‐1957 median flows in 

Big Cypress Creek) (Winemiller and others 2005). 

In 1994, the USACE’s Engineer Research and Development Center (ERDC) produced the most comprehensive site‐

specific  evaluation  of  the  aquatic  community  in  the  Cypress  basin  to  date  (USACE  1994).    In  addition  to  the 

development of one‐dimensional hydrodynamic habitat models, discussed below, habitat specific fish collections 

were made  at  21  sites  in  Big  Cypress  Creek  from  April  to  August  1992.    Based  on  these  and  other  historical 

collections, fish guilds were derived from categories along two dimensions: preferred velocity  (swift water, slack 

water,  and  generalist)  and  spawning  substrate  (open water,  sand  and  gravel,  vegetation,  and  crevice). Habitat 

suitability  criteria  for  the  dominate  species within  these  guilds  (bold  in  red) were  developed  and  used  in  the 

habitat modeling.  (Figure 21)   These  curves allowed  the Corps  to model habitat  responses  to  flows  for  species 

representative of the various guilds. 

Page 40: Cypress SB3 20100826 Main - Texas

 

 36

Table 9   Habitat  guilds  for Cypress  and  Twelve‐mile Creek  fishes, based on preferred  velocities  (horizontal  axis  and  spawning  substrate 

(vertical axis). Evaluation species are indicated in red bold. (USACE 1994). 

 

Lacustrine/Generalist Slack Water Swift Water

Gizzard shad American eel Skipjack herring

Mosqultoflsh Threadfin shad Emerald shiner

Cypress minnow Mimic shiner

Silvery minnow Freshwater drum

Ribbon shiner

Red shiner Redfin shiner Chestnut lamprey

Green sunfish Pallid shiner Blackspot shiner

Orangespotted Bluehead shiner Striped shiner

Bluegill sunfish Pugnose minnow Ironcolor shiner

Redear sunfish River carpsucker Sand shiner

Largemouth bass Creek chubsucker Weed shiner

White Crappie Spotted sucker Yellow bass

Black crappie Blacktail redhorse White Bass

Golden topminnow Scaly sand darter

Flier Harlequin darter

Warmouth Goldatripe darter

Redbreast sunfish Redfin darter

Dollar sunfish River darter

Longear sunfish Blackside darter

Spotted sunfish Dusky darter

Bantam sunfish

Spotted bass

Mud darter

Bowfin Spotted gar Longnose gar

Common carp Shortnose gar Black buffalo

Golden shiner Alligator gar

Brook silverside Grass pickerel

Chain pickerel

Taillight shiner

Lake chubsucker

Smallmouth buffalo

Bigmouth buffalo

Starhead topminnow

Blackstripe topminnow

Blackspotted topminnow

Inland silverside

Banded pygmy sunfish

Bluntnose darter

Swamp darter

Slough darter

Bullhead minnow Blue catfish Blacktail shiner

Black bullhead Tadpole madtom

Yellow bullhead Flathead catfish

Channel catfish Pirate perch

Cypress darter

Prefered Velocities

S

p

a

w

n

i

n

g

 

S

u

b

s

t

r

a

t

e

O

p

e

n

S

a

n

d

 

a

n

d

 

G

r

a

v

e

l

V

e

g

i

t

a

t

i

o

n

C

e

r

v

i

c

Page 41: Cypress SB3 20100826 Main - Texas

 

 37

 

Figure 21  Habitat suitability criteria. (USACE 1994). 

SPOTTED

 BASS

SPOTTED

 SUCKER

Velocity Depth Instream Cover

BLACKTAIL SHINER

BLACKSIDE DARTER

IRON‐COLO

R SHINER

FLATH

EAD CATFISH

BLU

NTN

OSE DARTER

PICKER

LS

0.0

0.2

0.4

0.6

0.8

1.0

0.0 0.2 0.4 0.6 0.8 1.0 1.2

Suitability Index

Velocity (ft/s)

0.0

0.2

0.4

0.6

0.8

1.0

0.0 2.0 4.0 6.0 8.0 10.0

Suitability Index

Depth (ft)

0.0

0.2

0.4

0.6

0.8

1.0

0 1

Suitability Index

Instream Cover

0.0

0.2

0.4

0.6

0.8

1.0

0.0 0.2 0.4 0.6 0.8 1.0 1.2

Suitab

ility Index

Velocity (ft/s)

0.0

0.2

0.4

0.6

0.8

1.0

0.0 2.0 4.0 6.0 8.0 10.0

Suitab

ility Index

Depth (ft)

0.0

0.2

0.4

0.6

0.8

1.0

0 1

Suitab

ility Index

Instream Cover

0.0

0.2

0.4

0.6

0.8

1.0

0.0 0.2 0.4 0.6 0.8 1.0 1.2

Suitability Index

Velocity (ft/s)

0.0

0.2

0.4

0.6

0.8

1.0

0.0 2.0 4.0 6.0 8.0 10.0

Suitability Index

Depth (ft)

0.0

0.2

0.4

0.6

0.8

1.0

0 1

Suitability Index

Instream Cover

0.0

0.2

0.4

0.6

0.8

1.0

0.0 0.2 0.4 0.6 0.8 1.0 1.2

Suitability Index

Velocity (ft/s)

0.0

0.2

0.4

0.6

0.8

1.0

0.0 2.0 4.0 6.0 8.0 10.0

Suitability Index

Depth (ft)

0.0

0.2

0.4

0.6

0.8

1.0

0 1

Suitability Index

Instream Cover

0.0

0.2

0.4

0.6

0.8

1.0

0.0 0.2 0.4 0.6 0.8 1.0 1.2

Suitability Index

Velocity (ft/s)

0.0

0.2

0.4

0.6

0.8

1.0

0.0 2.0 4.0 6.0 8.0 10.0

Suitability Index

Depth (ft)

0.0

0.2

0.4

0.6

0.8

1.0

0 1

Suitability Index

Instream Cover

0.0

0.2

0.4

0.6

0.8

1.0

0.0 0.2 0.4 0.6 0.8 1.0 1.2

Suitab

ility Index

Velocity (ft/s)

0.0

0.2

0.4

0.6

0.8

1.0

0.0 2.0 4.0 6.0 8.0 10.0

Suitab

ility Index

Depth (ft)

0.0

0.2

0.4

0.6

0.8

1.0

0 1

Suitab

ility Index

Instream Cover

0.0

0.2

0.4

0.6

0.8

1.0

0.0 0.2 0.4 0.6 0.8 1.0 1.2

Suitability Index

Velocity (ft/s)

0.0

0.2

0.4

0.6

0.8

1.0

0.0 2.0 4.0 6.0 8.0 10.0

Suitability Index

Depth (ft)

0.0

0.2

0.4

0.6

0.8

1.0

0 1

Suitability Index

Instream Cover

0.0

0.2

0.4

0.6

0.8

1.0

0.0 0.2 0.4 0.6 0.8 1.0 1.2

Suitability Index

Velocity (ft/s)

0.0

0.2

0.4

0.6

0.8

1.0

0.0 2.0 4.0 6.0 8.0 10.0

Suitability Index

Depth (ft)

0.0

0.2

0.4

0.6

0.8

1.0

0 1

Suitability Index

Instream Cover

Page 42: Cypress SB3 20100826 Main - Texas

 

 38

A research priority identified at the first flows workshop was to assess the current biological status of the Cypress 

Basin fish assemblage.  Synoptic fish surveys as well as reach‐based surveys were conducted throughout the lower 

segments  of  Big  Cypress,  Little  Cypress  and  Black  Cypress  Creeks.  Synoptic  surveys  are  intended  to  provide  a 

complete picture of the existing community and are therefore not limited to a strict protocol designed to produce 

a consistent  level of sampling effort per site.   The reach‐based evaluations are  intended to produce comparable 

levels  of  effort  per  site  thus  allowing  comparisons  across  time  and  space  between  different  sampling  efforts. 

Reach‐based  sampling  following TCEQ protocols were  conducted on Big Cypress Creek by  the USGS and  recent 

comparable sampling efforts were undertaken on Black Cypress  (Crowe and Bayer 2005) and Little Cypress  (TSU 

unpublished data). Species richness, relative abundance, diversity, and a regional index of biotic integrity (IBI) were 

determined for the fish assemblages from each reach (Linam and others 2002).  

Finally,  regional  and  national museums  (including  the  Smithsonian National Museum  of Natural History,  Texas 

Natural History Collection (University of Texas), Tulane University Museum of Natural History, University of Kansas 

Museum  of  Natural  History  and  the  Texas  Cooperative Wildlife  Collection  (Texas  A&M)  and  past monitoring 

activities (primarily conducted by universities and state and federal agencies, including the recent sampling efforts 

undertaken as part of the current CFP effort (USGS 2006) were surveyed. The Fishes of Texas project at the Texas 

Natural History Museum was a particularly rich source of quality‐controlled data. Historical collections throughout 

the basin going back to the 1950s were compiled and organized in a geodatabase.  Following the approach used in 

the TIFP for the SB2 priority basins (Bonner and Runyan. 2007), these data were analyzed to determine fish species 

composition and abundances  in Big Cypress, Little Cypress and Black Cypress Creeks and to determine  if changes 

through time have occurred within each. The analysis also looked for these trends based on habitat, reproductive 

and trophic guilds. Given the rather patchy nature of this data through time, definitive findings are not possible, 

however  the  preliminary  finding  from  this  analysis  found  that  for  Big  Cypress  several  species  appear  to  be 

increasing  or  decreasing  through  time  and  that  as  a  group,  reproductive  guilds  that  include  riverine  obligate 

species appear to be declining while more generalist species appear to be increasing. 

Table 10   Trends  in reproductive guilds  in terms of relative abundances.    (Pelagophils: Obligate riverine species, broadcast‐pawn buoyant 

eggs within current, Lithophils:  Includes most Centrarchidae, spawn elliptical egg envelopes over rock or gravel nests.) 

Reproductive Guild 1953‐54 1995 2006

Non guarders

Open Substratum

Pelagophil is 22.49 7.25 0.072

Guarders

Nest Spawners

Lithophils 7.38 42.58 56.15  

After  conducting  this  analysis,  the  preliminary  conclusion  was  confirmed  by  the  discovery  of  an  unpublished 

manuscript by  Jan Hoover and  Jack Kilgore at ERDC.    (Kilgore and Hoover have been studying  the Cypress Basin 

since  the  1980s.)    Their  report  concluded  that  “the  ichthyofauna  of  the  Cypress  Creek  basin  appears  to  have 

shifted  from  assemblages  dominated  by  cyprinids,  percids,  and  cyprinidontids  in  the  1950s  to  assemblages 

dominated by  centrachids, other  cyprinids,  clupeids, and atherinids  in  the 1980s.”   This  shift  in  the  community 

from riverine specialists to generalist is a well‐documented response to altered flow regimes. 

In  summary  the  general  life  history  information,  provided  by  Texas  A&M,  for  species  with  different  flow 

dependencies suggest the value of a varied flow regime with a particular need for high flow pulses and overbank 

connectivity to riparian and oxbow areas.  The instream flow study produced by ERDC in 1993 suggests the need 

Page 43: Cypress SB3 20100826 Main - Texas

 

 39

for habitat diversity to provide  for the needs of the whole community and the historical trend analysis suggests 

that riverine‐dependent species may be declining relative to a more generalist‐dominated community. 

STEP 3. Obtain and evaluate geographically‐oriented biological data in support of a flow regime analysis. 

This section in the SAC guidance addresses the task of producing maps that might be used to describe the various 

river types that are encountered  in the basin.   Section 1.3 (Geographic scope)  includes much of this  information.  

This task seems particularly important for larger basins with a wider range of ecoregions and river types.  The sites 

identified for the development of  instream  flow recommendations by the CFP all  fall within the same ecoregion 

and the group concluded that they are sufficiently similar that different sites do not require the development of 

analysis that are fundamentally different. 

However the CFP is in the enviable position, given the time and resources that have been devoted to this project 

and the long history of instream flow evaluation conducted in the Cypress basin, of having site‐specific habitat data 

including new data that was collected as part of this study and data collected previously as part of earlier studies in 

the basin. 

Among  the  knowledge  gaps  and  research  priorities  identified  during  the  development  of  the  preliminary  flow 

recommendations were the need to assess instream habitat availability at different low‐flow levels.   Beginning in 

2006, the USGS led the field effort to collect data to fill in these knowledge gaps (USGS field work and analysis also 

included  investigations  related  to  geomorphic  characterizations  and  quantification  of  riparian  connectivity 

discussed below). 

In October 2005, a site reconnaissance was undertaken to determine the location of adequate points of access to 

Big Cypress Creek over  this segment, and  to complete a  rapid evaluation of habitat conditions and geomorphic 

features of  the channel. The  reconnaissance provided critical  information  in support of  the selection of a set of 

candidate  sites  for  baseline  assessment  of  reach‐based  geomorphic  features,  fish  assemblages,  and  for  the 

installation of pressure transducers for monitoring stage and water temperature. Three sites were selected on Big 

Cypress upstream of Jefferson. An additional site downstream of Jefferson, as well as a site on Black Cypress, was 

added subsequently.   

At each site, a channel reach was established based on a multiple of mean wetted channel width (20X) at low flow 

(Leopold  1964  and  Fitzpatrick  and  others  1998).  The  upstream  and  downstream  extents  of  each  reach were 

selected to  include at  least two of each geomorphic channel units (GCUs) such as riffle, runs, or pools. GCUs are 

fluvial geomorphic descriptors of  channel  shape and  scour patterns widely used  in  stream habitat assessments 

(Orth 1983; Ohio  Environmental Protection Agency 1989).  The GCU  sequence was duplicated  at each  reach  to 

facilitate comparisons between sites. 

Page 44: Cypress SB3 20100826 Main - Texas

 

 40

 

Figure 22  Map of USGS study sites. 

Habitat and geomorphic data were collected at the segment, reach and transect scales (Table 11). At the segment 

scale  (Big  Cypress  and  Black  Cypress  segments),  length  and  curvilinear  length were measured  and  from  these 

measures, gradient and sinuosity were determined (Fitzpatrick and others 1998).  In addition, side‐slope gradient 

was measured at ten regularly spaced  intervals to provide an  indication of the variability  in the valley slope over 

the length of the segment. At the four study reaches on Big Cypress (BC00, BC01, BC02, and BC03) and the one on 

Black Cypress (BLCK01), water‐surface gradient and the sequence, type and length of GCUs were determined. The 

horizontal and vertical extent of physical features such as undercut banks and woody snags were also surveyed.  

Within each  study  reach, eleven  cross‐section  transects were distributed equidistant  from  the upstream  to  the 

downstream.  Each  transect  extended  from  the  high‐bank  terrace  on  one  bank  to  an  equivalent  height  on  the 

opposite  bank.  For  each  transect,  a  number  of  measurements,  including  bank  slope  and  bank  height,  were 

recorded.  Within  the  stream  and  in  alignment  with  each  transect,  stream  depth,  velocity,  bed  substrate 

composition, and habitat cover were measured at three points including the channel thalweg, and two additional 

points each one one‐half the distance from the thalweg to the water’s edge of each bank.  

Page 45: Cypress SB3 20100826 Main - Texas

 

 41

Table 11  Segment, reach, and transect‐scale geomorphic and stream habitat measures. 

Segment Reach Transect (n = 11 per reach)

Segment length (m) Reach length Bankfull  height

Curvil inear segment length (m) Curvil inear reach length Bank slope

Segment gradient  Reach gradient Bankfull  width

Side‐slope gradient  GCU type and length Bank vegetative coverage

Thalweg profile Wetted channel  width

Depth

Velocity

Dominant and sub‐dominant substrate

Habitat cover

Canopy closure

Riparian buffer width and density  

A number of site‐specific instream flow studies have been conducted in the Cypress basins since the early 1980s.  

These studies generally  followed  the  Instream Flow  Incremental Methodology  (IFIM), which produces predictive 

relationships between flow and an ecological response, namely the amount of habitat available to specific species 

generally selected to represent larger habitat guilds. There were two studies undertaken simultaneously on Little 

and Black Cypress  (Cloud 1984, USACE 1987)  in response to reservoir proposals on those tributaries and a more 

recent one to evaluate a proposal to extend navigation on Big Cypress (USACE 1994).  

 

Figure 23  Map of previous Instream flow study sites. 

The results of these studies were used in an overlay process to inform the development of the preliminary building 

blocks (Section 2.1.2.1). However, these studies were not specifically designed to address the same objective as SB 

3, and  in  fact,  the methods and  findings  reached by  these studies are not entirely consistent with one another.  

The science of instream flows, while rooted in the same basic approaches to instream habitat modeling, has also 

evolved in the last two decades.  Perhaps just as important as the findings from these studies, is the fact that much 

Page 46: Cypress SB3 20100826 Main - Texas

 

 42

of  the  original  data  used  to  conduct  these  studies  including  cross‐section    surveys,  flow  versus water  surface 

elevation  rating  curves,  habitat  suitability  criteria  and  the  computer  input  files  for  the  1‐dimensional  Physical 

Habitat Simulation Models (PHABSIM) is available and has been reviewed and in some cases reanalyzed as part of 

the CFP. 

STEP 4. Parameterize the flow regime hydrological analysis using ecological and biological data.  

The preliminary hydrologic analysis for Big Cypress was conducted by Texas A&M using the Indicator of Hydrologic 

Alteration (IHA) software.  IHA is a forerunner to the HEFR, the hydrological statistics tool used in other BBESTs as 

part of SB 3.   While both of these tools  include functions not available  in the other, the results produced by  IHA 

appear to be very similar to what would have been produced had HEFR been available. Texas A&M provided the 

workshop participants complete  IHA  results  including statistics  for  the pre‐Lake O'  the Pines period  (1924‐1936) 

and the more recent period (1980‐2003). A similar analysis was produced based on gage data for Little and Black 

Cypress for the second flows workshop. The workshop participants agree to base the preliminary building blocks 

on the Pre‐impact period for Big Cypress.  This is consistent with TIFP and most of literature related to the science 

of instream flows. The technical approach of the TIFP, much of which has since been adopted in the SAC technical 

guidance documents, received a favorable external review by the NAS (NRC 2005).  The NAS (2005) report noted 

that "state‐of‐the‐science programs use natural  flow characteristics as a  reference  for determining  flow needs." 

Discussions of analysis provided in the summary report (Winemiller and others 2005), focused on the differences 

between the pre‐ and post Lake O' the Pines records.  Since there have been no major flow quantity alterations on 

Little and Black Cypress, the entire period of record was used for each of these gages. 

The  approach  utilized  in  the  CFP  follows  current  worldwide  consensus  regarding  theory  and  tools  for 

understanding and managing flow regimes. Over the  last 30 years, river scientists have  learned quite a bit about 

the  functioning  of  rivers  and  the  influence  of  flow  regime  on  aquatic  organisms,  geomorphology,  and  other 

characteristics of rivers (NAS 1992; Gordon et al. 2004; Dyson et al. 2003; NRC 2005; Thorp et al. 2006; Locke et al. 

2008).    Through  extensive  research,  river  scientists  and  biologists  have  developed  a  “natural  flow  regime 

paradigm” which  states  that  in  general,  the  ecological  integrity  of  river  ecosystems  depends  on  their  natural 

dynamic character, especially their natural flow variability. River flow regime, which many ecologists consider the 

key driver of river ecology and function,  influences habitat, biota, water quality and geomorphology of the rivers 

(Poff et al. 1997; Bunn and Arthington 2002; Cushing et al. 2006; Poff and Zimmerman 2009). For example, Bunn 

and Arthington (2002) conducted a literature review focused around four key principles to highlight the important 

mechanisms that link hydrology and aquatic biodiversity and to illustrate the consequent impacts of alterations to 

natural flow regimes. Tables 12‐15 summarize their findings. 

Page 47: Cypress SB3 20100826 Main - Texas

 

 43

Table  12    Summary  of  biotic  responses  to  altered  flow  regimes  in  relation  to  flow‐induced  changes  in  habitat  (principle  1).  (Bunn  and 

Arthington 2002). 

 

Table 13  Summary of life history responses to altered flow regimes (principle 2). (Bunn and Arthington 2002). 

Page 48: Cypress SB3 20100826 Main - Texas

 

 44

Table 14  Summary of biotic responses to loss of longitudinal or lateral connectivity (principle 3). (Bunn and Arthington 2002). 

Table 15  Summary of biotic responses to altered flow regimes in relation to invasion and success of exotic and introduced species (principle 

4) (Bunn and Arthington 2002). 

This  extensive  body  of  research  has  established  strong  support  for  the  links  between biological  processes  and 

aspects of flow variability. The safest and simplest approach to  insure that both natural variability and threshold 

conditions are restored or conserved is to mimic the natural flow pattern as closely as possible including variability 

patterns  (wet, dry  and  average  years,  seasonal),  and  associated duration  and magnitude of  flows. One way of 

doing this, which the CFP utilized, is by using software such as IHA and HEFR that provides quantifiable endpoints 

that describe this distribution and recommends flow regimes that attempt to duplicate these endpoints as closely 

as possible. 

These  types of desktop hydrologic  tools have been widely utilized  in  this  application  across  the world.    In one 

review of the use of such tools, Ogden and Poff (2003) reviewed 171 hydrologic indices from 420 sites across the 

USA and showed that the IHA method successfully characterizes all the major components of the flow regime. The 

results  from  their  study  showed  that  the  IHA  method  adequately  represented  the  majority  of  the  variation 

explained by  the entire population of 171  indices and  thus  captured  the majority of  the  information  available. 

Furthermore, the IHAs represent almost all of the major components of the flow regime, and therefore provide a 

good balance between objective selection of high information indices and accessibility in terms of computation. 

STEP 5. Evaluate and refine the initial flow matrix.  

Flow recommendations were evaluated at a third flows workshop in October 2008, based on analysis of the recent 

data collection efforts and of the physical habitat models available from previous studies.   Data collected by the 

USGS  in 2006‐07,  indicates  that  the base  flow  recommendation provide a  range of habitat diversity  relative  to 

available instream structure.  The dominant instream structures in the system are snags and cypress knees. During 

dry conditions, the lowest flows recommended are 8‐13 cfs (Jul‐Sep).  Water surface elevations were surveyed at 

Page 49: Cypress SB3 20100826 Main - Texas

 

 45

flow of 16.7 cfs and compared to surveys of instream snags (Figure 24).  This comparison indicates that that these 

low flows provide good access to this patchy but important instream habitat. In the range of flows from 40‐90 cfs, 

the base dry targets for October to February, these snags would begin to be inundated. 

 

Figure 24  Comparison of water surface elevations produced by base dry flows to instream structure (snags) at BC03. 

During wetter conditions, the dominant  instream structure  is cypress knees, which are only slightly  inundated at 

low  flows  and  progress  through  a  full  range  of  inundation  as  flows  increase  to  the  highest  base  flow 

recommendation of 536 cfs (Figure 25). 

Page 50: Cypress SB3 20100826 Main - Texas

 

 46

 

Figure 25  Comparison of water surface elevations produced by base wet flows to instream structure (Cypress knees) at BC03. 

Physical habitat models were used  to evaluate the availability of preferred habitat as defined by velocity, depth 

and  instream cover  suitability  criteria.   The primary output  from  these model  simulations are Weighted Usable 

Area (WUA) versus flow curves, which depict availability of preferred habitat conditions for species representative 

of the habitat guilds present in the stream. Figure 26 and Table 16 present WUA results for BG 02. At the third flow 

workshop in December 2008, the working group reviewed results from habitat models for other sites including two 

more on Big Cypress (BG 1 and BG 3) and two on Little (LT 3001 and LT 154) and one on Black (BL).  For the sites on 

Big Cypress monthly percent of maximum WUA was also  calculated  for building blocks derived  solely  from  the 

hydraulic analysis (IHA) and building blocks that would have resulted from statistics derived from the flow record 

after Lake O' the Pines (Post).  These results are provided in Appendix C. 

Page 51: Cypress SB3 20100826 Main - Texas

 

 47

 

Figure 26  Weighted usable area versus discharge at BG 02. 

Based on the WUA results, the amount of habitat (expressed as a percent of the maximum possible area) produced 

by  the  initial building blocks  is presented  in Table 16.   The  table  is color coded  to provide a quick visual  to  the 

percent of maximum  available habitat  showing  greater  than 90%  in  green, 75‐90%  in blue  and 50‐75%  in  red. 

Based on these results we see that very little habitat is available for any of the fish guilds at the low summer (Jul‐

Sep) base dry flows. Conversely, good to excellent conditions are produced by the base dry targets for much of the 

rest  of  the  year. During  average  years,  there  is  somewhat more  available  habitat  in  the  summer  and  a  slight 

decrease in the rest of the year as compared to the dry conditions targets. The wet base flow targets produce the 

most  habitat  in  the  summer  but  these  higher  flows  tend  to  decrease  available  habitat  in  the  rest  of  the  year 

(relative  to dry and average base  flows).   Similar  results were produced by considering an alternative period of 

record, one more reflective of current management of Lake O' the Pines, to develop a flows matrix.  It should be 

noted that while a great deal of quantitative results from a predictive model was reviewed by the working group, 

there is no formula for determining exactly how to select a flow recommendation from these results. 

0

10000

20000

30000

40000

50000

60000

70000

0 200 400 600 800 1,000

Habitat (ft2/1000ft)

Discharge (cfs)

SPOTTED SUCKER SPOTTED BASS PICKEREL

BlUNTNOSE DARTER FLATHEAD CATFISH IRONCOLOR SHINER

BLACKSIDE DARTER BLACKTAIL SHINER

Page 52: Cypress SB3 20100826 Main - Texas

 

 48

Table 16  Percent of maximum habitat BG 02 produced by building blocks recommended flow. 

 

At  the  third  flows workshop  (October 2008), participants  reviewed  the  information presented  in  Figure 26 and 

Table 16 and addressed the following issues.  

Does the change in habitat based on pre vs. post LOP conditions suggest a refinement? 

Should the group re‐evaluate modifications to the flow matrix from IHA outputs that were made based on 

reference to other studies? 

Should  there be  refinements made  to  compensate or mediate  for habitat  for  fishes  that appear  to be 

declining? 

SLACK WATER SWIFT WATER

SAND AND GRAVEL VEGITATION CREVICE SAND AND GRAVEL CREVICE

Dry

SPOTTED 

SUCKER

SPOTTED 

BASS PICKEREL

BlUNTNOSE 

DARTER

FLATHEAD 

CATFISH

IRONCOLOR 

SHINER

BLACKSIDE 

DARTER

BLACKTAIL 

SHINER

Jan 90 99% 98% 100% 100% 85% 100% 100% 86%

Feb 90 99% 98% 100% 100% 85% 100% 100% 86%

Mar 218 92% 98% 90% 94% 75% 83% 79% 100%

Apr 198 94% 99% 92% 94% 76% 86% 83% 100%

May 114 100% 100% 99% 100% 83% 99% 98% 92%

Jun 49 82% 85% 89% 87% 77% 85% 87% 64%

Jul 13 18% 20% 21% 16% 20% 21% 22% 10%

Aug 8 9% 10% 10% 7% 9% 11% 11% 4%

Sep 8 9% 10% 10% 7% 9% 11% 11% 4%

Oct 40 70% 77% 82% 73% 70% 74% 75% 53%

Nov 90 99% 98% 100% 100% 85% 100% 100% 86%

Dec 90 99% 98% 100% 100% 85% 100% 100% 86%

Avg

Jan 268 86% 96% 83% 91% 72% 79% 69% 97%

Feb 347 78% 92% 69% 85% 71% 72% 58% 90%

Mar 390 74% 90% 66% 81% 70% 69% 55% 87%

Apr 330 79% 93% 72% 86% 71% 74% 60% 91%

May 150 99% 100% 97% 98% 79% 95% 93% 98%

Jun 79 97% 97% 100% 99% 85% 99% 99% 82%

Jul 35 59% 68% 72% 61% 64% 65% 64% 45%

Aug 40 70% 77% 82% 73% 70% 74% 75% 53%

Sep 40 70% 77% 82% 73% 70% 74% 75% 53%

Oct 40 70% 77% 82% 73% 70% 74% 75% 53%

Nov 90 99% 98% 100% 100% 85% 100% 100% 86%

Dec 117 100% 100% 99% 99% 82% 99% 98% 93%

Wet

Jan 396 74% 90% 65% 80% 70% 69% 54% 87%

Feb 500 69% 88% 61% 71% 69% 66% 51% 81%

Mar 536 68% 87% 60% 69% 69% 65% 51% 79%

Apr 445 72% 89% 63% 75% 69% 67% 53% 84%

May 264 87% 97% 84% 92% 73% 79% 70% 97%

Jun 140 99% 100% 98% 98% 80% 96% 95% 97%

Jul 70 95% 95% 98% 98% 84% 97% 98% 78%

Aug 41 71% 78% 82% 74% 71% 75% 76% 54%

Sep 40 70% 77% 82% 73% 70% 74% 75% 53%

Oct 49 82% 85% 89% 87% 77% 85% 87% 64%

Nov 94 99% 99% 100% 100% 84% 100% 100% 87%

Dec 275 85% 96% 82% 91% 72% 78% 68% 96%

Page 53: Cypress SB3 20100826 Main - Texas

 

 49

Are all three base flow levels (wet/average/dry) necessary? 

Are the base flows needs upstream and downstream of Jefferson the same? 

Does the analysis suggest other areas of concern? 

The discussion  first  focused on  if and how  this analysis could be used  to validate or  refine  the preliminary  flow 

recommendations.   Generally,  the analysis  showed  that  the building blocks provide variability  in  stream habitat 

conditions.  Although the area of some habitat types would be relatively lower than others, this was assumed to be 

reflective of  the natural habitat conditions of  the stream, which  the  recommendations are  intended  to protect.  

One clear conclusion from the analysis was that habitat in the lower reach of Big Cypress Creek is less sensitive to 

changes in flow than in the upper reach. 

The  participants  agreed  that  this  type  of  evaluation  is  useful  in  providing  insight  into  what  the  base  flow 

recommendations  would  produce  in  terms  of  instream  habitat.  However,  given  the  lack  of  any  outstanding 

concerns  arising  from  this  analysis,  tempered by uncertainty  associated with biological data  and hydrodynamic 

models developed 15‐25  years ago,  the workgroup  concluded  that  the  results of  this evaluation  supported  the 

basic approach taken for low flows in the building blocks for the three rivers and that the results did not suggest 

further revisions to the approach or prior recommendations for those flows. 

2.2.2 GEOMORPHOLOGY  Geomorphic  investigations are  conducted as part of  instream  flow  studies  to evaluate how  the movement and 

transport of  sediments maintain  river  channels.   The most widely  referenced,  though not universally accepted, 

hypothesis that addresses this issue is that river channels are in a state of dynamic equilibrium that is governed by 

a  number  of  factors,  including  flow  rate,  sediment  characteristics  and  channel morphology  that  interact  and 

respond to adjustment from one another (Lane 1955). Many studies suggest that channel  instability can result  in 

significant deleterious impacts including:   

Increased erosion, 

Undercutting banks, 

Less succession riparian vegetation which can lead to reduced loading of course woody debris, an 

important component of instream habitat, 

Straightening and narrowing of channels, 

Removal of hydraulic controls for upstream reaches, inducing scour of upstream riffles, 

Typically wider, shallower stream beds, leading to increased temperature, 

Modification of pool‐riffle distribution and  

Altered flow paths. 

Given the multiple interactions that can affect sediment transport, guidance provided by the SAC has been to use 

effective discharge as an indicator of sediment transport.  The idea being that as long as the effective discharge is 

not  changed  dramatically,  then  there  is  reason  to  suspect  that  sediment  transport  processes will  continue  to 

function as they should.  The basic framework is to:  

1. Describe existing or historical conditions and calculate effective discharge, 

2. Develop a  reasonable approximation of a  future hydrograph  resulting  from  the  implementation of  the 

flow recommendations, and  

3. Evaluate potential impacts resulting from the changed flow regime. 

Page 54: Cypress SB3 20100826 Main - Texas

 

 50

Information provided in the literature survey addressed the first issue and provided an evaluation of the change in 

effective discharge based on  the  closure of Ferrells Bridge Dam and  filling of  Lake O'  the Pines.   Based on  this 

analysis  the working  group  recommended as part of  the  initial building blocks,  several high  flow events  at  the 

effective  discharge  (6,000  cfs).    At  the  same  time,  they  recognized  that  these  estimates would  benefit  from 

targeted research including:  

Collection of   baseline geomorphologic data  to assess  the responses during and  following  flow releases 

(including sediment characteristics, channel cross‐section  and general assessment of channel condition), 

and 

Estimate  sediment  budget  and  develop  better  characterization  of  sediment  composition  along  entire 

creek. 

These two tasks address two of the functions that relate geomorphic processes to a sound ecological environment.  

The  first  task directly addresses  channel  characteristics  that are maintained by  the  current  sediment  transport.  

This  task  is  being  addressed  as  part  of  a  contract with  the USGS  that  is  assessing  channel morphology  in  the 

regulated segment of Big Cypress Creek and compare these conditions with the channel morphologies observed in 

the unregulated  Little and Black Cypress Creeks.    Some of  the data and analysis  conducted under  this effort  is 

discussed  in Section 2.2.1.     The second task evaluates the ability of the stream flow to move sediments through 

the system. This ability was quantified by a calculation of stream power and effective discharge based on available 

information  provided  in  the  summary  report.    (Bankfull  flow  is  often  used  as  an  initial  estimate  of  effective 

discharge. Refinements to the bankfull estimates based on  field studies are address below under connectivity  in 

Section  2.2.4.)    The  SAC  provided  guidance  on  an  approach  to  refine  these  estimates  by  collecting  sediment 

samples  and undertaking  a modeling exercise  (SAM).   While  a  scope of work was developed  to perform  these 

tasks,  the work has yet  to be  completed. However,  it  is expected  that a more  thorough evaluation of effective 

discharge will be completed prior to the next flows workshop. 

2.2.3 WATER QUALITY Although  the  initial building blocks  for Big Cypress did not explicitly  consider water quality  issues,  the absolute 

minimum flows (summer dry base) were revised to provide a conservative estimate of flows necessary to maintain 

water quality standards.  The water quality concerns have been the focus of the development of building blocks for 

Caddo  Lake,  with  the  proposal  that  lake  levels  be  lowered  periodically  for  management  of  nutrients  and 

sediments. 

The  SAC guidance on  the application of water quality overlays  to  refine preliminary  flow matrices  includes  the 

following steps: 

Identifying current conditions and  trends  in water quality, mainly  in  relation  to  the  state water quality 

standards, 

Evaluating the relationship between flow and the water quality parameters of concern, and  

Determining whether changes are needed to the building blocks to address water quality issues. 

The first step was  included  in the  literature survey  (Winemiller and others 2005) and  in the review of the water 

quality  impairment  list (303d)  included  in the Cypress Basin Highlights report  (NETMWD 2010). (Section 2.1.1.3).  

Of  these  identified water  quality  issues,  dissolved  oxygen  (DO)  has  the  greatest  potential  for  impact  through 

prescriptive  flow  building  blocks  because  increased  velocity  provides  re‐aeration  and  mixing  to  increase  DO 

concentration. 

Page 55: Cypress SB3 20100826 Main - Texas

 

 51

The dissolved oxygen concentration of a water body has historically been considered one of the most  important 

water quality parameters to measure. High dissolved oxygen concentrations have been linked to high aquatic life 

use,  and  low  dissolved  oxygen  concentrations  have  been  linked  to  low  aquatic  life  use.  Dissolved  oxygen 

concentrations in water can be affected by many factors, especially water temperature and rates of re‐aeration. In 

streams, re‐aeration rates are often closely associated with stream  flow. TCEQ considers Black Cypress Bayou  in 

the  Big  Cypress Watershed  as  a  least‐impacted  stream  and  reference  stream within  the  South  Central  Plains 

ecoregion because of  limited human disturbance and minimal point and non‐point pollution sources. A study of 

Black Cypress Bayou by TCEQ during 2000  and 2001 was  conducted  to determine how  the  flow of  the  stream 

related to the aquatic life of the stream (Crowe and Bayer 2005). During both summers, the flow of the stream was 

below 7Q2 and  flow  intermittently with perennial pools. During August of 2001, 24 hr dissolved oxygen means 

were generally below 3 mg/L which is lower than the Texas Surface Water Quality Standard. Despite low dissolved 

oxygen  concentrations  during  this  critical  period,  the  aquatic  life  was  rated  as  high  to  exceptional.  A  Rapid 

Biological  Assessment  (RBA)  of  the  benthic macroinvertebrate  community  scored  in  the  intermediate  to  high 

categories, while  an  Indicators of Biotic  Integrity  (IBI) of  the  fish  community  scored  in  the high  to  exceptional 

categories. The report concluded that the fish assemblage  in the watershed has the ability to withstand periodic 

low summertime dissolved oxygen conditions of short durations. 

Given the finding that naturally occurring  low DO conditions do not appear to have significant detrimental effect 

on  the  biological  community,  the  CFP  did  not  include  a  category  to  the  building  blocks  for  subsistence  flows, 

though  this  issue was discussed  at  some  length.    There was  considerable discussion  that  very  low  flows occur 

naturally  in  the  unregulated  streams  and  the  general  consensus  that  these  conditions  are  an  acceptable 

component of the sound environment of this system.  Note the workgroup did recommend minimum base flows of 

5 and 4 cfs for Little and Black Cypress to ensure that the frequency of occurrence of pools becoming disconnected 

is not increased.  The workgroup also decided to increase the minimum flow recommendation in Big Cypress Creek 

up from 6 cfs to the 7Q2 value of 8.2.  This was done to provide a slightly more conservative estimate of the flow 

needed to maintain the DO standard in this segment. 

Watershed Protection Plan 

Concerns  raised  about  the  water  quality  impairments  in  the  CFP  led  to  an  agreement  with  TCEQ  for  the 

development  of  a  Watershed  Protection  Plan  (WPP)  in  2006  to  address  water  quality  issues  in  a  more 

comprehensive process. The Northeast Texas Municipal Water District has served as the watershed coordinator for 

the project. The WPP has provided new sources of information. It also helped expand the participation by scientist 

and stakeholders in the CFP.  There has been a significant effort to coordinate the work of the WPP and CFP.  The 

CFP, for example, serves as the hydrology work group for the WPP, which has two other work groups. 

While  there  has  been  important  collaboration,  the  two  processes  are  somewhat  different.    Both  provide  for 

participation  by  scientists  and  stakeholders,  but  the  work  of  the  WPP  is  guided  to  a  larger  degree  by  the 

stakeholder goals and TCEQ’s interests.  Thus, at TCEQ’s request, the WPP has not been used to address mercury 

impairments. It has instead focused on bacteria and DO impairments. During the first two years of the WPP, work 

focused on identifying potential short‐term solutions to the problems of giant salvinia (Salvinia molesta); a floating 

invasive aquatic plant, first discovered in Caddo Lake in 2006. 

In any case, water quality problems in most of the watershed have appeared to be more dependent upon sources 

than on flows.   The solutions, therefore, may depend more upon reductions  in the  loading of pollutants than on 

flow  regimes.    The  possible  exception  is  Caddo  Lake where  flushing  flows  and  lake  level  adjustments may  be 

Page 56: Cypress SB3 20100826 Main - Texas

 

 52

needed. The WPP process may provide a basis for refinements, but the preliminary modeling of loadings, flows and 

impacts together with proposals for load reductions will not be available until late 2010. 

The WPP and CFP have recognized the need to evaluate changes to pulse and flood flows and  in  levels of Caddo 

Lake for water quality and control of aquatic vegetation in the Lake.  The evaluation of options for changes to the 

dam at Caddo Lake will be part of a new study begun by the U.S. Corps of Engineers in 2010. That work will not be 

completed, however, for several years.  Changes to the dam and options for significant lake lowering are not likely 

to be made for many years. 

2.2.4 CONNECTIVITY The issue of riparian and wetland connectivity is of great importance in the Cypress Basin. The creeks in the basin 

support valuable bottomland hardwood and Cypress forests (Figure 27).  As noted in the biological section, many 

of the fish that inhabit this area rely on access to riparian and watershed areas for part of their life cycle. 

 

Figure 27  Bottomland Hardwood and Cypress forests associated with Cypress Creeks. 

Estimates of  the  flows needed  to maintain  this  connectivity  formed  a  critical  component of  the  initial building 

blocks and evaluation of  these estimates has been  the  focus of  considerable effort over  the  last  several  years.  

These efforts have  included experimental releases from Lake O' the Pines to test whether the flow prescribed  in 

the initial building blocks achieves desired overbank results, refinements to water surface elevation models (HEC‐

RAS) to produce coarse but  larger scale  inundation maps, and, most recently and still  in process, work analyzing 

high  resolution  satellite  imagery  to  develop  relationships  between  flow  and  area  inundated  and  thus  predict 

ecological benefits of higher flows to spatially explicit wetland communities. 

Page 57: Cypress SB3 20100826 Main - Texas

 

 53

Collection of high flow and stage data was the primary tool used to evaluate the high flow targets.  The first step in 

this process was to  install pressure transducers, which measure water elevation, at ten  locations on Big Cypress 

and three each on Little and Black Cypress.  

 

Figure 28  Pressure Transducers installed to measure water surface elevations. 

These instruments remained in place for up to a full year on Big Cypress and captured a full range of flows.  They 

were specifically deployed in advance of experimental releases made from Lake O' The Pines to test the overbank 

and connectivity that results from high flow events. From January 25th to February 3rd, 2007 the Corps stepped up 

releases from about 100 cfs to 500 cfs to 1800 cfs. (Figure 29) 

Page 58: Cypress SB3 20100826 Main - Texas

 

 54

 

Figure 29  Flow rate measured at nearby gage during experimental releases from Lake O' the Pines. 

Releases were held constant for several days to allow for a relatively static flow condition past each of the pressure 

transducers allowing the direct observation of water surface stage to flow rate. Throughout the rest of the year, 

the PTs recorded flow up to the maximum release from Lake O' the Pines equal to 3,000 cfs.  After processing the 

raw data and georeferencing their exact positions, a longitudinal profile of water surface elevation for a range of 

flows was developed. (Figure 30)  

Page 59: Cypress SB3 20100826 Main - Texas

 

 55

 

Figure 30  Longitudinal profile of water surface elevation in Big Cypress Creek. 

This  data was  then  used  to  produce  an  inundation map  based  on  an  available  digital  elevation model  of  the 

watershed. (Figure 31)   These results were consistent with observations made during the experimental releases.  

Namely, that riparian areas in the segment of Big Cypress upstream of Jefferson are inundated at flows well below 

the initial overbank estimate of 6,000 cfs.  Downstream of Jefferson where the channel is much wider and deeper, 

there is no overbank until below the confluence with Little and Black Cypress. 

LOP

BC03

COE04

BC02

COE07

COE09

BC01 BCJEFF BC00 COE16COE20

165.00

170.00

175.00

180.00

185.00

190.00

195.00

200.00

5863687378

Water Surface Elevation

River Mile

100.00

500.00

1750.00

3000.00

Page 60: Cypress SB3 20100826 Main - Texas

 

 56

 

Figure 31  Area inundated at 3,000 cfs release. 

Additional work to more precisely quantify riparian connectivity is currently underway on two fronts.  First, as part 

of the work undertaken by the USGS and the Corps of Engineers, 24 cross‐section s were surveyed in Big Cypress 

Creek.  These along with the PT data are being used to calibrate a HEC‐RAS model that will be used to make a more 

accurate prediction of water surface at flows not observed directly and potentially to facilitate additional analyses 

related to sediment transport and water quality.   Finally, a study has recently been  initiated similar to the work 

done  by  the  Sabine  Neches  BBEST  to  analyze  satellite  imagery  and more  directly  relate  inundation  areas  to 

wetland plant communities. 

2.3 ENVIRONMENTAL FLOW REGIME RECOMMENDATION 

The building blocks developed at the first two flow workshops (May 2005, October 2007) were revised at the third 

workshop  in  December  2008  based  on  additional  data  that  had  been  collected  and  the  environmental  flow 

(overlays) analysis  that had been  conducted.   With  respect  to  the  recommendations  for Big Cypress Creek,  the 

consensus was to largely adopt the preliminary matrices. It is important to note that these values had already been 

modified  from a purely hydrologic analysis  in  considering  the other  riverine disciplines as part of  the  literature 

survey and summary report. Nonetheless, the subsequent additional environmental flow analysis did result in the 

modification  of  several  recommended  flows.   Values  in  red  are  those  that were  not  calculated  as  part  of  the 

hydrologic analysis using IHA, but are refinements and adjustments to the building blocks based on the application 

of overlay analysis. Some these adjustments were made in the development of the preliminary building blocks by 

considering the information presented in the literature survey, while others were modified based on the analysis 

that has been preformed subsequently. 

Page 61: Cypress SB3 20100826 Main - Texas

 

 57

 

Figure 32  Big Cypress Creek Flow Regime Recommendation. 

With  respect  to  base  flows,  the workgroup  agreed  that  the  results  of  the  analyses  performed  as  part  of  the 

biological  overlay  (Section  2.2.1)  confirmed  the  basic  framework  of  developing  a  range  of  base  flow 

recommendations based primarily on historical pre‐development  flow  records.   Generally,  the  analysis  showed 

that  the  building  blocks  derived  primarily  from  pre‐impact  flow  records,  provide  variability  in  stream  habitat 

conditions.  Although the area of some habitat types would be relatively lower than others, this was assumed to be 

reflective of  the natural habitat conditions of  the stream, which  the  recommendations are  intended  to protect.  

One  conclusion  from  the  analysis was  that habitat  in  the  lower  reach of Big Cypress Creek  is  less  sensitive  to 

changes  in flow than  in the upper reach. This  is due to the fact that Big Cypress Creek has been channelized and 

deepened  downstream  of  Jefferson. While  flow  recommendations  derived  from  a  pre‐development  period  of 

record  appear  to be  supportive of  ecological  functions  in  river  segments  that have not  experienced  significant 

structural modifications (e.g. Big Cypress upstream of Jefferson and the unregulated tributaries), these flows may 

not be sufficient  to  restore  this variability  to a segment  that has undergone significant structural modifications. 

The  workgroup  agreed  that  this  type  of  evaluation  is  useful  in  providing  insight  into  what  the  base  flow 

recommendations would produce in terms of instream habitat, however there was also some reluctance to make 

adjustment to the building blocks based on biological data and habitat models that are 15‐25 years old, without  

first  providing  a more  recent  validation  of  these  results.  A  Clean  River  Program  special  study  has  since  been 

initiated that will include mesohabitat specific sampling to further validate or refine results from these models. 

Page 62: Cypress SB3 20100826 Main - Texas

 

 58

Regarding low flows, the workgroup decided to adopt a slightly more conservative approach to ensure that for dry 

conditions  in Big Cypress Creek during July through September flows are adequate to protect water quality.   The 

workgroup decided  to adopt  the 7Q2  flow value developed by  the state water quality standards and permitting 

system equal to of 8.4 cfs for this segment of Big Cypress Creek until additional data or analysis indicates another 

value should be used. This is higher than the low flow proposed in the building block of 6 cfs.  For Little and Black 

Cypress Creek the absolute minimums were adjusted up from the purely hydrologic (IHA) analysis, to 5 and 4 cfs 

respectively. 

Field work and other analysis was performed by USGS to evaluate the preliminary high flow recommendations for 

Big Cypress Creek.  The analysis of observed high flow releases from Lake O' the Pines by the USGS (Section 2.2.4) 

resulted  in  changes  to  the  recommendation  for pulse  flows  for Big Cypress Creek.   This analysis  indicated  that 

bankfull flows occur below 3,000 cfs.  The flows needed for bankfull conditions also changed from the upper reach 

(generally above  Jefferson)  to  the  lower  reach  (below  Jefferson).   While valuable wetland  resources depend on 

overbank flows in the lower segment, it seems clear that for the near future these events will be driven by inflows 

from the unregulated Black and Little Cypress Creeks. The workgroup decided to change the larger high flow pulse 

from 6,000 cfs to 2,500 cfs, which appears to provide a good approximation of bankfull flow  in the upper reach.  

The lower flood flow was then changed to a range from 3,000 cfs to 10,000 from the prior range of 6,000 to 10,000 

to  reflect  that  there was good connectivity occurring at  flows as  low as 3,000 cfs.    It  is worth noting  that while 

these adjustments  reflect new understanding  related  to overbank  flows, additional analysis will be necessary  to 

evaluate their effect on sediment transport. 

Concern was also raised about the  lack of building blocks for James Creek and a number of small streams  in the 

basin.  Because these streams do not have gages, it was agreed that the IHA approach used for Big, Little and Black 

Cypress Creeks could not be applied. Instead, the group agreed that flow regimes for these creeks should be based 

on  the  building  blocks  for  Big  Cypress  Creek  with  a  proportional  adjustment  for  the  different  sizes  of  the 

watersheds. 

In  addition  to describing  the  flow magnitudes necessary  to  achieve desired  ecological outcomes,  an  SB 3  flow 

standard, and ultimately the rule developed by TCEQ, should also include the attainment frequencies at which the 

various flow components must be met.   Although attainment targets were not explicitly defined by the CFP, the 

guiding principal behind the project, as discussed in Section 2.2.1, is the natural flow paradigm, which says that the 

best way to maintain a sound ecological environment  is to mimic the natural flow pattern as closely as possible 

including variability patterns  (wet, dry and average years,  seasonal), and associated duration and magnitude of 

flows.  With that concept in mind, historical frequencies of the various recommendations were calculated as well 

as the predicted attainments under potential future flow scenarios.  A discussion paper describing the process  in 

determining attainment goals and the issues that need to be considered as part of this process was prepared and 

presented at the December 2008 flows workshop and it is included in Appendix D.  Appendix E (also presented at 

the December 2008 workshop) extends  further  into  the  realm of  implementation with an example of how  the 

various flow conditions (dry, average and wet) could be triggered. 

The most significant revision to the recommendations relates to the adoption of narrative standards for Black and 

Little Cypress Creeks; a concept which had been proposed  in the 2006 workshop.   The confluences of Little and 

Black Cypress Creek with Big Cypress Creek are  just upstream of Caddo  Lake and high  flows  in Black and  Little 

Cypress can provide relatively high flows to the wetlands and lake, even with the reduced flows from Big Cypress 

due to the existence of Lake O’ the Pines.  These high flows are needed for inundation of wetlands associated with 

Caddo  Lake.   Although  no  specific  numbers  or  limitations were  proposed  by  the workgroup,  a  consensus was 

reached  that  a  significant  proportion  the  entire  population  of  overbank  flows,  not  just  those  at  the  specific 

Page 63: Cypress SB3 20100826 Main - Texas

 

 59

magnitudes  depicted  in  the  building  blocks,  should  be  excluded  from  future  diversions.    Consistent with  the 

resource values of the two tributaries, a greater level of protection was stipulated for the regionally least impacted 

stream, Black Cypress, than for the relatively more modified Little Cypress.  

While not done before or at the December 2008 flows workshop, several options exist for a quantitative approach 

for implementing these narrative standards based on riverine and wetland science. This is an area where the line 

between pure science and the value that stakeholders associate with these resources  is  less sharp.    In any case, 

after the 2008 meeting, an example of an implementation approach was developed and it is provided in Appendix 

F.  While developed after the third flows workshop, it has been reviewed by some workgroup members. It is just 

one example of how a narrative standard could be implemented. 

3 CONCLUSIONS Among the many similarities shared by the SB3 and SPR approaches is the acknowledgement that data limitations 

and incomplete understanding of ecological processes leads to the development of imperfect environmental flow 

recommendations. In order to address these shortcomings both of these processes have adopted the approach of 

employing  adaptive  management  so  that  new  information  can  be  incorporated  into  subsequent 

recommendations.  The adaptive management process is developed in several steps including the establishment of 

a schedule to review recommendations, the application of targeted research to gain a higher level of certainty in 

the  recommended  flows,  and  development  of  ecological  indicators  to  monitor  the  efficacy  of  the 

recommendations.    In  the SB 3  legislation  these  steps are  required as part of  the development of a workplan. 

[§Sec. 11.02362  (p)]   The CFP has established a three‐year schedule to review the current recommendations, by 

which time they should have additional information from targeted research including:  

1. Water quality work from the Watershed Protection Plan,  

2. Mesohabitat specific monitoring of recommended base flows via a CRP special study, 

3. Application of sediment transport modeling (SAM), 

4. Analysis of digital imagery data to relate areas of wetland inundation to flows, 

5. Additional experimental releases from Lake O’ the Pines, 

6. Application of daily  timestep  reservoir operations model  to evaluate  impact of  flow  targets on 

reservoir storage,  and 

7. New projections on water needs in the region by the Region D Water Planning Group. 

Finally, the CRP is in the process of establishing ecological indicators and process for evaluating the efficacy of the 

flow recommendations.  An early draft of this effort is included in Appendix G. 

   

Page 64: Cypress SB3 20100826 Main - Texas

 

 60

REFERENCES Annear, T., I. Chisholm, H. Beecher, A. Locke, P., Aarrestad, C. Coomer, C. Estes, J. Hunt, R. Jacobson, G. Jobsis, J. 

Kauffman,  J. Marshall,  K. Mayes,  G.  Smith,  R. Wentworth,  C.  Stalnaker.  2004.  Instream  flows  for  riverine 

resource stewardship. 2nd edition. IFC. Cheyenne, Wyoming.  

Arthington A.H., S.E. Bunn, N. L. Poff, and R.J. Naiman. 2006. The challenge of providing environmental flow rules 

to sustain river ecosystems. Ecological Applications, 16(4), 2006, pp. 1311–1318 

Barrett, M.L., 1995. Sedimentary record of a 19th century Red River raft lake: Caddo Lake, Louisiana, The Compass, 

Journal of Sigma Gamma Epsilon 72: 3‐11. 

Bonner,  T.  and D.  Runyan.  2007.  Fish  Assemblage  Changes  in  Three Western Gulf  Slope Drainages.  Report  to 

TWDB, Austin, TX.  

Bunn, S.E. and A. H. Arthington. 2002. Basic principles and ecological consequences of altered  flow  regimes  for 

aquatic diversity. Environmental Management 30(4): 492‐507. 

Chin, A., and Bowman, J.A., 2005. Changes in flow regime following dam construction, Yegua Creek, south‐central 

Texas. In: Norwine, J., Giardino, J.R., and Krishnamurthy, S. (eds.), Water for Texas, College Station: Texas A&M 

University Press, 166‐177.  

Chin, A., Harris, D.L., Trice, T.H., and Given, J.L., 2002. Adjustment of stream channel capacity following dam 

closure, Yegua Creek, Texas. Journal of the American Water Resources Association 38: 1521‐1531.  

Church, M., 1978. Palaeohydrological reconstructions from a Holocene valley fill. In: Miall, A.D. (ed.), Fluvial 

Sedimentology, Calgary: Canadian Society of Petroleum Geologists, Memoir 5: 743‐772. 

Cloud, T. 1984. Planning aid report on the aquatic resources of the Cypress Bayou Basin, Texas. USFWS, Ecological 

Services, Arlington, Texas.  

Crowe, Art and Charles Bayer. 2005. A biological, physical, and  chemical  survey of a  least‐impacted watershed: 

Black Cypress Bayou (Creek), Texas, 1995‐2005. Texas Commission on Environmental Quality (TCEQ), November 

2005.  

Cushing, C.E., K.W. Cummins, and G.W. Minshall. 2006. River and stream ecosystems of the world. University of 

California Press. Los Angeles, California.  

Dyson, M. et al. 2003. Flow: essentials of environmental flows. IUCN 

Fitzpatrick, F.A., Waite, I.R., D. Arconte, P.J., Meador, M.R., Maupin, M.A., and Gurtz, M.E., 1998, Revised Methods 

for Characterizing Stream Habitat  in the National Water‐Quality Assessment Program, USGS Water Resources 

Investigations Report 98‐4052, 77 p. 

Gordon, N.D., T.A. McMahon, B.L. Finlayson, C.J. Gippel, and R.J. Nathan. 2004. Stream Hydrology: an introduction 

for ecologists. John Wiley and Sons. 

Howells, R.G., 1996, Preliminary survey of freshwater mussels of the Big Cypress Bayou system, Texas, Texas Parks 

and Wildlife Department, Ingram, Texas, pp., 8. 

Knighton, D. 1998. Fluvial Forms and Processes: a New Perspective. London: Arnold. 

Page 65: Cypress SB3 20100826 Main - Texas

 

 61

Kondolf,  G.M.,  1997.  Hungry  water:  effects  of  dams  and  gravel  mining  on  river  channels.  Environmental 

Management 21: 533‐551. 

Leopold, L.B., Wolman, M.G., and Miller, J.P., 1964. Fluvial Processes in Geomorphology. San Francisco, Freeman.  

Linam, G.W., Kleinsasser, L.J., and Mayes, K.B., 2002, Regionalization of the index of biotic integrity for Texas 

streams: Texas Parks and Wildlife Department, River Studies Report 17, 

www.tpwd.state.tx.us/publications/pwdpubs/media/pwd_rp_t3200_1086.pdf 

Lisanti, J., 2001. Measuring modern sedimentation rates in Caddo lake (LA, TX) using 137 Cs depth profile. Gulf 

Coast Association of Geological Societies Transactions LI: 459‐461. 

Locke, A., C. Stalnaker, S. Zellmer, K. Williams, H. Beecher, T. Richards, C. Robertson, A. Wald, A. Paul, T. Annear. 

2008.  Integrated approaches to riverine resource management. Instream Flow Council.  

NAS.  1992.  Restoration of Aquatic Ecosystems. NRC. Washington, D.C. 

(NETMWD) Northeast Texas Municipal Water District. 2010. Cypress Creek Basin Highlights Report 

NRC  (National  Research  Council),  2005.  The  science  of  instream  flows  –  A  review  of  the  Texas  Instream  Flow 

Program: Washington, D.C., National Academies Press, books.nap.edu/catalong/11197.html 

Ogden,  J.D. and N.L. Poff. 2003. Redundancy and  the choice of hydrologic  indices  for characterizing  streamflow 

regimes.  River Research and Applications 19:101‐121.  

Ohio Environmental Protection Agency, 1989, Biological criteria for the protection of aquatic life, v. III. 

Standardized biological field sampling and laboratory methods for assessing fish and invertebrate communities: 

Ohio Environmental Protection Agency, 58 p. 

Orth, D.J., 1983, Aquatic habitat measurements, in Nielsen, L.A., and Johnson, D.L>, eds., Fisheries Techniques, 

Chapter 4: Bethesda, Md., American Fisheries Society, p. 612‐84.  

Phillips, J.D., 2003. Toledo Bend Reservoir and geomorphic response in the Lower Sabine River. River Research and 

Application 19: 137‐159. 

Phillips, J.D., Slattery, M.C., Musselman, Z.A., 2004. Dam‐to‐delta sediment inputs and storage in the lower trinity 

river, Texas. Geomorphology 62: 17‐34. 

Poff, N.L., J.D. Allan, M.B. Bain, J.R. Karr, K.L. Prestegaard, B.D. Richter, R.E. Sparks and J.C. Stromberg. 1997. The 

natural flow regime. BioScience. 47 (110: 769‐784.  

Poff, N.L. and J.K. Zimmerman. 2009. Ecological responses to altered flow regimes: a  literature review to  inform 

the science and management of environmental flows. Freshwater Biology 1‐12.  

Richter,  B.D.,  R.  Mathews,  D.  L.  Harrison,  R.  Wigington.  2003.  Ecologically  sustainable  water  management: 

Managing river flows for ecological integrity. Ecological Applications, Vol. 13, No. 1. 206‐224. 

Richter,  B.D.,  A.T.  Warner,  J.Meyer  and  K.  Lutz.  2006.  A  collaborative  and  adaptive  process  for  developing 

environmental flow recommendations. River Research and Applications 22:297‐318. 

SAC (Scientific Advisory Committee). 2009a‐c. Various guidance documents on use of hydrological, geomorphic, 

water quality and biological data for development of instream flow recommendations.  

Page 66: Cypress SB3 20100826 Main - Texas

 

 62

SAC (Scientific Advisory Committee). 2010. Lessons learned from initial SB 3 BBEST activities.  

(SAC) Study Commission on Water for Environmental Flows. 2004. Final Report Science Advisory Committee Report 

on Water for Environmental Flows, Senate Bill 1639, 78th Legislature. 158 pp. 

Slack, J.R., Lumb, A.M., Landwehr, J.M., 2001. Hydro‐Climatic Data Network (HCDN): Streamflow Data Set, 1874 – 

1988. United States Geological Survey Water‐Resources Investigations Report 93‐4076. 

(http://pubs.water.usgs.gov/wri934076)  

TCEQ  (Texas  Commission  on  Enviornmental  Quality,)  Texas  Parks  and Wildlife  Department,  and  Texas Water 

Development Board. 2008.  Texas Instream Flow Studies: Technical Overview. Texas Water Development Board 

Report 369. Austin, Texas 

Thorp,  J.H., M.C.  Thomas  and M.  D.  DeLong.  2006.  The  riverine  ecosystem  synthesis:  biocomplexity  in  river 

networks across space and time. River Research and Applications 22:123‐147.  

TIFP (Texas Instream Flow Program). 2008.  Texas Instream Flow Studies: Technical Overview. Texas Water 

Development Board Report 369. Austin, Texas 

Texas Water Development Board (TWDB), 2004. 

(http://www.twdb.state.tx.us/assistance/lakesurveys/compsurveys.asp)  

U.S. Army Corps of Engineers, 1987. Application of the habitat evaluation procedures in the Cypress Bayou Basin, 

Texas. 

U.S. Army Corps of Engineers, 1994. Red River Waterway Project, Shreveport, LA, to Daingerfield, TX, Reach 

Reevaluation Study In‐Progress Review.  

Winemiller,  K.O.,  ,  A.  Chin,  S.  E.  Davis,  D.  L.  Roelke,  L. M.  Romero,  and  B.  P. Wilcox.  2005.  Summary  Report 

Supporting the Development of Flow Recommendations for the Stretch of Big Cypress Creek below Lake O’ the 

Pines Dam 

   

Page 67: Cypress SB3 20100826 Main - Texas

 

 63

LIST OF AVAILABLE APPENDICES Appendix A  Summary of the Process 

Appendix B  Data Collection and Research Priorities 

Appendix C  Habitat Modeling 

Appendix D  Attainment Targets 

Appendix E  Implementation Example 

Appendix F  Narrative Standards 

Appendix G  Indicators (in progress draft) 

Page 68: Cypress SB3 20100826 Main - Texas

DRAFT 

 1

CYPRESS FLOWS PROJECT ENVIRONMENTAL FLOWS REGIME AND ANALYSIS 

APPENDICES 

LIST OF AVAILABLE APPENDICES Appendix A  Summary of the Process 

Appendix B  Data Collection and Research Priorities 

Appendix C  Habitat Modeling 

Appendix D  Attainment Targets 

Appendix E  Implementation Example 

Appendix F  Narrative Standards 

Appendix G  Indicators (in progress draft) 

 

Page 69: Cypress SB3 20100826 Main - Texas

APPENDIX  A SUMMARY OF THE PROCESS {This document is in the format that was used throughout the Cypress Flow Project. Much of the information has been include in the final Environmental Flow Regime and Analysis Recommendations Report.} 

REPORT ON THE

ENVIRONMENTAL FLOWS PROJECT FOR THE CYPRESS RIVER BASIN

A Report of the The Flow-Ecology Project

Sponsored by the Nature Conservancy–U.S. Corp of Engineers Sustainable Rivers Program and the Caddo Lake Institute

& The Hydrology Workgroup

of the Watershed Protection Plan for the Caddo Lake Watershed Coordinated by the North East Texas Municipal Water District

Interim Report: November 2008 Draft Final February 2009, updated August 2010

© John Winn

The Sponsors acknowledge and thank all those who have participated in the Project and especially those whose funding has helped pay for the work, including the Coypu Foundation, Magnolia Charitable Trust, the Meadows Foundation, American Electric Power, the North East Texas Municipal Water District, Texas Commission on Environmental Quality, the U.S. Army Corps of Engineers, the U.S. Environmental Protection Agency, the Fish and Wildlife Service Program on Wildlife Without Borders—Mexico, Latin America and the Caribbean, and the U.S. Geological Survey.

Page 70: Cypress SB3 20100826 Main - Texas

TABLE OF CONTENTS

Summary 1 A Science and Stakeholder Based Process 2 The Initial Consensus to Pursue the Project 2 Identifying Scientists and Stakeholders 3 Literature Review and Summary Report 3 First Flow Workshop - May 2005 4 Building Blocks for Big Cypress Creek 5 Building Blocks for Caddo Lake 6 Initial Testing of Recommended Flows & Additional Research 7 Watershed Protection Plan 7 Second Flow Workshop & First Hydrology Workgroup Meeting - October 2006 8 Building Blocks for Little and Black Cypress Creeks 8 Further Testing of Recommended Flows & Additional Research 10 Third Flow Workshop & Second Hydrology Workgroup Meeting and Beyond - 10 December 2008 Role of Senate Bill 3 11 Refinement of Building Blocks and Flow Regimes 12 Development of Recommendations for Environmental Flow Standards and Strategies 15 Planning for Future Work 17 Attachments: 19 1. Map of the Cypress River Basin 2. Map of the Caddo Lake Watershed 3. Map of Caddo Lake Watershed Designated as Ramsar Wetlands of International Importance 4. Lists of Major Participating Organizations and Individual Participants 5. Time Table for Major Activities 6. Lake O’ the Pines and the Changes in Flows with Construction of the Dam 7 Key Provisions of Senate Bill 3 8. Dam and Impoundment Statistics for Caddo Lake 9. Lake O’ the Pines Operating Rule Curve

Page 71: Cypress SB3 20100826 Main - Texas

1

SUMMARY

The Cypress Basin Flows Project was initiated in 2004 after the State made the decision that no new water rights would be granted for the purpose of assuring adequate flows in rivers, lakes and bays. Instead, the state leaders proposed and enacted a 2007 law (now “Senate Bill 3”) to provide a process for setting aside water for environmental flows in Texas.

Goal: The Project seeks to assure adequate environmental flows to sustain the ecological, recreational, and economic values of rivers streams and lakes in the Cypress Basin watershed with special emphasis on Caddo Lake and Big Cypress Creek. During the first phase of the Project, there were four major objectives:

1. An SB 3 Flow Reservation or Set Aside: Develop recommendations for SB 3-type “environmental flow standards” for a state reservation of water in the basin based on a consensus of scientists and stakeholders. 2. A New Release Rule for Lake O' the Pines: Develop recommendations for changes in the operations of the dam at Lake O’ the Pines by the Corps of Engineers and NETMWD to provide a more natural pattern of releases, while assuring flood control, water supply, and the other purposes of the reservoir. 3. Flow Needs for Watershed Protection Plan: Serve as the Hydrology Work Group for the state-sponsored Watershed Protection Plan to evaluate and recommend flows, lake level management, etc. to assist with protection of water quality and management of invasive aquatic species. 4. Long-term Adaptive Management: Establish a long-term effort, with the continuation of field work, other research, and consensus decision-making to refine environmental flow recommendations over time.

The Process: Based on a consensus of scientists and stakeholders who attended the orientation meeting in December 2004, the Project has pursued its objectives based on the methodology developed by the National Academy of Sciences for the State of Texas. The Project has relied heavily upon the approach used by the Nature Conservancy-Corps of Engineers’ Sustainable Rivers Program at other rivers in the U.S. and the experience gained in those efforts. The work of the Project has been adjusted with the assistance of the state agencies to be consistent with the goals and intent of both Senate Bills 2 and 3.

Progress to Date: Based on a series of meetings with natural resource experts from Texas and elsewhere and with stakeholders from the Cypress Basin, the Project established an initial set of "building blocks" and SB 3-type “environmental flow regimes.” An adaptive management approach was then initiated, where some of the flows in the building blocks were tested in the field. As a better understanding of the system developed, some of the initial numbers in the building blocks were then changed. In December 2008, a consensus was reached on recommendations for flow regimes, flow standards, and strategies to present to the Texas Commission on Environmental Quality (TCEQ) for a SB 3-type set aside. The participants also set a 3-year review process for the next meetings of the stakeholders and scientists.

The Details: This report is an effort to provide an overview of the work. The details, including the studies used and work summaries, are available at www.caddolakeinstitute.us.

Page 72: Cypress SB3 20100826 Main - Texas

2

A SCIENCE AND STAKEHOLDER-BASED PROCESS

Orientation Meeting and Initial Consensus to Pursue the Project In December 2004, Caddo Lake Institute (CLI) and the Nature Conservancy (TNC) jointly hosted a two-day meeting to discuss the possibilities of a project to develop and pursue sustainable flows regimes for the Cypress Basin. Approximately 80 scientists and stakeholders participated. Facilitated by Brian Richter of the Nature Conservancy, the participants considered the need and options for the work. A consensus was reached that there were or could be found adequate resources for an approach that relied heavily on volunteers working at meetings to develop recommendations based on existing data. With available resources, the testing of the building blocks and other research would also be pursued. It was also agreed that the process would involve scientists and stakeholders meeting together, but that the process would first develop building blocks or flow regimes based on the ecological needs, without consideration of the practical limitations or other needs for the water. Thus, the building blocks would not be constrained by physical or legal limitations or broader goals of stakeholders. Such limitations, interests of stakeholders, and implementation would then be used with the building blocks and flow regimes to develop recommendations for environmental flows, which are called “environmental flow standards” in SB 3. (A summary of SB 3 definitions, goals, and process is provided in Attachment 7.) Summaries of work at the orientation meeting can be reviewed at www.caddolakeinstitute.us/dec04.html. The basic process for developing building blocks is shown in Figure 1. Figure 1. Process for Developing Building Blocks

Page 73: Cypress SB3 20100826 Main - Texas

3

Identifying Scientists and Stakeholders One of the first steps, initiated even before the orientation meeting, was identifying scientists and stakeholders. The areas of desired scientific expertise that were identified included: Hydrology and Hydraulics Biology Water Quality Connectivity Fluvial Geomorphology Recruiting the scientists needed for the work was a three step process. The first step was to identify institutions or individuals with a history of working in the watershed. This included people who have studied the ecology of the system and those who had conducted studies related to proposed water development projects. Next, other institutions that were likely to have an interest in this process were identified. This included local, state and federal agencies, university researchers, and private consultants. Finally, the experts identified were then asked to identify others who might be needed or otherwise should be invited to participate. The Cypress Basin has attracted scientific studies for many years. Given that Caddo Lake is Texas’ only naturally-formed large lake, there have been strong interests in the basin. For example, an expert at the National Wetland Resource Center in Lafayette, Louisiana had worked on regeneration of cypress trees in the basin for a number of years. There were also a number of studies associated with the water projects in the basin. These include studies for existing lakes, such as Lake O’ the Pines and Bob Sandlin Lake, and projects that were not completed, such as the proposal for a reservoir on Little Cypress Creek and one for a barge canal across Caddo Lake. A few of these studies included instream flow studies. The studies, and importantly, many of the scientists who participated in them, were available to assist with the Project. Stakeholders were identified in a similar way. The process began with those known to be interested and with the obvious governmental and non-governmental organizations working in the area. That was followed up by requests that stakeholders identify other potential stakeholder-participants. A number of stakeholders not only helped set goals for the process to add practical limits to the flow regimes, they also brought their practical experience and observations to help with the technical evaluations and development of the flow regimes. Anyone was allowed to participate in the meetings, as they were open and all materials prepared for or summarizing the work at the meetings were posted on the website for review and comments. In all, approximately 200 individuals or representatives of organizations participated in one way or another. See Attachment 4 for the list of participants. Literature Review and Summary Report The second major step required significant funding, in the order of $75,000. A team of professors from Texas A&M University was engaged to prepare a report summarizing existing research and studies and synthesizing the results as a basis for environmental flow recommendations. While the report covered most significant studies in the Cypress Basin, the decision was made, for resource and timing reasons, to focus initial work on the Big Cypress Creek between Lake O’ the Pines and Caddo Lake, a 34-mile segment that could be used to test

Page 74: Cypress SB3 20100826 Main - Texas

4

some of the proposed flows in the initial building blocks, with experimental releases from the dam at Lake O’ the Pines. The A&M team was headed by Professor Kirk Winemiller and included Professors Anne Chin, Daniel Roelke, Stephen David, Luz Romero, and Bradford Wilcox. Their report, appendices, and annotated bibliography were made available to the participants prior to the first workshop in May of 2005. The documents can be reviewed at www.caddolakeinstitute.us/background.html. Following the first workshop, a supplemental report was prepared by Joe Trungale to help the project focus on other tributaries in the watershed and to provide summaries of studies that were identified after the Texas A&M report, many of which were identified by participants in the first workshop. See www.caddolakeinstitute.us/Docs/2006_CypressHydrology.pdf. Workshops 2005 – 2008 Because of the Nature Conservancy’s experience at other rivers where it had started to work on developing environmental flow proposals, TNC has taken the lead managing the orientation meeting and all workshops to date. Figure 2. The Nature Conservancy-Corps of Engineers Sustainable Rivers Project

The orientation meeting and workshops were multiday events, which included field trips and several days of large meetings and break-out sessions First Flow Workshop – Mary 2005 Attendance at the first workshop included about 90 scientists and stakeholders. The workshop began with a presentation by staff of TNC and covered the goals and objectives of the workshop and expected products as developed in the orientation meeting. This was followed by five presentations by Texas A&M professors, who highlighted key sections of their Summary Report: hydrology (Brad Wilcox), fluvial geomorphology (Anne Chin), nutrients, productivity & aquatic plants (Dan Roelke), riparian and floodplain vegetation (Steve Davis), and aquatic and terrestrial fauna (Kirk Winemiller).

Page 75: Cypress SB3 20100826 Main - Texas

5

Following lunch, the workshop participants were divided into two break-out groups for the purpose of developing “building blocks” based on the expected ecological responses or conditions associated with specific river flows or lake level changes. One break-out group focused on Big Cypress Creek, and the other group discussed Caddo Lake. After reporting their findings, the groups were reassembled into two new break-out groups; one focusing on low flows and the other on high-flow pulses and floods. On the second morning, participants discussed data collection and research needs, resulting in a list of priorities for improving their understanding of the role of flows or lake levels on ecological conditions in Big Cypress Creek and Caddo Lake. Following lunch, the Corps of Engineers provided an overview of the operations of Lake O’ the Pines and its role in flood management and water supply. For the full report on the first workshop, together with a list of participants see www.caddolakeinstitute.us/may05.html. Building Blocks for Big Cypress Creek: The building blocks for Big Cypress Creek are presented in Figure 3. Each of the flows portrayed in this figure include an ecological outcome that would be expected if the flow condition is attained. The majority of flows denoted in Figure 3 would have to be generated by water releases from Lake O’ the Pines. As was noted above, the process did not, at that time, try to adjust for limitations, such as flooding, restrictions on operations of the dam, etc. Thus, while the flood flows suggested in Figure 3 cannot be attained unless structural modifications are made to the dam and to downstream levees, these flows were still included in the building blocks. Figure 3. Proposed Building Blocks for Big Cypress Creek, May 2005

JAN FEB MAR APR MAY JUN JUL AUG SEP OCT NOV DEC

Instream Flow Building BlocksBig Cypress Creek/ Caddo Lake

Low Flows

High FlowPulses

Floods

6,000-10,000 cfs for 2-3 daysEvery 3-5 years

*Maintain aquatic habitat in floodplain* Riparian seed dispersal

* Inhibition of upland vegetation for both creek & lake*Seed dispersal

* Vegetation removal

6,000 cfs for 2-3 days Every 2 years

•For channel maintenance and floodplain connectivity

Key

Dry Year

Avg Year

Wet Year90 cfs

Fish habitat218 – 49 cfs

Spawning habitat13 - 6 cfs

Maintain aquatic diversity40 - 90 cfsFish habitat

268-347 cfsPre-dam median

390 - 79 cfsBenthic drift & dispersal, fish spawning

35 - 40 cfsFish habitat

40 - 117 cfsPre-dam median

40 – 536 cfsMaintain biodiversity and connectivity (backwater & oxbows)

1,500 cfs for 2-3 days3-5X a year every year

* 1 occurring in March for Paddlefish* Sediment transport, oxbow connectivity

•Waterfowl habitat flushing(Includes December)

20,000 cfs for 2-3 daysEvery 10 years

*For channel migration

Page 76: Cypress SB3 20100826 Main - Texas

6

The development of building blocks is just one step in the process. Once they are refined, the limits on implementation and the interests of the stakeholders must be considered. That process occurred in 2008 and resulted in recommendations for environmental flow standards for the rivers, streams, and lakes in the basin. During that process, a determination of whether there is sufficient unappropriated water, i.e. water not already locked up in water rights, for the flows was made and, pursuant to the Senate Bill 3 approach, recommendations were developed for strategies to propose how additional water might be made available over time. The low-flow targets in Figure 3 are based upon a variety of ecological objectives. The fish habitat objectives are based upon habitat simulation modeling performed by the U.S. Fish & Wildlife Service. Other targets were based upon the habitat modeling results, as well as a review of the pre-dam low-flow conditions for each month, as derived from the “Indicators of Hydrologic Alteration” (IHA) software. For instance, the 25th percentiles of the pre-dam flows were used as a basis for the July-September flows in dry years, medians were used for setting the October-February average flows, and the 75th percentiles were used as a reference in setting wet year flows. The high-pulse flows in December-June were based upon pre-dam flow records, ecological information provided in the Summary Report, and professional judgment. One of the flood building blocks calls for a flow of 6,000 cfs for the purpose of channel maintenance. This target level is based upon the assumption that the pre-dam, 2-year flood magnitude approximates the bankfull discharge level. A review of the bankfull discharge was, however, identified as a top-priority research need. (Attachment 6 provides a map of the segment under consideration, with pre-dam and post-dam flows.) Building Blocks for Caddo Lake: Caddo Lake received special attention because of its location at the bottom of the Cypress Basin. It also has been designated as a “Wetland on International Importance” under the Ramsar Convention, now signed by 160 nations. See Attachment 3 and www.caddolakeinstitute.us/ramsar.html. One outcome of the first workshop was an initial conclusion that management of flows in Big Cypress Creek may not need to be adjusted to benefit Caddo Lake. This was based largely upon the fact that Big Cypress contributes about one-third of the total inflow to Caddo Lake. The other two-thirds entering Caddo Lake comes from other tributaries that are currently largely unaffected by dams or diversions. These relatively natural inflows from other tributaries result in a considerable rise in lake levels during floods and can provide flows to Caddo sufficient to inundate many of the wetland areas associated with the lake. The dam for Caddo Lake, which is a weir, is fixed with the lowest spillway at an elevation of 168.5 NGVD. (Attachment 8 provides the basic facts on the lake and dam.) Under present conditions, the lake level will drop below that elevation during low flows, but these reduced levels do not often exceed 2 feet. The workshop participants recommended an evaluation of the option of installing an outlet that would allow lowering lake levels for a number of purposes, including nutrient management, cypress regeneration, and invasive species control. (In 2010, the U.S. Army Corps of Engineers announced a plan to begin a study that would include the feasibility of replacing the wier with a dam that includes an outlet for lowering lake levels.)

Page 77: Cypress SB3 20100826 Main - Texas

7

The participants also noted that the nutrient levels in Caddo Lake are likely contributing to the undesirable abundance of aquatic plants, phytoplankton blooms, and conditions of low dissolved oxygen. The participants concluded that lake flushing could more efficiently be accomplished by drawing down the lake and that any such nutrient removal effort should be carried out adaptively, using monitoring to inform decisions about the necessary design and duration of the Project. Another potential benefit of lake lowering could be cypress regeneration in areas that presently do not dry sufficiently to allow seed germination and seedling recruitment. Such a drawdown might need to occur in at least two consecutive growing seasons for this goal, which, it was noted, could have significant impacts on use of the lake and the local economy. Figure 4. Proposed Building Blocks for Caddo Lake - May 2005.

JAN FEB MAR APR MAY JUN JUL AUG SEP OCT NOV DEC

Lake Level Building BlocksCaddo Lake

Low Lake Levels

Normal Lake

Levels

High Lake

Levels

Key

Dry Year

Avg Year

Wet Year

Lake refillingfollowing nutirent and sediment

flushing(requires approx. 15 days?)

Inhibition of upland tree species from encroaching into lake

fringe areas (occurs naturally; requires xx days of

Inundation every xx years)

Lake level lowering fornutrient and sediment flushing

(once every year for up to 10 years)

Lake level lowering forcypress regeneration

(once every 10-20 years, for twoconsecutive growing seasons

Initial Testing of Recommended Flows & Additional Research: Due to dry conditions, the plan to begin testing some of the flow in the building blocks with releases from Lake O’ the Pines was not initially possible. Cypress Basin experienced only low flows in its rivers until the winter of 2007. A number of steps were, however, taken to add to the understanding of the flows in the basin, including: Completion of a museum study of historical fish data. Work on levels of nutrients in sediments and water in the watershed. Characterizing segment and reach-scale channel geomorphologic features. Baseline collections of the fish assemblage. Establishment of instrumented (pressure transducers) cross-sections at non-gauged

locations. Identifying habitat requirements of target organisms.

Page 78: Cypress SB3 20100826 Main - Texas

8

Watershed Protection Plan: While the objectives of the Project always included developing building blocks and other recommendations for all major water bodies, not just Big Cypress Creek and Caddo Lake, the offer by TCEQ to sponsor a process to develop a Watershed Protection Plan (WPP) in late 2005 provided a boost to the effort. It also provided an increased opportunity to focus on water quality issues and expand stakeholder outreach. Moreover, with the discovery of Giant Salvinia in Caddo Lake in the summer of 2006 and the recognition of the risks this new invasive aquatic species could bring to the entire watershed, the WPP process provided a better forum for cooperative efforts on management of invasive aquatic plants. It also highlighted the need for cooperation from both sides of the Texas – Louisiana border to protect the entire Cypress Basin. Funding from TCEQ and EPA made it possible for USGS to purchase a new gage for the Big Cypress, downstream of both the dam at Lake O’ the Pines and the existing gage near the dam. City members of the NETMWD and the City of Marshall agreed to fund maintenance of the gage. The work of the WPP has been divided into three workgroups, one specifically focused on the current impairments to water quality in the basin, mainly problems caused by nutrients and bacteria. The second workgroup focuses on invasive species and problems with many septic systems. The third workgroup focuses on hydrology and was combined with the work of this environmental flows Project. Second Flow Workshop & First Hydrology Workgroup Meeting - October 2006 About 80 scientists and stakeholders participated in this three day meeting, which served not only as the second workshop for the flow work, but also the initial meeting of the Hydrology Workgroup for the WPP. The meeting focused on developing the flow regime building blocks for Black and Little Cypress, as well as refining the building blocks for Big Cypress and Caddo Lake. The meeting also provided an opportunity to compare the work of the Project with the State agencies’ plans for implementation of Senate Bill 2, the law that directed the state to prepare detail studies on environmental flows in Texas river basins and bay systems. As a result of the advice from the staff of the State agencies, adjustments in the Project were made to shift some of the research and analysis. Building Blocks for Little and Black Cypress Creek: There was a consensus that the building blocks for Black and Little Cypress could be developed by using the approach taken for Big Cypress Creek. Breakout groups were again relied upon to facilitate discussions. One breakout group proposed that Black Cypress Creek be designated an “untouchable,” essentially setting a narrative flow regime on top of the building blocks that would assure adequate pulse and flood flows for the Big Cypress and to help protect Caddo Lake. The spirit of the recommendation was that there should be no major water projects on Black Cypress. The group felt that Black Cypress Creek should remain in the most pristine state possible to serve as: (1) a source of unregulated flows to Caddo Lake; (2) a reference state for other creeks; and (3) a refuge for biota. (In 2010, The North East Texas Regional Water Planning Group recommended that Black Cypress Creek also be designated an Ecologically Unique Stream Segment.) This breakout group also proposed that historically large flood events should still be allowed to occur on Little Cypress. The group did not, however, recommend that all large floods be

Page 79: Cypress SB3 20100826 Main - Texas

9

maintained. Instead it was agreed that some large floods could be captured, provided that the conditions maintained by large floods were within an appropriate range.

There was consensus on the use of the IHA-EFC 25th, 50th and 75th monthly low flow percentile values as reasonable starting values for the low flows recommendations. There was some discussion and agreement for augmenting the IHA-derived monthly percentiles with values developed in a PHABSIM study for Black Cypress. Use of a similar approach was adopted for Little Cypress. The recommended flow from PHABSIM for Black Cypress in September was 75 cfs, while the monthly median flow was 3 cfs. For Little Cypress the breakout group recommended a September flow of 75 cfs with a median flow of 11 cfs. It was recognized that the very low flows, specifically the 25th percentile flows for August-October, might result in a series of disconnected pools. In order to maintain the connectivity between pools, it was proposed that the absolute minimum flows for Little and Black Cypress should not be less than 5 and 4 cfs, respectively. While there was a consensus to follow the Big Cypress approach for the high-flow pulse target at the 2-year flood, there was again considerable discussion about what this flow represents, e.g. whether it reflected the bankfull flow, the effective discharge, or either. Based on the USGS’s preliminary analysis on Big Cypress, it was felt that the 2-year flood may overestimate the physical bankfull flow. Therefore, based on professional judgment, the lower bound on the 95th percentile confidence interval of the 1.5-year flood was selected as a lower range and an upper range, to ensure that the water will get up steep banks in some areas. There was also consensus to develop building blocks for large floods in a manner similar to the approach used as the building block for Big Cypress. For Big Cypress, a building block for a large flood stipulated that a flood of 20,000 cfs (approximately 10-year recurrence interval) should occur once every ten years on average. Thus, for Little and Black Cypress, floods of approximately 13,000 and 8,000 cfs for 2-3 days every ten years were proposed. Figure 5. Proposed Building Blocks for Little Cypress Creek, October 2006

Page 80: Cypress SB3 20100826 Main - Texas

10

Figure 6. Proposed Building Blocks for Black Cypress Creek, October 2006

Further Testing of Recommended Flows & Additional Research: With the large rain event in the winter of 2007, the Corps of Engineers and NETMWD were able to provide controlled high flow releases to Big Cypress. USGS had installed a dozen pressure transducers, and, with the assistance of local residents, monitored and retrieved the data from the them. This flow data was then correlated with releases from Lake O’ the Pines as those releases were increased and decreased over several days. The results provided a basis to reconsider pulse and flood flows in the building blocks, as there appear to be significant differences between the segments of Big Cypress upstream and downstream of Jefferson. In addition, a number of other steps were taken prior to the December 2008 flows meeting, including: Cross section surveys on Big Cypress to support HEC-RAS model development by the

Army Corps of Engineers. A meeting on existing studies of aquatic biology in the basin and potential models for

habitat. Modeling for flow-habitat response curves & habitat time series. Measurements to quantify overbank discharge and locations. Flow-inundation mapping.

The work done since the second flows workshop was summarized for presentation at the third workshop. See www.caddolakeinstitute.us/decflowsmeeting08.html. . Third Flow Workshop & Second Hydrology Workgroup Meeting - December 2008 Over 70 scientists and stakeholders participated in this multiday workshop. The workshop began, as the others had, with field trips to Caddo Lake and Big Cypress Creek. Formal meetings were held on the following two days. The objectives of the meeting included:

1. Refinement of the building blocks and environmental flow regimes.

Page 81: Cypress SB3 20100826 Main - Texas

11

2. Recommendations for Environmental Flow Standards and Strategies for the basin. 3. A recommendation on the review period, after which the regimes and strategies would be reevaluated. 4. Identification of data gaps and next steps needed to develop recommendations for changes in the operations of the dam at Lake O’ the Pines. 5. The development of a plan for additional research needed to develop recommendations for lake level management options to assist the implementation of the Watershed Protection Plan. 6. Proposing methods to continue the work for adaptive management.

Role of Senate Bill 3: While the work prior to December 2008 had anticipated the passage of a new law in Texas to protect environmental flows, the details of that process were not known until May 2007. The Texas Legislature enacted Senate Bill 3 to create goals and a process for reserving water for environmental flows similar to the process that was being used by this Project. Thus, some time was spent on discussions of Senate Bill 3 and how the Project could work within the framework of Senate Bill 3. Key provisions of that law are shown in Attachment 7. In brief, the law now provides a state policy of protecting environmental flows, a process for developing flow recommendations for each river basin, and a framework for final decisions by the TCEQ for a set aside of unappropriated water in each basin. While the process for the Cypress Basin Project is not exactly the same as that in SB 3, the Cypress Basin work is consistent with the goals and outcomes of SB 3. For example, SB 3 defines “environmental flow regimes” in terms similar to what this Project refers to as “building blocks.”

“Environmental flow regime” means a schedule of flow quantities that reflects seasonal and yearly fluctuations that typically would vary geographically, by specific location in a watershed, and that are shown to be adequate to support a sound ecological environment and to maintain the productivity, extent, and persistence of key aquatic habitats in and along the affected water bodies. Section 11.002, Texas Water Code (TWC).

One difference in the methodologies of SB 3 and the Project result from the decision to use combined meetings for scientists and stakeholder for the Cypress Basin Project, while SB 3 provides for separate meetings. Thus under SB 3, the environmental flow regimes are set by scientists and cannot be changed by the stakeholders, whereas in the Cypress Basin, the regimes were developed in joint meetings with a consensus of both scientists and stakeholders. The Project regimes are science-based and not limited by existing dams, water rights, or future water demands. They did benefit from the input of stakeholders with real world experience and observations on the functioning of the rivers, streams, and lakes. In fact, it is difficult to see how the SB 3 process will not need to provide some of the integration that the Cypress Basin process involves, even if it is only that stakeholders sit in on the discussions of the scientists to understand that process and that some scientists participate in the SB 3 stakeholder discussions to provide information and address questions.

Page 82: Cypress SB3 20100826 Main - Texas

12

The process that was developed for the Cypress Basin Flow Project was not revised to fit all of the specifics of the SB 3 process because it appeared that the Project could develop the flow regimes, standards, and strategies called for by SB 3. Both processes focus on the same goals, i.e., a sound scientific basis for the flow recommendations, due consideration of stakeholder’s concerns, and consensus from the process. Moreover, SB 3 anticipates that some basins may develop their only processes and provides:

“...in a river basin and bay system for which the [state environmental flows] advisory group has not yet established a schedule for the development of environmental flow regime recommendations and the adoption of environmental flow standards, an effort to develop information on environmental flow needs and ways in which those needs can be met by a voluntary consensus-building process.” Sec. 11.02362(e), Tex. Water Code.

As discussed below, a significant part of the time at the December 2008 meetings was spent developing a consensus for the environmental flow regimes, standards, and related recommendations. Refinement of Building Blocks and Flow Regimes: The workshop began with a review of the building blocks and environmental flow regimes, followed by development of the recommendations for environmental flow standards and strategies. For both discussions, the process included a series of presentations on the issues, followed by breakout sessions where the participants developed recommendations for the full meeting of the participants. Scientists and stakeholders participated in all of the breakout sessions. A. Review and Revision of the Building Blocks: The initial discussions focused on whether and how the building blocks, which were developed in prior workshops, should be revised based on field work and other technical work completed since the October 2006 workshop. The discussion was divided into two areas of work, 1.) low flows and 2.) pulse and flood flows, as were the breakout sessions that followed.

1. Low Flows: The work done since the flows meeting in October 2006 included an analysis of historic trends in fish assemblages and development of hydrodynamic-habitat models. Existing synoptic surveys suitable to characterize aquatic communities in the river are sparse; however, findings based on the analysis of the available data are consistent with conclusions of pervious research. Thus surveys showed that in Big Cypress Creek below Lake O’ the Pines (LOP), the community has experienced a shift in relative abundances from obligate riverine species such as darters, minnows that broadcast-spawn, and buoyant eggs within current to more habitat generalist species, including Centrarchidae, which spawn elliptical egg envelopes over rock or gravel nests. To evaluate the hypothesis that this shift is related to changes in instream habitat conditions, one-dimensional hydrodynamic models were created based on historical cross section surveys in the Big Cypress. Habitat suitability criteria, developed from site specific collections for dominant species within habitat-spawning guild matrices, were applied to the hydrodynamic model to predict instream habitat conditions as a function of stream flow. Quantities and distributions of available instream habitat types predicted by the models at the building blocks recommended flows were reviewed.

Page 83: Cypress SB3 20100826 Main - Texas

13

The following questions were posed to the breakout session on low flows:

Does the change in habitat based on pre vs. post LOP conditions suggest a refinement?

Re-evaluate adjustments from IHA outputs? Refinements for declining guilds? Do we need all three levels (wet/average/dry)? Are the low flows upstream and downstream of Jefferson the same? Does anything jump out as a concern?

In the breakout session that followed, the discussion first focused on if and how this analysis could be used to validate or refine the preliminary flow recommendations. Generally, the analysis showed that the building blocks provide variability in stream habitat conditions. Although the area of some habitat types would be relatively lower than others, this was assumed to be reflective of the natural habitat conditions of the stream, which the recommendations are intended to protect. One clear conclusion from the analysis was that habitat in the lower reach of Big Cypress Creek is less sensitive to changes in flow than in the upper reach. The participants agreed that this type of evaluation is useful in providing insight into what the low flows recommendations would produce in terms of instream habitat, given the lack of any outstanding concerns arising from this analysis, as well as the uncertainty associated with the scarcity of biological data and the hydrodynamic model itself. Yet, the participants then found that the results of this evaluation supported the basic approach taken for low flows in the building blocks for the three rivers and that the results did not suggest any revisions to the approach or prior recommendations for those flows. The breakout group then focused on an issue raised due to low flows for dry conditions in Big Cypress Creek during July through September to assure adequate flows to protect water quality. The state water quality standards and permitting system use a 7Q2 flow of 8.4 cfs1 for this segment of Big Cypress Creek that is higher than the low flow proposed in the building block of 6 cfs. That discussion resulted in a recommendation from the breakout session to revise the building block accordingly and use the 7Q2 flow as a conservative measure until additional data or analysis indicates another value should be used. 2. Pulse and High Flows: Pulse and high flow conditions were then addressed. Field and other work was done by USGS to evaluate these building blocks for Big Cypress Creek. In late 2006, USGS instrumented a number of sites with pressure transducers from just below Lake O’ the Pines to about 2 miles downstream of the confluence of Big Cypress and Black Cypress Creeks to monitor releases from Lake O’ The Pines. Releases from Lake O’ the Pines were monitored over a range of flows from about 50 to 3,000 cfs. Data recorded by the pressure transducers was converted to actual elevations, and low-flow to over-bank flow prescriptions were evaluated for connectivity of hydromorphic unit such as riffles, runs and pools, inundation of woody structure, bankfull height, and over-bank inundation of floodplain wetlands. Based on this work, USGS recommended changes to pulse flows for Big Cypress Creek. In summary, the field work indicated that bankfull flows occurred below 3,000 cfs. The flows needed for bankfull conditions also changed from the upper reach (generally above Jefferson) to

1 7q2 reference: http://info.sos.state.tx.us/fids/30_0307_0010-7.html

Page 84: Cypress SB3 20100826 Main - Texas

14

the lower reach (below Jefferson). The high flow pulse for channel maintenance in the building block for Big Cypress Creek could be lowered. The lower flood flows building block was also discussed given that, at 3,000 cfs, there are significant connections to oxbows and other off-channel wetlands. In the breakout session on high flow, a consensus was reached that the building blocks for Big Cypress should be changed. The exact number to be used for high pulses was left to a discussion with the larger group. No recommendation was made for changes to pulse or high flows for Black and Little Cypress Creeks. 3. Recommendations for Building Blocks: The breakout sessions then reported to the full group to seek consensus on the building blocks and the environmental flow regimes. The recommendations from the first breakout session on low flows for Big Cypress Creek to protect water quality were accepted. The discussion then turned to a change to the 6,000 cfs pulse flow for Big Cypress Creek. The discussion led to a consensus for a 2500 cfs flow, which appeared to provide a good approximation of bankfull flow. The lower flood flow was then changed to a range from 3,000 cfs to 10,000 from the prior range of 6,000 to 10,000 to reflect that there was good connectivity accruing at flows as low as 3,000 cfs. Figure 7. Revised Building Blocks for Big Cypress Creek, Dec. 2008

JAN FEB MAR APR MAY JUN JUL AUG SEP OCT NOV DEC

Instream Flow Building BlocksBig Cypress Creek

Low Flows

High FlowPulses

Floods

20,000 cfs for 2-3 daysEvery 10 years

*For channel migration

2,500 cfs for 2-3 days Every 2 years

* For channel maintenance

Key

Dry Year

Avg Year

Wet YearFish habitat Spawning habitat Maintain aquatic diversity Fish habitat

Pre-dam median Benthic drift & dispersal, fish spawning Fish habitat Pre-dam median

Maintain biodiversity and connectivity (backwater & oxbows)

1,500 cfs for 2-3 days3-5X a year every year

* 1 occurring in March for Paddlefish* Sediment transport, oxbow connectivity

•Waterfowl habitat flushing(Includes December)

396 500 536 445 264 140 70 41 40 49 94 275

268 347 390 330 150 79 35 40 40 40 90 117

90 90 218 198 114 49 13 8.4 8.4 40 90 90

3000 = flow that connectsto oxbows and other off-channelwetlands upstream of Jefferson.

2,500 = about mean bankfull over thereach studied.

2-3 days = peak period for high-flow and floods.

3,000-10,000 cfs for 2-3 daysEvery 3-5 years

*Maintain aquatic habitat in floodplain* Riparian seed dispersal

* Inhibition of upland vegetation for both creek & lake*Seed dispersal

* Vegetation removal

The workshop then focused on the concerns raised in the prior workshop that the pulse and flood flows in Black and Little Cypress Creeks were needed for Caddo Lake and wetland inundation. The confluences of Little and Black Cypress Creek with Big Cypress Creek are just upstream of Caddo Lake and high flows in Black and Little Cypress can provide relatively high flows to the wetlands and lake, even with the reduced flows from Big Cypress due to the existence of Lake O’ the Pines. Thus, the narrative regime approach for pulse and flood flows in Little and Black Cypress discussed in the second workshop were revisited and adopted.

Page 85: Cypress SB3 20100826 Main - Texas

15

During these discussions, concern was also raised about the lack of building blocks for James Bayou and a number of small streams in the basin. Because these streams do not have gages, it was agreed that the IHA approach used for Big, Little and Black Cypress Creeks could not be applied. Instead, the group agreed that the flow regimes should be based on the building blocks for Big Cypress Creek with a proportional adjustment for the different sizes of the watersheds. The participants also agreed the building blocks should be evaluated in three years, by which time they should have the additional information from:

1) water quality work for the Watershed Protection Plan, 2) the additional experimental releases from Lake O’ the Pines, and

3) new projections on water needs in the region by the Region D Water Planning Group. Development of Recommendations for Environmental Flow Standards and Strategies: The second area of work proceeded with presentations for developing recommendations for environmental flow standards based on the building blocks, flow regimes, stakeholders’ issues, physical limitations on flows, and other such issues. One key issue was the extent to which there is unappropriated water and/or unused appropriated water available to satisfy the building blocks and flow regimes. TCEQ’s water availability model predicted sufficient water most of the time to meet the flows proposed for Little and Black Cypress Creeks and other parts of the basin, with the exception of Big Cypress Creek. See www.caddolakeinstitute.us/decflowsmeeting08.html. Representatives of the Corps of Engineers and NETMWD also explained the limitations on flows in Big Cypress Creek downstream of Lake O’ the Pines.2 The current design and operations of the dam limit releases to about 3,000 cfs. Existing water rights in Big Cypress, if fully exercised, would also limit the amount of water available for flows downstream of the Lake O’ the Pines dam. Strategies to overcome the deficiencies in the amount of water needed for flows in Big Cypress Creek were then discussed, including the possibility of increasing storage levels in Lake O’ the Pines during certain times of the year and options for purchase, lease, or use of appropriated but unneeded waters. Issues related to the role of flows in protecting water quality and managing invasive aquatic plants were also discussed. Breakout Sessions: The three breakout sessions were:

1. Practical Considerations & Physical Limits on Flows in the Building Blocks; 2. Legal Limitations, Water Rights & Uses, & Future Water Needs for Flows; and 3. Flows & Lake Level Management for Water Quality and Invasive Aquatic Vegetation.

The consensus was that the flows proposed in the building blocks, with the addition of the narrative flow regime for Black and Little Cypress, should be used for the environmental flow 2 The basic information on the Lake O’ the Pines and the Ferrells Bridge Dam can be found in a presentation by the Corps of Engineers at the May 2005 workshop at www.caddolakeinstitute.us/may05.html.

Page 86: Cypress SB3 20100826 Main - Texas

16

standards. In essence, the participants did not believe they had or could obtain in the near future the information they would need to recommend changes to the building blocks for purposes of protection or restoration of water quality or for management of aquatic vegetation. It was noted that the ongoing WPP would provide additional analysis of the water quality impairments in the basin and potential solutions to address those problems. Changes in flows may be one option.

The Corps of Engineers raised a concern that a release of 3,000 cfs might flood downstream oil and gas development and possibly other properties. It asked that this issue be added to the list of research needs for the next workshop. The Corps of Engineers also indicated a desire to expand its computer model for flows in Big Cypress Creek to cover the flows in Little and Black Cypress Creeks at and just above the confluences of these bayous with Big Cypress Creek. Recommendations for Environmental Flow Standards: The following recommendations were developed for the environmental flow standard (EFS), with the proposed language in italics:

1. EFS for Big Cypress Creek: The revised building blocks as limited by the 3,000 cfs maximum flow rate from Lake O’ the Pines and existing water rights. 2. EFS for Black Cypress Creek: A narrative standard: maintain Black Cypress Creek in as natural a condition as possible, allowing additional appropriations of water only where the impacts on the low flow building blocks are de minimis, and where pulses and flood flows are not significantly reduced in timing, duration, or magnitude. 3. EFS for Little Cypress Creek: A hybrid standard: The building blocks, with the exception for flood flows which would include a narrative standard that flood flows should not be further reduced significantly in timing, duration, or magnitude. 4. EFSs for James Bayou and other streams flowing into to Caddo Lake: The building blocks for low and pulse flows for Big Cypress Creek should be used for each stream by adjusting the building blocks in proportion to the size of the watershed of the stream in question to the size of the watershed for Big Cypress Creek. Flood flows should not be reduced significantly in timing, duration, or flow. 5. EFSs for other streams in the Cypress Basin. The building blocks for low, pulse, and flood flows for Big Cypress Creek should be used for each stream by adjusting the building blocks in proportion to the size of the watershed of the stream to the size of the watershed for Big Cypress Creek.

Recommendations for Strategies: The full group then turned its attention to the issues of where there may not be sufficient unappropriated water available to meet the environmental flow standards most of the time. One segment that did not appear to have sufficient unappropriated water was Big Cypress Creek below Lake O’ the Pines. The participants discussed a range of options. They indicated that several strategies should be included in the recommendations for obtaining sufficient water in the future. Those strategies were:

1. Extension of the dates for maintaining the recreational pool from the current period of May 20 to September 30 to the entire year to provide an additional 1.5 feet of storage of

Page 87: Cypress SB3 20100826 Main - Texas

17

water that could be set aside by TCEQ to be released down stream for environmental flows. (See, Attachment 9.) This option would provide much of the needed water downstream of Lake O’ the Pines, but not at all times. 2. Raising the level of storage pool to reallocate some flood storage and provide additional water that could be set aside by TCEQ to be released down stream for environmental flows. 3, Purchase, lease, or otherwise acquiring access to water currently appropriated but not currently used or projected to be needed in the basin.

There was recognition that some strategies, such as raising the level of the storage pool, would require considerable time and effort, including new environmental, cultural, and other studies to evaluate potential impacts.

Planning for Future Work: The participants then turned their attention to the next steps for the Project. Their recommendations can be divided into future work based on the four main objectives described above:

1. An SB 3 Flow Reservation or Set Aside: Develop recommendations for SB 3-type “environmental flow standards” for a state reservation of water in the watershed with associated “strategies” for assuring adequate water based on a consensus of scientists and stakeholders in the basin.

Workshop recommendation: 1.) Develop language for the narrative and hybrid environmental flow standards to circulate to the participants and others for comments. 2.) If a consensus is reached or there is no objection, present these standards, along with the environmental flow regimes and strategies in a summary report to the Texas Environmental Flow Advisory Group, the Texas Environmental Flow Science Advisory Committee, and the Texas Commission on Environmental Quality to seek a set aside pursuant to Senate Bill 3.

2. A New Release Rule for Lake O' the Pines: Develop recommendations for changes in the operations of the dam at Lake O’ the Pines by the Corps of Engineers and NETMWD to provide a more natural pattern of releases, while assuring flood control, water supply, and the other purposes of the reservoir.

Workshop recommendations: 1) Develop additional technical information on flows in Black and Little Cypress Creeks and assist the Corps of Engineers in developing a better HEC RAS model for Big Cypress Creek from Lake O’ the Pines to Caddo Lake. 2) Pursue new field work on potential flooding of developed properties downstream of Lake O’ the Pines at releases up to 3,000 cfs.

Page 88: Cypress SB3 20100826 Main - Texas

18

3) Continue to pursue proposals for changes to the operations of Lake O’ the Pines with the U.S. Corps of Engineers and Northeast Texas Municipal Water District for release of waters from the lake consistent with the building blocks.

3. Flow Needs for Watershed Protection Plan: Serve as the Hydrology Work Group for the state-sponsored Watershed Protection Plan to evaluate and recommend flows, lake level management, etc. and to assist with protection of water quality and management of invasive aquatic species.

Workshop recommendation: Continue to serve as the Hydrology Work Group for the WPP to coordinate the work on water quality and aquatic vegetation with the work on environmental flows.

4. Long-term Adaptive Management: Establish a long-term effort, with the continuation of field work, other research, and consensus decision-making to refine environmental flow recommendations over time.

Workshop recommendation: Continue to pursue field work and other research to gain a better understanding of the ecological needs and values of the Cypress Basin, with a special focus over the next year or two on geomorphology and better indicators of progress at reaching the overall goal of adequate in-stream flows to sustain the ecological, recreational, and economic values of the Caddo Lake watershed and the Cypress Basin.

In addition, the participants proposed that another workshop be scheduled in 3 years to allow the scientists and stakeholders to review the new information and make appropriate revisions to the recommendations from the December 2008 workshop.

Page 89: Cypress SB3 20100826 Main - Texas

19

Attachments

1. Map of the Cypress River Basin in Texas

2. Map of the Caddo Lake Watershed

3. Map of Caddo Lake Watershed Designated as Ramsar Wetlands of International Importance

4. Lists of Major Participating Organizations and Individual Participants

5. Time Table for Major Activities

6. Lake O’ the Pines and the Changes in Flows with Construction of the Dam

7 Key Provisions of Senate Bill 3

8. Dam and impoundment statistics for Caddo Lake

9. Lake O’ the Pines Operating Rule Curve

Page 90: Cypress SB3 20100826 Main - Texas

Attachment 1. Cypress Basin

Page 91: Cypress SB3 20100826 Main - Texas

Attachment 2.

Page 92: Cypress SB3 20100826 Main - Texas
Page 93: Cypress SB3 20100826 Main - Texas

Attachment 4

Major Participating Organizations There have been approximately 200 individual participants. The major organizations that have sent representatives to the multiday workshops are listed below along with the number of representatives from the organization who have participated. Federal Agencies U.S. Army Corps of Engineers (13) U.S. Fish and Wildlife Service (6) U.S. Geological Survey (12) National Wetland Resource Center (3) State Agencies La Depart. of Environmental Quality (2) La Depart. of Wildlife & Fisheries (1) Tx Comm. on Environmental Quality (10) Tx Parks & Wildlife Dept. (12) Tx State Soil & Water Cons. Board (2) Tx Water Development Board (3) Tx Legislature (3) Regional and Local Governments City of Longview (2) City of Marshall (2) City of Uncertain (1) Cypress Valley Navigation District (2) Harrison County (1) North East Tx Municipal Water Dist. (8)

Universities

East Texas Baptist Univ. (1) Louisiana State Univ. Shreveport (1) Middle Tennessee State Univ. (1) Tx A&M Univ. (6) Tx A&M Water Resources Institute (4) Texas Christian Univ. (1) Texas State Univ. (1) Texas Tech Univ. (1) Univ. of Texas – Tyler (2)

Other Organizations American Ecology, Inc. (2) American Electric Power (2) Caddo Lake Area Chamber of Commerce and Tourism (2) Caddo Lake Institute (2) Ducks Unlimited (1) Environmental Defense Fund (1) Espey Consultants (2) Greater Caddo Lake Assn. of Texas (4) HDR Engineering, Inc. (1) National Wildlife Federation (2) Nature Conservancy (6) Nestle Waters North America (1) Red River Valley Association (1) Texas Conservation Alliance (1) TXU/Luminant (1)

Page 94: Cypress SB3 20100826 Main - Texas

Role* Name Area of Expertise Affiliation Ori

en-

tati

o

2005

2006

2008

2006

2007

2008

2009

2010

Total Participants 196 80 90 79 73 68 38 18 10 19

Technical advisor Bird, Mike Biology American Ecology Incorporation x xTechnical advisor Frentress, Carl Biology American Ecology Incorporation x x x

Technical advisor Carter, Greg W

Environmental

Mngmtn. American Electric Power x x x

Technical advisor Meyer, Jennifer K.

Environmental

Mngmtn. American Electric Power x x

Technical advisor Bradbury, Henry Engineering Bradbury Consulting x x x x x

Technical advisor Breeding, Brian Water Quality City of Marshall, Director of Water Supplies x x x

Technical advisor Darville, Roy PhD Water Quality East Texas Baptist University x x x x x x xTechnical advisor Kelly, Mary Law Environmental Defense Fund xTechnical advisor Harkins, David Watershed Mngmnt. Espey Consultants xTechnical advisor Osting, Tim Hydrology Espey Consultants x x x x xTechnical advisor Riebscheager, Kendra Water Quality Espey Consultants xTechnical advisor Guice, W. Lee PhD Engineering Guice Engineering Sciences x xTechnical advisor Price, Paul Water Quality HDR Engineering, Inc. x x xTechnical advisor Boydstun, Jan Water Quality Louisiana Department of Environmental Quality x xTechnical advisor Levy, Linda Water Quality Louisiana Department of Environmental Quality x xTechnical advisor Mouton, Henry Biology Louisiana Department of Wildlife & Fisheries x xTechnical advisor Hanson, Gary PhD Water Quality Lousiana State University - Shreveport x x

Technical advisor Spicer, Gary L.

Environmental

Mngmtn. Luminant/TXU xTechnical advisor Bailey, Frank Biology - Mercury Middle Tennessee State University xTechnical advisor Cordes, Carroll Wetland Science National Wetlands Research Center x xTechnical advisor Keeland, Robert Wetland Science National Wetlands Research Center x x xTechnical advisor Smith, Gregory Wetlands National Wetlands Research Center xTechnical advisor Hess, Myron Law National Wildlife Federation x x x xTechnical advisor Johns, Norman Hydrology National Wildlife Federation x xTechnical advisor Bergan, Jim Biology Nature Conservancy x x x xTechnical advisor Duran, Mike Biology Nature Conservancy xTechnical advisor FitzHugh, Tom Hydrology Nature Conservancy x xTechnical advisor Operman, Jeff Hydrology Nature Conservancy x x x x xTechnical advisor Paterno-Pai, Diedre Hydrology Nature Conservancy x xTechnical advisor Richter, Brian PhD Hydrology Nature Conservancy x x xTechnical advisor Smith, Ryan Hydrology Nature Conservancy x x x x x x xTechnical advisor Warner, Andy Hydrology Nature Conservancy x x xTechnical advisor Wigington, Robert Law Nature Conservancy x xTechnical advisor Blair, Michele Water Quality TCEQ xTechnical advisor Brookins, Linda Water Quality TCEQ xTechnical advisor Chenoweth, Todd Water Rights TCEQ

Technical advisor Cook, Rob Water Quality TCEQ x xTechnical advisor Crowe, Art Water Quality TCEQ x xTechnical advisor Delk, Jennifer Water Quality TCEQ x xTechnical advisor Espino, Frank Water Quality TCEQ xTechnical advisor Gordon, Wendy Hydrology TCEQ x x x xTechnical advisor Rothe, Gail Water Quality TCEQ xTechnical advisor Rubenstein, Carlos Water Rights TCEQ xTechnical advisor Wadick, Ashley Law TCEQ xTechnical advisor Weber, Tom Water Quality TCEQ xTechnical advisor Hansen, Robert Biology TCEQ x xTechnical advisor Fox, Bill Biology Texas A&M Texas Water Resources Institute xTechnical advisor Gregory, Lucas Hydrology Texas A&M Texas Water Resources Institute x xTechnical advisor Harris, BL Water Quality Texas A&M Texas Water Resources Institute xTechnical advisor Jones, C. Allan Water Resources Texas A&M Texas Water Resources Institute x x

Flows

Workshops

Cypress Basin Flows Meetings - Participants 2004-2010

DRAFT August 2010Science Planning

Meetings

Page 95: Cypress SB3 20100826 Main - Texas

Role* Name Area of Expertise Affiliation Ori

en-

tati

o

2005

2006

2008

2006

2007

2008

2009

2010

Flows

Workshops

Cypress Basin Flows Meetings - Participants 2004-2010

DRAFT August 2010Science Planning

Meetings

Technical advisor Chin, Anne Geomorphology Texas A&M University x xTechnical advisor Davis, Stephen Hydrology Texas A&M University x xTechnical advisor Roelke, Dan Hydrology Texas A&M University x x xTechnical advisor Romero, Luz Biology Texas A&M University x xTechnical advisor Wilcox, Brad Hydrology Texas A&M University x x xTechnical advisor Winemiller, Kirk Hydrology Texas A&M University x x xTechnical advisor Duncan, Chris Forestry Texas Forest Service xTechnical advisor Adams, Vanessa Biology Texas Parks & Wildlife Dept. x xTechnical advisor Birdsong, Tim Biology Texas Parks & Wildlife Dept. xTechnical advisor Bister, Tim Biology Texas Parks & Wildlife Dept. x x x xTechnical advisor Brice, Michael Biology Texas Parks & Wildlife Dept. x xTechnical advisor Chilton, Earl Biology Texas Parks & Wildlife Dept. x xTechnical advisor Harriman, Kevin Biology Texas Parks & Wildlife Dept. x xTechnical advisor Kokkanti, Praveen Biology Texas Parks & Wildlife Dept. xTechnical advisor Mason, Corey Biology Texas Parks & Wildlife Dept. x xTechnical advisor Maxey, Ricky Biology Texas Parks & Wildlife Dept. xTechnical advisor Mayes, Kevin Hydrology Texas Parks & Wildlife Dept. x x x x x x xTechnical advisor Mosier, Doyle Biology Texas Parks & Wildlife Dept. x xTechnical advisor Moss, Randy Biology Texas Parks & Wildlife Dept. x xTechnical advisor Ryan, Mike Biology Texas Parks & Wildlife Dept. x x xTechnical advisor Shen, Yi Biology Texas Parks & Wildlife Dept. xTechnical advisor Whisenant, Adam Biology Texas Parks & Wildlife Dept. x x x x xTechnical advisor Berry, Max Water Quality Texas State Soil & Water Conservation Board x xTechnical advisor Wendt, Aaron Water Quality Texas State Soil & Water Conservation Board xTechnical advisor Bonner, Tim Biology Texas State University xTechnical advisor Perkins, Joshuah Biology Texas State University xTechnical advisor Rainwater, Thomas Biology Texas Tech University x x xTechnical advisor Furnans, Jordan Hydrology Texas Water Development Board xTechnical advisor Raphelt, Nolan Hydrology Texas Water Development Board x xTechnical advisor Wentzel, Mark Hydrology Texas Water Development Board x xTechnical advisor Chumchal, Matthew Biology - Mercury Texas Christian University x x xTechnical advisor Trungale, Joe Hydrology Trungale Engineering x x x x x x x x xTechnical advisor Ford, Neil Biology University of Texas - Tyler x xTechnical advisor Bransford, Mike Hydrology US Army Corps of Engineers x xTechnical advisor Griffith, Becky Hydrology US Army Corps of Engineers x x xTechnical advisor Hackett, Marcia Hydrology US Army Corps of Engineers x xTechnical advisor Hedges, Raymon Engineering US Army Corps of Engineers x xTechnical advisor Jones, Tommy Engineering US Army Corps of Engineers x xTechnical advisor Kelly, Charissa Hydrology US Army Corps of Engineers x x x x xTechnical advisor King, Wendell Engineering US Army Corps of Engineers x xTechnical advisor Lauderdale, Paul Hydrology US Army Corps of Engineers x x x x xTechnical advisor Loftin, Craig Hydrology US Army Corps of Engineers x xTechnical advisor Newman, Rob Hydrology US Army Corps of Engineers xTechnical advisor Rodman, Paul Hydrology US Army Corps of Engineers x x x x x x xTechnical advisor Shirley, Edward Hydrology US Army Corps of Engineers xTechnical advisor Stockstill, Wayne Hydrology US Army Corps of Engineers x xTechnical advisor Thrift, Michelle Watershed Mngmnt. US Army Corps of Engineers xTechnical advisor Underwood, Martin Watershed Mngmnt. US Army Corps of Engineers xTechnical advisor Vanderpool, Marie Hydrology US Army Corps of Engineers x xTechnical advisor Wilson, David Hydrology US Army Corps of Engineers x x x xTechnical advisor Owens, Chetta Hydrology US Army Corps of Engineers (LAERF) xTechnical advisor Killgore, Jack Biology US Army Corps of Engineers (WES) x xTechnical advisor Echols, William T. Engineering US Army Corps of Engineers, Retired x x x xTechnical advisor Anderson, Robert Biology US Fish & Wildlife Service x

Page 96: Cypress SB3 20100826 Main - Texas

Role* Name Area of Expertise Affiliation Ori

en-

tati

o

2005

2006

2008

2006

2007

2008

2009

2010

Flows

Workshops

Cypress Basin Flows Meetings - Participants 2004-2010

DRAFT August 2010Science Planning

Meetings

Technical advisor Broska, James Biology US Fish & Wildlife Service x x xTechnical advisor Bruckwicki, Paul Biology US Fish & Wildlife Service x x x xTechnical advisor Cloud, Tom Biology US Fish & Wildlife Service x x x x xTechnical advisor Lewis, Jacob Biology US Fish & Wildlife Service x xTechnical advisor Neal, Jim Biology US Fish & Wildlife Service x x x xTechnical advisor Becher, Kent Hydrology US Geological Survey x xTechnical advisor Brown, David Hydrology US Geological Survey x xTechnical advisor East, Jeffrey Hydrology US Geological Survey x xTechnical advisor Heitmuller, Franklin Hydrology US Geological Survey x x xTechnical advisor Johnston, James Hydrology US Geological Survey xTechnical advisor Joseph, Robert (Bob) Hydrology US Geological Survey xTechnical advisor Konrad, Chris Hydrology US Geological Survey xTechnical advisor Mabe, Jeffrey Hydrology US Geological Survey xTechnical advisor Moring, Bruce Hydrology US Geological Survey x x x x x x x x xTechnical advisor Raines, Tim Hydrology US Geological Survey

Technical advisor Rosendale, John Hydrology US Geological Survey xTechnical advisor Wilson, Jennifer Hydrology US Geological Survey x x xTechnical advisor Njue, Obadiah PhD Biology Wiley College x xTechnical advisor Plata, Ernest PhD Biology Wiley College x xStakeholder Coleman, Terry Caddo Lake Area Chamber of Commerce xStakeholder Webb, Jay & Patty Caddo Lake Area Chamber of Commerce x x xStakeholder Werneke, Jean Caddo Lake Area Chamber of Commerce x xStakeholder Shellman, Dwight JD Caddo Lake Insititute x x xStakeholder Haverlah, Sandra Caddo Lake Institute xStakeholder Lowerre, Richard Caddo Lake Institute x x x x x x x x xStakeholder Stephens, V.A. Caddo Lake Institute x x xStakeholder Bonds, Keith City of Longview xStakeholder House, Ben City of Longview xStakeholder Powers, William "Buddy" City of Marshall, Chairman of City Commission xStakeholder Rasor, Anthony City of Mt. Pleasant xStakeholder Canup, Sam & Randi City of Uncertain, Mayor x x x xStakeholder Sanders, Bob Cypress River Ranch xStakeholder Shaw, Ken Cypress Valley Navigation District, Board Chairman x x x x xStakeholder Walker, Tom Cypress Valley Navigation District, Board Member x x x xStakeholder McKnight, Keith Ducks Unlimited xStakeholder Canson, Jack Greater Caddo Lake Assn. x x x x xStakeholder Munden, Ron Greater Caddo Lake Assn. x xStakeholder Speight, Robert Greater Caddo Lake Assn. x x x x x x

Stakeholder Parker, Doug Greater Caddo Lake Assn., President x x xStakeholder Anderson, Richard Harrison County, County Judge x xStakeholder Alexander, Corby Jeffersonian Institute x xStakeholder DeWare, Jesse, 3rd, LLB Jeffersonian Institute x x xStakeholder Endsley, Gary Jeffersonian Institute x x x x xStakeholder Haden, Bryon Jeffersonian Institute x xStakeholder Harrell, Carol Ed.D Jeffersonian Institute x x xStakeholder Keasler, Mary Jeffersonian Institute x xStakeholder Weber, Dan Nature Conservancy, Louisiana x x x x xStakeholder Bartlett, Richard Nature Conservancy, Texas

Stakeholder Bezanson, David Nature Conservancy, Texas x x xStakeholder Bristol, Valarie Nature Conservancy, Texas x x xStakeholder Feckley, Dave Nestle Waters North America xStakeholder Allen, Beverly Northeast Texas Municipal Water District x xStakeholder Blevins, Ric Northeast Texas Municipal Water District x

Page 97: Cypress SB3 20100826 Main - Texas

Role* Name Area of Expertise Affiliation Ori

en-

tati

o

2005

2006

2008

2006

2007

2008

2009

2010

Flows

Workshops

Cypress Basin Flows Meetings - Participants 2004-2010

DRAFT August 2010Science Planning

Meetings

Stakeholder Muse, Marty Northeast Texas Municipal Water District xStakeholder Pafford, Howard Northeast Texas Municipal Water District x xStakeholder Thomas, Lee Northeast Texas Municipal Water District x xStakeholder Brown, William Northeast Texas Municipal Water District, Board Member x x x xStakeholder Salmon, Jack Northeast Texas Municipal Water District, Board Member x xStakeholder Sears, Walt Northeast Texas Municipal Water District, General Manager x x x x x x x xStakeholder Brontoli, Richard Red River Valley Association x xStakeholder LeTourneau, Richard Region D Water Planning Group (TX) x x x xStakeholder Johnson, Judith Resident x xStakeholder Turner, Michael Resident x xStakeholder Weaver, Pamela Resident x xStakeholder Cullum, Brandon Resident x xStakeholder Hamblin, Russell Resident x xStakeholder Barrow, Ted Resident, City of Jefferson xStakeholder Cary, Richard Resident, City of Jefferson x xStakeholder DePrez, Francene Resident, City of Jefferson xStakeholder Lang, Frank Resident, City of Jefferson xStakeholder Pate, Eddie Resident, City of Jefferson xStakeholder Weber, Michael Resident, City of Jefferson xStakeholder Bailey, Phyllis Resident, City of Marshall x xStakeholder Byassee, Peggy Resident, City of Marshall x xStakeholder Dixon, Charles Resident, City of Marshall xStakeholder Fitch, Kyle Resident, City of Marshall x xStakeholder Gordon, John Resident, City of Marshall x xStakeholder Harris, Jim Resident, City of Marshall xStakeholder McMurry, Mike Resident, City of Marshall x xStakeholder Purvis, Marcia Resident, City of Marshall x xStakeholder Sanders, Jack Resident, City of Marshall x x xStakeholder Sanders, MaryJane Resident, City of Marshall x xStakeholder Gray, Vickie Resident, Jonesboro, LA xStakeholder Fortune, Paul Resident, Karnack x x x xStakeholder Fyffe, Mike Resident, Karnack x xStakeholder Parsons, David Sabine River Authority (TX) x xStakeholder Stripling, Kelly Senator Todd Staples' Office x xStakeholder Broad, Tyson Sierra Club

Stakeholder McReynolds, Allen Sierra Club

Stakeholder Martin, Marie State Rep. Stephen Frost's Office x xStakeholder Flynn, Dan State Representative xStakeholder Collins, Chris TCEQ x

Stakeholder Biggers, Leroy TCEQ, Tyler Regional Office, Director x x x xStakeholder Bezanson, Janice Texas Conservation Alliance xStakeholder Bonds, Craig Texas Parks & Wildlife Dept., Regional Director x xStakeholder Dickinson, Todd Texas Parks & Wildlife Dept., Caddo Lake State Park xStakeholder Farmer, Dee State Senator Kevin Eltife's Office xStakeholder Williams, Mark US Fish & Wildlife Service, Caddo Lake Refuge Mgr. x x x x x

*The designation of who is a techical advisor and who is a stakeholder was sometimes very arbitrary. Many of those listed as stakeholders brought valuable

expertise to the process, and some of those listed as technical advisors may have seen their role more as a stakeholder. We apologize if we have

mischaracterized anyone's role.

Page 98: Cypress SB3 20100826 Main - Texas

Attachment 5 Time Table for Major Activities

December 2004: Orientation Meeting. (~60 Scientists and Stakeholders) April 2005: Texas A&M Summary Report - on Past Scientific Studies. May 2005: First Project Workshop. (~90 Scientists and Stakeholders) Fall 2005 – Fall 2008: Research & Filling Data Gaps: Field Work and Other Research. April & May 2006: Science Planning Meetings – Two (at Caddo and Austin) to Guide

Research. September 2006: Hydrology Update. Expansion & Update of Texas A&M Summary Report. October 2006: Historic Trends in Fish Community, Cypress Basin. Texas State University. October 2006: Second Project Workshop. (~80 Scientists and Stakeholders) Also Served as

the First Hydrology Workgroup Meeting for the Parallel State Sponsored Caddo Lake Watershed Protection Planning Process.

May & June 2007: Science Planning Meetings – Two (at Caddo and Austin) to Guide

Research. July 2008: Science Planning Meeting – In Austin to Guide Research. December 2008: Third Project Workshop. (~ 75 Scientist and Stakeholders) Also Served as

the Second Hydrology Workgroup Meeting for the Parallel State Sponsored Caddo Lake Watershed Protection Planning Process.

January 2009: Science Planning Meeting – In Austin to Guide Research for Fourth Project

Workshop and Adaptive Management. January & May 2010: Science Planning Meetings – In Austin to Guide Research on

Indicators of Success and for Fourth Project Workshop and Adaptive Management. Fall 2011: Proposed date for Fourth Project Workshop.

Page 99: Cypress SB3 20100826 Main - Texas

Attachment 6: Lake O’ the Pines and the Changes in Flows with Construction of the Dam

The range of flows changed significantly with the construction of the dam. Before the dam was built in 1959, flow in Big Cypress Creek above Caddo Lake ranged as high as 57,000 cfs. The maximum release now from the dam to Big Cypress is 3000 cfs. Thus, the variation of flows and the inundation of wetlands along Big Cypress and in Caddo Lake are limited by the construction of the dam. Current law requires only a 5 cfs release from the dam, although NETMWD has generally provided greater releases. There was no gaged information for 1960 to 1980.

Daily Average Streamflow in Big Cypress Creek at USGS Gage 07346000

0

10000

20000

30000

40000

50000

60000

8/1

/1924

8/1

/1927

8/1

/1930

8/1

/1933

8/1

/1936

8/1

/1939

8/1

/1942

8/1

/1945

8/1

/1948

8/1

/1951

8/1

/1954

8/1

/1957

8/1

/1960

8/1

/1963

8/1

/1966

8/1

/1969

8/1

/1972

8/1

/1975

8/1

/1978

8/1

/1981

8/1

/1984

8/1

/1987

8/1

/1990

8/1

/1993

8/1

/1996

8/1

/1999

8/1

/2002

Dis

charg

e (cfs

)

Page 100: Cypress SB3 20100826 Main - Texas

Attachment 7 KEY PROVISIONS OF SB 3 Definitions (15) Environmental flow analysis means the application of a scientifically derived process for predicting the response of an ecosystem to changes in instream flows or freshwater inflows. (16) Environmental flow regime means a schedule of flow quantities that reflects seasonal and yearly fluctuations that typically would vary geographically, by specific location in a watershed, and that are shown to be adequate to support a sound ecological environment and to maintain the productivity, extent, and persistence of key aquatic habitats in and along the affected water bodies. (17) Environmental flow standards must consist of a schedule of flow quantities, reflecting seasonal and yearly fluctuations that may vary geographically by specific location…. Goals: The [TCEQ] by rule shall:

1) adopt appropriate environmental flow standards for each river basin … that are adequate to support a sound ecological environment, to the maximum extent reasonable considering other public interests and other relevant factors; (2) establish an amount of unappropriated water, if available, to be set aside to satisfy the environmental flow standards to the maximum extent reasonable when considering human water needs….

An environmental flow set-aside... must be assigned a priority date corresponding to the date the [TCEQ] receives environmental flow regime recommendations … and be included in the appropriate water availability models in connection with an application for a permit for a new appropriation... Methodology: Each … expert science team shall develop environmental flow analyses and a recommended environmental flow regime for the river basin … through a collaborative process designed to achieve a consensus. In developing the analyses and recommendations, the science team must consider all reasonably available science, without regard to the need for the water for other uses… Each … stakeholders committee shall review the environmental flow analyses and environmental flow regime recommendations submitted by the … expert science team and shall consider them in conjunction with other factors, including the present and future needs for water for other uses … The … stakeholders committee and the advisory group may not change the environmental flow analyses or environmental flow regime recommendations of the … expert science team. The … stakeholders committee shall develop recommendations regarding environmental flow standards and strategies to meet the environmental flow standards and submit those recommendations to [TCEQ.] ...in a river basin and bay system for which the [state environmental flows] advisory group has not yet established a schedule for the development of environmental flow regime recommendations and the adoption of environmental flow standards, an effort to develop information on environmental flow needs and ways in which those needs can be met by a voluntary consensus-building process (as this Project is doing for the Cypress watershed).

Page 101: Cypress SB3 20100826 Main - Texas

Attachment 8

DAM AND IMPOUNDMENT STATISTICS FOR CADDO LAKE*

– LOCATION – On Cypress Bayou in Caddo Parish, Louisiana 19 Miles Northwest of Shreveport, Louisiana. The Lake Extends into Harrison and Marion Counties, Texas.

– DRAINAGE AREA – 2,700 Square Miles (Includes Drainage Area of Lake O’ The Pines).

– DAM –

Type ........................................................................................................... Earthfill and Concrete Spillway Maximum Height .................................................................................................................. 36 Ft. Top Width ..............................................................................................................................30 Ft.

– SPILLWAY – Type.................................................................................................... Floodwall (Broad-Crested Wier) Control ................................................................................................................................ None.

– AUTHORIZATION – Federal ............................................................................................. Flood Control Act of October 27, 1965

– RESERVOIR DATA –

(Data From U. S. Army Corps of Engineers, New Orleans District)

Feature Feet Above M.S.L.

Acre Feet Acres

Top of Dam 176.0 391,400 43,000

Spillway High Section 170.5 186,600 31,000

Spillway Low Section 168.5 129,000 26,800

Dead Storage 168.0 69,200 20,700

Usable Storage – 59,800 –

– GENERAL –

Construction Started .......................................................................................................... August 7, 1968 Dam Completed .................................................................................................................. June 18, 1971 Impoundment of Water Began ............................................................................................1914 __________________ *Source: Caddo Lake Contoured Depth Topo Map, A.I.D., Associates, Inc./Publishers, 1993

Page 102: Cypress SB3 20100826 Main - Texas

Attachment 9

Page 103: Cypress SB3 20100826 Main - Texas

DRAFT 

Appendix B 1

APPENDIX B  DATA COLLECTION AND RESEARCH NEEDS {This  list of  research priorities was originally developed  at  the  firs  flows workshop  in May  2005  and has been 

updated  subsequently  as  new  priorities  have  arisen.  These  items  have  been  reorganized  according  to  the 

categories  fitting with  the  State  Instream  Flows  Program  and  our most  current  process.  Items  in  bold  are  in‐

progress or completed.} 

River System 

Hydrology and Hydraulics: 

Develop correlation between old and new Jefferson flow gauging sites, or re‐establish gage.  

What was the pre‐dam (LOP) duration of small floods? 

How much gain/loss (ground water, ET, and diversions) of water between LOP and Caddo Lake?  

Establish new USGS gage 07346080 Big Cypress Creek above SH 43 near Karnack, TX. 

Establish instrumented cross‐sections at non‐gaged locations for continuous monitoring of stage, temperature, and discharge. 

Evaluate limitations of flow in Big Cypress downstream of LOP to determine maximum flood flow augmentation possible from LOP.  

Evaluate historic USACE models and reports, identify historic high water marks (tree pegs.)  

Water flow patterns associated with inflows in upper lake areas. 

Biology: 

Paddlefish and bluehead shiner ecology (including, is enough spawning area left in Big Cypress Creek to support viable populations of each?) 

Conduct baseline, reach‐based biological assessments of benthic macro‐invertebrate assemblages and riparian vegetation. 

Comparison of floodplain vegetation communities in Big Cypress with other tributaries. 

Historical analysis of vegetation change (including use of GLO survey data.) 

Assessment of instream habitat availability at different low‐flow levels. 

Survey of non‐game fishes (including 14 spp. of fish not documented recently) and benthic invertebrates (especially mussels) throughout basin. 

Conduct baseline, reach‐based and synoptic biological status assessments of fish assemblages.  

Analysis of historical trends in Cypress Basin fish assemblages. 

Monitoring Cypress regeneration. 

Water Quality: 

Clean Rivers Program and TCEQ continuous monitoring. 

Nutrient balance. 

Monitoring of contamination of fish and wildlife. 

Flow needed in tributaries to flush sediment and contaminants from upper end of Lake. 

Geomorphology:  

Estimate sediment budget and develop better characterization of sediment composition along entire creek. 

Collect baseline geomorphological data to assess the responses during and following flow releases (include sediment characteristics, channel cross section and general assessment of channel condition.)  

Page 104: Cypress SB3 20100826 Main - Texas

DRAFT 

Appendix B 2

Connectivity: 

Assess floodwater accumulation (flood magnitude‐frequency relationships) and backwater hydraulics below confluence of Little Cypress and Black Cypress. 

How much of floodplain is inundated and how much fish access is available at various flow levels (>2000 cfs?) in various reaches of the creek? (including bankfull discharge level) 

Flood inundation‐vegetation relationships. 

Floodplain mapping and tie to geomorphic features and development. 

Flood release options for LOP: Baseline, reach‐based biological assessments of riparian vegetation in association with monumented reaches and cross‐sections. 

Duration of off‐channel connectivity and persistence of water in floodplain required for aquatic organisms. 

Implementation Concerns: 

Public participation in flow restoration program and input to goal‐setting for adaptive management. 

Articulation of expected ecological and ecosystem service benefits associated with flow restoration (for communication with stakeholders and water managers.) 

Potential flood impacts on communities downstream of Lake o’ the Pines. 

Impacts of human developments on flooding and water quality (including impediments to flood implementation.) 

Implications of flow restoration on other water uses and needs (including Lake o’ the Pines.) 

Improvements in ability to forecast climate and water availability.  

Caddo Lake System  

Hydrology and Hydraulics: 

Summation of cumulative inflows (daily) into Caddo Lake and assessment of relative impact of Lake o’ the Pines on these cumulative inflows. 

Lake level variation associated with inflow variation (and relationship to water diversions or intakes.) 

Flow needed in tributaries to flush sediment from upper end of lake. 

Water flow patterns associated with inflows in upper lake areas. 

Evaluate outlet controls for dam on Caddo Lake. 

Lake conditions, bottom profiles, shoreline positions and upland exposures with different inflows. 

Biology: 

Amphibian and mammal data gaps throughout basin. 

Avian faunal (including waterfowl) data gaps throughout basin. 

Lake fringe (area) exposed at different lake levels (for cypress regeneration.) 

Targeted relative abundance or area for different bottomland‐hardwood communities. 

Evaluate control strategies for invasive aquatic species 

Lake levels (and duration) needed for cypress regeneration. 

Water Quality: 

Conduct nutrient and sediment budgets for Caddo lake. 

Aquatic vegetation control and nutrient reduction. 

How much flow is needed in Big Cypress to flush nutrients and pollutants in lake when other tributaries are simultaneously contributing water? 

Page 105: Cypress SB3 20100826 Main - Texas

DRAFT 

Appendix B 3

Control strategies for invasive shrubs and other plants that could invade during lake drawdowns (e.g., hydrilla, Chinese tallow, buttonbush, water elm.) 

How do we use lake level to knock back hydrilla without losing diversity of other plant species? 

Phytoplankton: what’s here, conduct survey in late summer. 

Investigate results of drawdowns in other lakes to control hydrilla and nutrients. Time required to refill lake after drawdowns. 

Extent (depth) of drawdown necessary to gain desired nutrient reduction effect. 

Rate of drawdown needs to be evaluated. 

Geomorphology:  

Bathymetry of lake (and relationship to drawdowns.) 

Connectivity:  

Lake levels (and duration) needed to knock back bottomland hardwood tree species around lake fringe. 

Flows needed to inundate wetlands. 

Implementation concerns: 

Effects of lake drawdown on sport fishery and economy of Caddo Lake area. 

Public participation in flow restoration program and input to goal‐setting for adaptive management. 

Articulation of expected ecological and ecosystem service benefits associated with flow restoration (for communication with stakeholders and water managers.) 

Potential flood impacts on communities around and downstream of Caddo Lake. 

Impacts of human developments on flooding and water quality (including impediments to flood implementation.) 

 

Page 106: Cypress SB3 20100826 Main - Texas

DRAFT 

Appendix C 1

APPENDIX C  HABITAT MODELING {The  figures on  the  following pages were distributed  to  the Cypress  Flow Project workgroup at  the  third  flows 

workshop in December 2008.} 

 

Page 107: Cypress SB3 20100826 Main - Texas

EFC Monthly Low Flows

TAMU Summary Report07346000 Big Cypress Ck nr Jefferson_IHA_TAMU_2005

25% 50% 75%January 116 268 396February 195 347 500March 218 389 536April 198 333 444May 114 150 264June 49 81 140July 13 39 70August 6 12 41September 6 12 32October 6 26 49November 26 56 94December 61 117 275

Workshop RefinementsJanuary 90 268 396February 90 347 500March 218 390 536April 198 330 445May 114 150 264June 49 79 140July 13 35 70August 6 40 41September 6 40 40October 40 40 49November 90 90 94December 90 117 275

Appendix C 2

Page 108: Cypress SB3 20100826 Main - Texas

0

50

100

150

200

250

Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec

Post_DryPre-Dry

Appendix C 3

Page 109: Cypress SB3 20100826 Main - Texas

Table 6-1

Habitat guilds for Cypress and Twelvemile Bayou fishes, based on preferredvelocities (horizontal axis! and spawning substrate (vertical axis). Evaluation species for reservoirs (*) and streams (**) are indicated.

LACUSTRINE/GENERALISTS SLACK WATER SWIFT WATER

0PEN

SAND

AND

GRAVELS

VEGETATI0N

CREVICE

Gizzard shadMosqultoflsh

Red shinerGreen sunfishOrangespottedBluegill

*

sunfish

Redear sunfishLsrgemouth bass White Crappie **Black crappie

Bowfin *Common carpGolden shinerBrook silverside **

**

Bullhead minnowBlack bullheadYellow bullhead **Channel catfish

American eelThreadfin shadCypress minnowSilvery minnowRibbon shiner

Skipjack herringEmerald shinerMimic shinerFreshwater drum

Redfin shinerPallid shinerBluehead shinerPugnose minnow **River carpsuckerCreek chubsuckerSpotted suckerBlacktail redhorseGolden topminnowFlierWarmouthRedbreast sunfishDollar sunfishLongear sunfish **Spotted sunfishBantam sunfishSpotted bassMud darter

Chestnut lampreyBlackspot shinerStriped shinerIroncolor shinerSand shinerWeed shinerYellow bassWhite BassScaly sand darterHarlequin darterGoldatripe darterRedfin darterRiver darterBlackside darterDusky darter

Spotted garShortnose garAlligator garGrass pickerelChain pickerelTaillight shinerLake chubsuckerSmallmouth buffaloBigmouth buffaloStarhead topminnowBlackstripe topminnow

Longnose garBlack buffalo

Blackspotted topminnowInland silversideBanded pygmy sunfishBluntnose darterSwamp darterSlough darter

Blue catfishTadpole madtomFlathead catfishPirate perchCypress darter

** Blacktail shiner

6-2

Appendix C 4

Page 110: Cypress SB3 20100826 Main - Texas

53BG 59BG 92BG 92BG 92BG 92BG 98BG 99BG 99BG 06BG 06BG 06BG 06BG 07BGBig Cypress 53 59 92 92 92 92 98 99 99 06 06 06 06 07Order Guild BG001 BG002 BG003 BG004 BG005 BG006 BG007 BG008 BG009 BG010 BG011 BG012 BG013 BG014 Slope Rank

6 Slack Water-Sand and Gravel Spotted Sucker, Spotted Bass 8 27 2 8 5 2 14 54 78 34 38 30 27 39 124 12 Lacustrine/Generalist-Sand and Gravel Largemouth Bass, White & Black Crappie (USFWS) 4 11 0 0 0 0 0 0 0 18 12 23 29 12 51 37 Slack Water-Vegitation Pickerel, Bluntnose Darter 6 1 79 9 0 3 66 46 3 18 9 6 4 6 51 28 Slack Water-Cervice Flathead Catfish 0 0 0 5 0 0 2 0 7 0 2 0 1 2 9 44 Lacustrine/Generalist-Cervice Channel Catfish (USFWS) 0 0 0 0 0 0 0 0 0 2 2 1 4 0 9 5

12 Swift Water-Cervice Blacktail Shinner 19 1 0 3 0 14 0 0 0 4 6 10 15 31 2 71 Lacustrine/Generalist-Open Gizzard Shad (USFWS) 2 6 0 0 0 0 0 0 0 3 6 4 3 4 -4 93 Lacustrine/Generalist-Vegitation Brook Silverside (WES84) 8 7 0 0 2 0 0 0 12 13 12 8 7 2 2 8

11 Swift Water-Vegitation None 0 0 0 0 0 2 9 0 0 0 1 0 0 1 4 69 Swift Water-Open Freshwater Drum (USFWS) 3 0 0 0 0 0 0 0 0 0 1 0 1 0 -5 105 Slack Water-Open None 7 1 2 4 2 21 0 0 0 3 1 0 0 0 -23 11

10 Swift Water-Sand and Gravel Iron Color Shinner, Blackside Darter 43 46 17 71 91 59 10 0 0 5 11 18 7 2 -221 12

Big Cypress

0

5

10

15

20

25

30

35

40

45

50

1950

1960

1970

1980

1990

2000

Date

Rel

ativ

e A

bund

ance

Slack Water-Sand and Gravel

Lacustrine/Generalist-Sand and Gravel

Slack Water-Vegitation

Slack Water-Cervice

Lacustrine/Generalist-Cervice

Swift Water-Cervice

Lacustrine/Generalist-Open

Lacustrine/Generalist-Vegitation

Swift Water-Vegitation

Swift Water-Open

Slack Water-Open

Swift Water-Sand and Gravel

Linear (Slack Water-Sand and Gravel)

Linear (Lacustrine/Generalist-Sand and Gravel)

Linear (Slack Water-Vegitation)

Linear (Slack Water-Cervice)

Linear (Lacustrine/Generalist-Cervice)

Linear (Swift Water-Cervice)

Linear (Lacustrine/Generalist-Open)

Linear (Lacustrine/Generalist-Vegitation)

Linear (Swift Water-Vegitation)

Linear (Swift Water-Open)

Linear (Slack Water-Open)

Linear (Swift Water-Sand and Gravel)

0%

20%

40%

60%

80%

100%

53B

G

59B

G

92B

G

92B

G

92B

G

92B

G

98B

G

99B

G

99B

G

06B

G

06B

G

06B

G

06B

G

07B

G

Swift Water-Sand and Gravel

Slack Water-Open

Swift Water-Open

Swift Water-Vegitation

Lacustrine/Generalist-Vegitation

Lacustrine/Generalist-Open

Swift Water-Cervice

Lacustrine/Generalist-Cervice

Slack Water-Cervice

Slack Water-Vegitation

Lacustrine/Generalist-Sand and Gravel

Slack Water-Sand and Gravel

Appendix C 5

Page 111: Cypress SB3 20100826 Main - Texas

53BG 59BG 92BG 92BG 92BG 92BG 98BG 99BG 99BG 06BG 06BG 06BG 06BG 07BGs 53 59 92 92 92 92 98 99 99 06 06 06 06 07Guild BG001 BG002 BG003 BG004 BG005 BG006 BG007 BG008 BG009 BG010 BG011 BG012 BG013 BG014 Slope Rank MaxLepomis megalotis Slack Water-Sand and Gravel 0 3 0 0 0 0 0 0 0 16 18 17 17 10 68 1 18Lepomis macrochirus Lacustrine/Generalist-Sand and Gravel 1 2 0 0 0 0 0 0 0 13 9 14 18 3 46 2 18Lepomis miniatus Slack Water-Sand and Gravel 1 2 0 0 0 0 0 0 1 14 16 6 1 10 37 3 16Fundulus notatus Slack Water-Vegitation 4 1 60 0 0 0 66 4 0 13 5 5 1 5 33 4 66Centrarchus macropterus Slack Water-Sand and Gravel 1 0 0 0 0 0 0 0 64 0 0 0 0 6 28 5 64Fundulus chrysotus Slack Water-Sand and Gravel 0 0 0 0 0 0 7 42 3 1 1 2 0 2 25 6 42Labidesthes sicculus Lacustrine/Generalist-Vegitation 7 1 0 0 0 0 0 0 12 10 11 8 4 2 14 7 12Fundulus dispar Slack Water-Vegitation 0 0 0 0 0 0 0 33 0 0 0 0 0 0 13 8 33Lepomis microlophus Lacustrine/Generalist-Sand and Gravel 1 0 0 0 0 0 0 0 0 3 2 6 4 0 13 9 6Lepomis marginatus Slack Water-Sand and Gravel 0 0 0 0 0 0 0 0 0 0 0 0 0 11 11 10 11Micropterus punctulatus Swift Water-Sand and Gravel 1 2 0 0 0 0 0 0 0 4 8 3 4 1 10 11 8Ictalurus punctatus Lacustrine/Generalist-Cervice 0 0 0 0 0 0 0 0 0 2 2 1 4 0 8 12 4Lepisosteus oculatus Slack Water-Vegitation 0 0 0 0 0 0 0 0 0 4 2 0 1 0 7 13 4Lepomis symmetricus Slack Water-Sand and Gravel 0 0 0 0 0 0 0 13 5 0 0 0 0 0 7 14 13Pomoxis nigromaculatus Lacustrine/Generalist-Sand and Gravel 1 0 0 0 0 0 0 0 0 0 0 0 0 8 7 15 8Cyprinus carpio Lacustrine/Generalist-Vegitation 0 0 0 0 0 0 0 0 0 3 1 0 2 0 6 16 3Lepomis gulosus Slack Water-Sand and Gravel 0 0 0 0 0 0 0 0 0 1 2 2 2 0 5 17 2Percina sciera Swift Water-Sand and Gravel 0 0 2 2 0 0 0 0 0 0 3 4 0 0 5 18 4Aphredoderus sayanus Slack Water-Cervice 0 0 0 0 0 0 0 0 0 0 2 0 0 2 4 19 2Percina caprodes Swift Water-Sand and Gravel 0 1 11 11 0 17 0 0 0 0 0 8 2 0 4 20 17Cyprinella venusta Swift Water-Cervice 19 1 0 3 0 14 0 0 0 4 6 10 15 31 4 21 31Dorosoma petenense Slack Water-Open 0 0 0 0 0 0 0 0 0 3 1 0 0 0 4 22 3Percina macrolepida Swift Water-Vegitation 0 0 0 0 0 0 9 0 0 0 0 0 0 1 4 23 9Opsopoeodus emiliae Slack Water-Sand and Gravel 0 0 0 0 4 0 0 0 1 0 0 1 2 0 3 24 4Elassoma zonatum Slack Water-Vegitation 0 0 0 0 0 0 0 8 0 0 0 0 0 0 3 25 8Minytrema melanops Slack Water-Sand and Gravel 1 0 0 0 0 2 2 0 0 1 1 1 3 0 3 26 3Aplodinotus grunniens Swift Water-Open 0 0 0 0 0 0 0 0 0 0 1 0 1 0 3 27 1Etheostoma proeliare Slack Water-Cervice 0 0 0 5 0 0 0 0 7 0 0 0 0 0 2 28 7Pylodictis olivaris Slack Water-Cervice 0 0 0 0 0 0 0 0 0 0 1 0 1 0 2 29 1Pomoxis annularis Lacustrine/Generalist-Sand and Gravel 0 0 0 0 0 0 0 0 0 1 0 0 1 0 2 30 1Ammocrypta vivax Swift Water-Sand and Gravel 0 0 2 1 6 21 9 0 0 0 0 1 0 0 1 31 21Micropterus salmoides Lacustrine/Generalist-Sand and Gravel 0 3 0 0 0 0 0 0 0 1 1 2 5 0 1 32 5Pimephales vigilax Lacustrine/Generalist-Cervice 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 33 0Dorosoma cepedianum Lacustrine/Generalist-Open 0 1 0 0 0 0 0 0 0 1 1 0 3 0 1 34 3Etheostoma asprigene Slack Water-Sand and Gravel 0 0 0 8 1 0 5 0 0 0 0 0 0 0 1 35 8Etheostoma gracile Slack Water-Vegitation 0 0 0 0 0 0 0 0 1 0 0 0 0 1 1 36 1Ictiobus bubalus Slack Water-Vegitation 0 0 0 0 0 0 0 0 0 0 0 0 1 0 1 37 1Noturus nocturnus Swift Water-Sand and Gravel 0 0 0 0 0 0 0 0 0 0 0 1 0 0 1 38 1Notropis maculatus Slack Water-Vegitation 0 0 0 0 0 0 0 0 2 0 0 0 0 0 1 39 2Noturus gyrinus Slack Water-Cervice 0 0 0 0 0 0 2 0 0 0 0 0 0 0 1 40 2Ictiobus cyprinellus Slack Water-Vegitation 0 0 0 0 0 0 0 0 0 0 1 0 0 0 1 41 1Ictiobus niger Swift Water-Vegitation 0 0 0 0 0 0 0 0 0 0 1 0 0 0 1 41 1Amia calva Lacustrine/Generalist-Vegitation 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 43 0Pimephales promelas Slack Water-Sand and Gravel 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 44 0Pteronotropis hubbsi Slack Water-Sand and Gravel 0 0 2 0 0 0 0 0 0 0 0 0 0 0 0 45 2Lepomis cyanellus Lacustrine/Generalist-Sand and Gravel 1 0 0 0 0 0 0 0 0 0 0 1 0 1 0 46 1Lepisosteus osseus Swift Water-Vegitation 0 0 0 0 0 2 0 0 0 0 0 0 0 0 0 68 2Fundulus blairae Slack Water-Vegitation 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 69 1Semotilus atromaculatus Swift Water-Sand and Gravel 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 69 1Lythrurus umbratilis Slack Water-Sand and Gravel 1 0 0 0 0 0 0 0 4 0 0 0 0 0 0 71 4Lepomis Auritus Slack Water-Sand and Gravel 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 72 1Etheostoma histrio Swift Water-Sand and Gravel 0 0 0 14 0 5 0 0 0 0 0 0 0 2 0 73 14Percina maculata Swift Water-Sand and Gravel 0 0 0 14 0 0 2 0 0 0 0 0 0 0 -1 74 14Esox niger Slack Water-Vegitation 0 0 9 3 0 0 0 0 0 0 1 0 0 0 -1 75 9Hybognathus hayi Slack Water-Open 0 0 0 0 0 0 0 0 0 0 0 0 0 0 -1 76 0Hybognathus placitus Slack Water-Sand and Gravel 0 0 0 0 0 0 0 0 0 0 0 0 0 0 -1 76 0Percina shumardi Swift Water-Sand and Gravel 0 0 0 0 0 0 0 0 0 0 0 0 0 0 -1 76 0Esox americanus Slack Water-Vegitation 0 0 9 5 0 0 0 0 0 0 1 0 0 0 -1 79 9Etheostoma chlorosoma Slack Water-Vegitation 1 0 0 0 0 3 0 0 0 0 0 0 0 0 -1 80 3Notropis atrocaudalis Swift Water-Sand and Gravel 1 0 0 0 0 0 0 0 0 0 0 0 0 0 -4 81 1Etheostoma fusiforme Slack Water-Vegitation 2 0 0 0 0 0 0 0 0 0 0 0 0 0 -4 82 2Gambusia affinis Lacustrine/Generalist-Open 2 5 0 0 0 0 0 0 0 2 5 4 0 4 -5 83 5Lythrurus fumeus Slack Water-Open 0 1 2 4 2 21 0 0 0 0 0 0 0 0 -5 84 21Notropis atherinoides Swift Water-Open 3 0 0 0 0 0 0 0 0 0 0 0 0 0 -7 85 3Notropis chalybaeus Swift Water-Sand and Gravel 1 0 0 6 52 0 0 0 0 0 0 0 0 0 -9 86 52Notemigonus crysoleucas Lacustrine/Generalist-Vegitation 1 6 0 0 2 0 0 0 0 0 0 0 0 0 -17 87 6Cyprinella lutrensis Lacustrine/Generalist-Sand and Gravel 1 6 0 0 0 0 0 0 0 0 1 0 0 0 -18 88 6Hybognathus nuchalis Slack Water-Open 6 0 0 0 0 0 0 0 0 0 0 0 0 0 -20 89 6Hybopsis amnis Slack Water-Sand and Gravel 3 22 0 0 1 0 0 0 0 0 0 0 0 0 -63 90 22Notropis texanus Swift Water-Sand and Gravel 35 0 2 23 33 16 0 0 0 1 1 1 0 0 -108 91 35Notropis stramineus Swift Water-Sand and Gravel 2 44 0 0 0 0 0 0 0 0 0 0 0 0 -115 92 44

Appendix C 6

Page 112: Cypress SB3 20100826 Main - Texas

Existing PHABSIM data

+U

+U

+U

+U

[_

[_

[_

[_ [_ [_

Lake O' the PinesCadddo Lake

BL

LT 154

LT 3001

BG 3BG 2BG 1

Appendix C 7

Page 113: Cypress SB3 20100826 Main - Texas

BG01_BB

SLACK WATER SWIFT WATERSAND AND GRAVEL VEGITATION CERVICE SAND AND GRAVEL CERVICE

BB_DrySPOTTED SUCKER

SPOTTED BASS PICKEREL

BlUNTNOSE DARTER

FLATHEAD CATFISH

IRONCOLOR SHINER

BLACKSIDE DARTER

BLACKTAIL SHINER

Jan 90 82% 79% 93% 82% 53% 79% 94% 81%Feb 90 82% 79% 93% 82% 53% 79% 94% 81%Mar 218 96% 98% 89% 98% 69% 91% 84% 99%Apr 198 98% 99% 92% 100% 68% 94% 89% 100%May 114 88% 88% 97% 88% 61% 87% 98% 87%Jun 49 70% 65% 83% 69% 46% 66% 85% 66%Jul 13 57% 53% 66% 58% 37% 60% 77% 47%Aug 6 52% 49% 61% 50% 36% 56% 71% 41%Sep 6 52% 49% 61% 50% 36% 56% 71% 41%Oct 40 68% 62% 79% 66% 43% 66% 84% 62%Nov 90 82% 79% 93% 82% 53% 79% 94% 81%Dec 90 82% 79% 93% 82% 53% 79% 94% 81%

BB_AvgJan 268 91% 97% 77% 94% 68% 84% 72% 98%Feb 347 82% 93% 53% 86% 66% 73% 56% 91%Mar 390 77% 90% 42% 81% 65% 66% 49% 85%Apr 330 84% 94% 58% 88% 66% 76% 59% 93%May 150 97% 98% 99% 98% 69% 98% 100% 95%Jun 79 80% 77% 92% 78% 52% 79% 94% 78%Jul 35 66% 61% 77% 65% 42% 65% 84% 60%Aug 40 68% 62% 79% 66% 43% 66% 84% 62%Sep 40 68% 62% 79% 66% 43% 66% 84% 62%Oct 40 68% 62% 79% 66% 43% 66% 84% 62%Nov 90 82% 79% 93% 82% 53% 79% 94% 81%Dec 117 89% 89% 98% 89% 62% 89% 98% 88%

BB_WetJan 396 76% 89% 41% 80% 65% 65% 48% 84%Feb 500 65% 82% 28% 73% 67% 55% 38% 73%Mar 536 64% 79% 28% 73% 69% 52% 37% 73%Apr 445 71% 86% 35% 77% 65% 60% 43% 78%May 264 91% 97% 79% 94% 69% 84% 73% 98%Jun 140 95% 96% 99% 95% 68% 96% 100% 93%Jul 70 78% 74% 90% 75% 51% 76% 92% 75%Aug 41 68% 63% 80% 67% 44% 66% 85% 63%Sep 40 68% 62% 79% 66% 43% 66% 84% 62%Oct 49 70% 65% 83% 69% 46% 66% 85% 66%Nov 94 82% 80% 93% 84% 53% 80% 95% 82%Dec 275 90% 97% 75% 93% 68% 83% 70% 98%

BG01.xlsAppendix C 8

Page 114: Cypress SB3 20100826 Main - Texas

BG01_IHA

SLACK WATER SWIFT WATERSAND AND GRAVEL VEGITATION CERVICE SAND AND GRAVEL CERVICE

IHA_DrySPOTTED SUCKER

SPOTTED BASS PICKEREL

BlUNTNOSE DARTER

FLATHEAD CATFISH

IRONCOLOR SHINER

BLACKSIDE DARTER

BLACKTAIL SHINER

Jan 116 89% 89% 98% 89% 62% 89% 98% 87%Feb 195 98% 99% 93% 100% 68% 95% 90% 100%Mar 218 96% 98% 89% 98% 69% 90% 84% 99%Apr 198 98% 99% 93% 100% 68% 94% 89% 100%May 114 88% 88% 97% 88% 60% 87% 98% 87%Jun 49 70% 65% 83% 69% 46% 66% 85% 66%Jul 13 57% 53% 65% 58% 37% 60% 76% 47%Aug 6 52% 49% 60% 50% 36% 55% 71% 41%Sep 6 52% 49% 60% 49% 36% 55% 71% 40%Oct 6 52% 49% 61% 50% 36% 56% 71% 41%Nov 26 64% 58% 74% 63% 39% 64% 83% 56%Dec 61 75% 70% 87% 72% 49% 72% 89% 71%

IHA_AvgJan 268 91% 97% 77% 94% 68% 84% 72% 98%Feb 347 82% 93% 54% 86% 66% 73% 56% 91%Mar 389 77% 90% 42% 81% 65% 66% 49% 85%Apr 333 84% 93% 57% 87% 66% 75% 59% 93%May 150 97% 98% 99% 98% 69% 98% 100% 95%Jun 81 81% 78% 92% 79% 52% 79% 94% 79%Jul 39 67% 62% 79% 66% 43% 66% 84% 62%Aug 12 56% 52% 65% 57% 37% 60% 76% 46%Sep 12 57% 53% 65% 58% 37% 60% 76% 47%Oct 26 64% 58% 74% 63% 39% 64% 83% 56%Nov 56 73% 68% 85% 71% 48% 69% 87% 69%Dec 117 89% 89% 98% 89% 62% 89% 98% 88%

IHA_WetJan 396 76% 89% 41% 80% 65% 65% 48% 84%Feb 500 65% 82% 28% 73% 67% 55% 38% 73%Mar 536 64% 79% 28% 73% 69% 52% 37% 73%Apr 444 71% 86% 35% 77% 65% 60% 43% 78%May 264 91% 97% 79% 94% 69% 84% 73% 98%Jun 140 95% 96% 99% 95% 68% 96% 100% 93%Jul 70 78% 74% 89% 75% 51% 76% 92% 75%Aug 41 68% 63% 80% 67% 44% 66% 85% 63%Sep 32 65% 60% 76% 64% 41% 65% 84% 59%Oct 49 70% 65% 83% 69% 46% 66% 85% 66%Nov 94 82% 80% 93% 83% 53% 80% 95% 82%Dec 275 90% 97% 75% 93% 68% 83% 70% 98%

BG01.xlsAppendix C 9

Page 115: Cypress SB3 20100826 Main - Texas

BG01_POST

SLACK WATER SWIFT WATERSAND AND GRAVEL VEGITATION CERVICE SAND AND GRAVEL CERVICE

Post_DrySPOTTED SUCKER

SPOTTED BASS PICKEREL

BlUNTNOSE DARTER

FLATHEAD CATFISH

IRONCOLOR SHINER

BLACKSIDE DARTER

BLACKTAIL SHINER

Jan 33 66% 60% 77% 65% 41% 65% 84% 59%Feb 45 69% 64% 81% 68% 45% 66% 85% 64%Mar 41 68% 62% 79% 66% 44% 66% 84% 62%Apr 51 71% 66% 84% 69% 47% 67% 86% 67%May 41 68% 62% 79% 66% 44% 66% 84% 62%Jun 37 67% 61% 78% 65% 42% 65% 84% 61%Jul 29 65% 59% 75% 64% 40% 65% 84% 58%Aug 26 63% 58% 74% 63% 39% 64% 83% 56%Sep 26 64% 58% 74% 63% 39% 64% 83% 56%Oct 25 63% 58% 73% 63% 39% 64% 83% 56%Nov 24 63% 57% 73% 62% 39% 64% 83% 55%Dec 29 65% 59% 75% 64% 40% 65% 84% 58%

Post_AvgJan 105 85% 83% 95% 87% 56% 83% 96% 85%Feb 321 85% 94% 60% 89% 66% 77% 61% 94%Mar 165 99% 99% 98% 99% 69% 99% 99% 98%Apr 152 97% 99% 99% 98% 69% 98% 100% 96%May 56 73% 68% 85% 71% 48% 69% 87% 69%Jun 60 74% 70% 86% 72% 49% 71% 89% 70%Jul 65 76% 72% 88% 74% 50% 74% 91% 73%Aug 39 67% 62% 79% 66% 43% 66% 84% 62%Sep 41 68% 63% 80% 67% 44% 66% 85% 63%Oct 40 68% 62% 79% 66% 43% 66% 84% 62%Nov 40 68% 62% 79% 66% 43% 66% 84% 62%Dec 59 74% 69% 86% 72% 48% 71% 88% 70%

Post_WetJan 276 90% 97% 74% 93% 68% 83% 70% 98%Feb 481 67% 84% 31% 75% 66% 56% 40% 75%Mar 400 75% 89% 40% 80% 64% 64% 47% 83%Apr 293 88% 96% 68% 92% 67% 81% 66% 98%May 148 97% 98% 99% 97% 69% 98% 100% 95%Jun 197 98% 99% 93% 100% 68% 94% 89% 100%Jul 92 82% 79% 93% 83% 53% 79% 94% 82%Aug 60 74% 70% 86% 72% 49% 71% 89% 70%Sep 55 72% 67% 85% 70% 48% 69% 87% 68%Oct 63 75% 71% 87% 73% 49% 72% 90% 72%Nov 109 86% 85% 96% 87% 58% 85% 97% 86%Dec 341 83% 93% 55% 86% 66% 74% 57% 91%

BG01.xlsAppendix C 10

Page 116: Cypress SB3 20100826 Main - Texas

BG02_BB

SLACK WATER SWIFT WATERSAND AND GRAVEL VEGITATION CERVICE SAND AND GRAVEL CERVICE

BB_DrySPOTTED SUCKER

SPOTTED BASS PICKEREL

BlUNTNOSE DARTER

FLATHEAD CATFISH

IRONCOLOR SHINER

BLACKSIDE DARTER

BLACKTAIL SHINER

Jan 90 95% 98% 91% 98% 84% 90% 73% 99%Feb 90 95% 98% 91% 98% 84% 90% 73% 99%Mar 218 68% 88% 63% 68% 84% 68% 30% 89%Apr 198 74% 89% 67% 69% 84% 70% 33% 92%May 114 90% 95% 86% 90% 84% 84% 59% 99%Jun 49 98% 99% 100% 90% 82% 99% 99% 87%Jul 13 67% 67% 83% 70% 57% 74% 82% 61%Aug 6 55% 55% 69% 56% 47% 63% 74% 47%Sep 6 55% 55% 69% 56% 47% 63% 74% 47%Oct 40 90% 92% 97% 85% 76% 93% 95% 82%Nov 90 95% 98% 91% 98% 84% 90% 73% 99%Dec 90 95% 98% 91% 98% 84% 90% 73% 99%

BB_AvgJan 268 53% 86% 46% 65% 82% 62% 24% 80%Feb 347 37% 79% 29% 59% 81% 53% 20% 65%Mar 390 32% 76% 29% 56% 81% 48% 20% 60%Apr 330 39% 81% 29% 60% 81% 55% 20% 67%May 150 83% 93% 71% 79% 83% 78% 44% 98%Jun 79 99% 100% 92% 99% 83% 93% 81% 98%Jul 35 86% 87% 95% 82% 73% 89% 92% 79%Aug 40 90% 92% 97% 85% 76% 93% 95% 82%Sep 40 90% 92% 97% 85% 76% 93% 95% 82%Oct 40 90% 92% 97% 85% 76% 93% 95% 82%Nov 90 95% 98% 91% 98% 84% 90% 73% 99%Dec 117 89% 95% 86% 88% 84% 83% 57% 99%

BB_WetJan 396 31% 75% 29% 56% 81% 48% 20% 59%Feb 500 28% 70% 28% 59% 82% 43% 20% 53%Mar 536 28% 68% 29% 60% 84% 42% 19% 53%Apr 445 29% 73% 29% 57% 82% 45% 20% 56%May 264 54% 86% 48% 66% 82% 63% 24% 81%Jun 140 85% 93% 76% 81% 83% 79% 47% 98%Jul 70 100% 100% 94% 98% 83% 95% 87% 95%Aug 41 91% 92% 97% 85% 77% 94% 95% 83%Sep 40 90% 92% 97% 85% 76% 93% 95% 82%Oct 49 98% 99% 100% 90% 82% 99% 99% 87%Nov 94 94% 98% 90% 97% 84% 89% 70% 99%Dec 275 51% 85% 42% 65% 82% 61% 23% 78%

BG02.xlsAppendix C 11

Page 117: Cypress SB3 20100826 Main - Texas

BG02_IHA

SLACK WATER SWIFT WATERSAND AND GRAVEL VEGITATION CERVICE SAND AND GRAVEL CERVICE

IHA_DrySPOTTED SUCKER

SPOTTED BASS PICKEREL

BlUNTNOSE DARTER

FLATHEAD CATFISH

IRONCOLOR SHINER

BLACKSIDE DARTER

BLACKTAIL SHINER

Jan 116 89% 95% 86% 89% 84% 84% 58% 99%Feb 195 74% 89% 68% 70% 84% 71% 34% 92%Mar 218 68% 88% 63% 68% 84% 68% 30% 89%Apr 198 74% 89% 68% 69% 84% 70% 33% 92%May 114 90% 96% 86% 90% 84% 84% 59% 99%Jun 49 98% 99% 100% 90% 82% 99% 99% 87%Jul 13 67% 67% 82% 70% 57% 74% 82% 61%Aug 6 55% 54% 69% 56% 47% 63% 74% 46%Sep 6 54% 54% 68% 55% 47% 62% 73% 46%Oct 6 55% 55% 69% 56% 47% 63% 74% 47%Nov 26 78% 80% 92% 76% 67% 83% 88% 74%Dec 61 100% 100% 97% 95% 83% 97% 93% 92%

IHA_AvgJan 268 53% 86% 46% 65% 82% 62% 24% 80%Feb 347 37% 79% 29% 59% 81% 53% 20% 65%Mar 389 32% 76% 29% 56% 81% 48% 20% 60%Apr 333 39% 81% 29% 60% 81% 54% 20% 67%May 150 83% 93% 71% 79% 83% 78% 44% 98%Jun 81 98% 99% 92% 99% 83% 92% 80% 98%Jul 39 90% 91% 97% 84% 76% 92% 94% 81%Aug 12 66% 66% 81% 69% 56% 73% 82% 60%Sep 12 66% 67% 82% 70% 57% 74% 82% 60%Oct 26 78% 80% 92% 76% 67% 83% 88% 74%Nov 56 99% 100% 98% 93% 83% 99% 96% 90%Dec 117 89% 95% 86% 88% 84% 83% 57% 99%

IHA_WetJan 396 31% 75% 29% 56% 81% 48% 20% 59%Feb 500 28% 70% 28% 59% 82% 43% 20% 53%Mar 536 28% 68% 29% 60% 84% 42% 19% 53%Apr 444 29% 73% 29% 57% 82% 45% 20% 56%May 264 54% 86% 49% 66% 82% 63% 24% 81%Jun 140 85% 93% 77% 81% 83% 79% 48% 98%Jul 70 100% 100% 94% 98% 83% 95% 88% 95%Aug 41 91% 92% 97% 85% 77% 94% 95% 83%Sep 32 83% 85% 94% 79% 71% 87% 91% 77%Oct 49 98% 99% 100% 90% 82% 99% 99% 87%Nov 94 94% 98% 90% 97% 84% 89% 71% 99%Dec 275 51% 85% 43% 65% 82% 61% 23% 78%

BG02.xlsAppendix C 12

Page 118: Cypress SB3 20100826 Main - Texas

BG02_POST

SLACK WATER SWIFT WATERSAND AND GRAVEL VEGITATION CERVICE SAND AND GRAVEL CERVICE

Post_DrySPOTTED SUCKER

SPOTTED BASS PICKEREL

BlUNTNOSE DARTER

FLATHEAD CATFISH

IRONCOLOR SHINER

BLACKSIDE DARTER

BLACKTAIL SHINER

Jan 33 85% 86% 95% 81% 72% 88% 91% 78%Feb 45 94% 95% 98% 88% 79% 96% 97% 85%Mar 41 91% 92% 97% 85% 77% 93% 95% 82%Apr 51 99% 100% 100% 91% 83% 100% 99% 88%May 41 91% 92% 97% 85% 77% 93% 95% 82%Jun 37 87% 89% 96% 83% 74% 90% 93% 80%Jul 29 81% 83% 93% 78% 69% 85% 89% 75%Aug 26 78% 80% 92% 76% 67% 83% 87% 73%Sep 26 78% 80% 92% 76% 67% 83% 88% 74%Oct 25 77% 79% 92% 75% 66% 82% 87% 73%Nov 24 76% 78% 91% 75% 65% 81% 87% 72%Dec 29 81% 83% 93% 78% 69% 85% 89% 75%

Post_AvgJan 105 91% 97% 88% 94% 84% 87% 63% 100%Feb 321 41% 82% 29% 60% 81% 56% 20% 68%Mar 165 80% 91% 71% 75% 83% 75% 42% 96%Apr 152 82% 92% 71% 78% 83% 77% 43% 98%May 56 99% 100% 98% 93% 83% 99% 96% 90%Jun 60 99% 100% 97% 94% 83% 98% 94% 92%Jul 65 100% 100% 96% 96% 83% 96% 91% 94%Aug 39 90% 91% 97% 84% 76% 92% 94% 81%Sep 41 92% 93% 97% 86% 77% 94% 96% 83%Oct 40 90% 91% 97% 84% 76% 93% 95% 82%Nov 40 90% 91% 97% 84% 76% 93% 95% 82%Dec 59 99% 100% 98% 94% 83% 98% 95% 91%

Post_WetJan 276 51% 85% 42% 64% 82% 61% 23% 77%Feb 481 28% 71% 28% 59% 82% 44% 20% 54%Mar 400 31% 75% 29% 56% 81% 47% 20% 58%Apr 293 46% 84% 33% 62% 82% 59% 20% 73%May 148 83% 93% 73% 79% 83% 78% 45% 98%Jun 197 74% 89% 68% 69% 84% 70% 33% 92%Jul 92 95% 98% 91% 97% 84% 90% 72% 99%Aug 60 99% 100% 97% 94% 83% 98% 94% 92%Sep 55 99% 100% 99% 93% 83% 99% 97% 90%Oct 63 100% 100% 96% 96% 83% 97% 92% 93%Nov 109 91% 96% 87% 92% 84% 85% 61% 100%Dec 341 38% 80% 29% 59% 81% 53% 20% 66%

BG02.xlsAppendix C 13

Page 119: Cypress SB3 20100826 Main - Texas

BG03_IHA

SLACK WATER SWIFT WATERSAND AND GRAVEL VEGITATION CERVICE SAND AND GRAVEL CERVICE

IHA_DrySPOTTED SUCKER

SPOTTED BASS PICKEREL

BlUNTNOSE DARTER

FLATHEAD CATFISH

IRONCOLOR SHINER

BLACKSIDE DARTER

BLACKTAIL SHINER

Jan 116 98% 99% 88% 95% 90% 96% 97% 97%Feb 195 95% 100% 94% 97% 91% 100% 99% 97%Mar 218 93% 100% 94% 96% 91% 100% 98% 96%Apr 198 95% 100% 94% 97% 91% 100% 99% 97%May 114 98% 99% 88% 95% 90% 97% 97% 97%Jun 49 100% 97% 97% 90% 89% 95% 100% 96%Jul 13 99% 93% 92% 89% 85% 86% 96% 95%Aug 6 100% 92% 86% 89% 84% 84% 94% 95%Sep 6 100% 92% 85% 89% 84% 84% 94% 95%Oct 6 100% 92% 86% 89% 84% 85% 94% 95%Nov 26 100% 95% 94% 90% 87% 91% 99% 95%Dec 61 99% 98% 98% 91% 89% 95% 100% 96%

IHA_AvgJan 268 90% 99% 93% 95% 91% 98% 96% 95%Feb 347 91% 99% 90% 95% 92% 96% 96% 95%Mar 389 92% 99% 88% 95% 93% 96% 96% 96%Apr 333 91% 99% 91% 95% 92% 96% 95% 95%May 150 97% 99% 91% 96% 90% 98% 98% 97%Jun 81 98% 99% 96% 93% 90% 96% 100% 96%Jul 39 100% 96% 96% 90% 88% 93% 99% 96%Aug 12 99% 93% 92% 89% 85% 86% 96% 94%Sep 12 99% 93% 92% 89% 85% 86% 96% 95%Oct 26 100% 95% 94% 90% 87% 91% 99% 95%Nov 56 99% 98% 97% 90% 89% 95% 100% 96%Dec 117 97% 99% 88% 95% 90% 96% 97% 97%

IHA_WetJan 396 92% 99% 88% 95% 93% 95% 96% 97%Feb 500 91% 99% 93% 97% 95% 96% 90% 98%Mar 536 90% 99% 95% 98% 95% 95% 89% 99%Apr 444 91% 99% 90% 96% 94% 96% 93% 97%May 264 90% 99% 93% 95% 91% 98% 96% 95%Jun 140 97% 99% 89% 95% 90% 97% 97% 96%Jul 70 99% 98% 98% 91% 90% 95% 100% 96%Aug 41 100% 97% 96% 90% 88% 93% 99% 96%Sep 32 100% 96% 95% 90% 87% 92% 99% 95%Oct 49 100% 97% 97% 90% 89% 95% 100% 96%Nov 94 99% 99% 92% 94% 90% 97% 99% 97%Dec 275 90% 99% 93% 95% 91% 98% 96% 95%

BG03.xlsAppendix C 14

Page 120: Cypress SB3 20100826 Main - Texas

BG03_BB

SLACK WATER SWIFT WATERSAND AND GRAVEL VEGITATION CERVICE SAND AND GRAVEL CERVICE

BB_DrySPOTTED SUCKER

SPOTTED BASS PICKEREL

BlUNTNOSE DARTER

FLATHEAD CATFISH

IRONCOLOR SHINER

BLACKSIDE DARTER

BLACKTAIL SHINER

Jan 90 99% 99% 93% 94% 90% 97% 99% 97%Feb 90 99% 99% 93% 94% 90% 97% 99% 97%Mar 218 93% 100% 94% 96% 91% 100% 98% 96%Apr 198 95% 100% 94% 97% 91% 100% 99% 97%May 114 98% 99% 88% 95% 90% 97% 97% 97%Jun 49 100% 97% 97% 90% 89% 95% 100% 96%Jul 13 99% 93% 92% 89% 85% 87% 96% 95%Aug 6 100% 92% 86% 89% 84% 84% 94% 95%Sep 6 100% 92% 86% 89% 84% 84% 94% 95%Oct 40 100% 96% 96% 90% 88% 93% 99% 96%Nov 90 99% 99% 93% 94% 90% 97% 99% 97%Dec 90 99% 99% 93% 94% 90% 97% 99% 97%

BB_AvgJan 268 90% 99% 93% 95% 91% 98% 96% 95%Feb 347 91% 99% 90% 95% 92% 96% 96% 95%Mar 390 92% 99% 88% 95% 93% 96% 96% 96%Apr 330 91% 99% 91% 95% 92% 96% 95% 95%May 150 97% 99% 91% 96% 90% 98% 98% 97%Jun 79 98% 99% 97% 92% 90% 96% 100% 96%Jul 35 100% 96% 95% 90% 88% 92% 99% 95%Aug 40 100% 96% 96% 90% 88% 93% 99% 96%Sep 40 100% 96% 96% 90% 88% 93% 99% 96%Oct 40 100% 96% 96% 90% 88% 93% 99% 96%Nov 90 99% 99% 93% 94% 90% 97% 99% 97%Dec 117 97% 99% 88% 95% 90% 96% 97% 97%

BB_WetJan 396 92% 99% 88% 95% 93% 95% 96% 97%Feb 500 91% 99% 93% 97% 95% 96% 90% 98%Mar 536 90% 99% 95% 98% 95% 95% 89% 99%Apr 445 91% 99% 90% 96% 94% 96% 93% 97%May 264 90% 99% 93% 95% 91% 98% 96% 95%Jun 140 97% 99% 90% 95% 90% 97% 97% 96%Jul 70 99% 98% 98% 91% 90% 95% 100% 96%Aug 41 100% 97% 96% 90% 88% 93% 99% 96%Sep 40 100% 96% 96% 90% 88% 93% 99% 96%Oct 49 100% 97% 97% 90% 89% 95% 100% 96%Nov 94 99% 99% 91% 94% 90% 97% 99% 97%Dec 275 90% 99% 93% 95% 91% 98% 96% 95%

BG03.xlsAppendix C 15

Page 121: Cypress SB3 20100826 Main - Texas

BG03_POST

SLACK WATER SWIFT WATERSAND AND GRAVEL VEGITATION CERVICE SAND AND GRAVEL CERVICE

Post_DrySPOTTED SUCKER

SPOTTED BASS PICKEREL

BlUNTNOSE DARTER

FLATHEAD CATFISH

IRONCOLOR SHINER

BLACKSIDE DARTER

BLACKTAIL SHINER

Jan 33 100% 96% 95% 90% 87% 92% 99% 95%Feb 45 100% 97% 96% 90% 88% 94% 100% 96%Mar 41 100% 96% 96% 90% 88% 93% 99% 96%Apr 51 100% 97% 97% 90% 89% 95% 100% 96%May 41 100% 96% 96% 90% 88% 93% 99% 96%Jun 37 100% 96% 95% 90% 88% 93% 99% 96%Jul 29 100% 95% 94% 90% 87% 91% 99% 95%Aug 26 100% 95% 94% 90% 87% 91% 99% 95%Sep 26 100% 95% 94% 90% 87% 91% 99% 95%Oct 25 100% 95% 94% 90% 87% 91% 99% 95%Nov 24 100% 95% 93% 89% 87% 90% 98% 95%Dec 29 100% 95% 94% 90% 87% 91% 99% 95%

Post_AvgJan 105 99% 99% 89% 95% 90% 98% 98% 97%Feb 321 90% 99% 91% 95% 92% 96% 95% 95%Mar 165 96% 100% 92% 97% 91% 99% 98% 97%Apr 152 96% 99% 91% 96% 90% 98% 98% 97%May 56 99% 98% 97% 90% 89% 95% 100% 96%Jun 60 99% 98% 98% 91% 89% 95% 100% 96%Jul 65 99% 98% 98% 91% 89% 95% 100% 96%Aug 39 100% 96% 96% 90% 88% 93% 99% 96%Sep 41 100% 97% 96% 90% 88% 93% 99% 96%Oct 40 100% 96% 96% 90% 88% 93% 99% 96%Nov 40 100% 96% 96% 90% 88% 93% 99% 96%Dec 59 99% 98% 97% 90% 89% 95% 100% 96%

Post_WetJan 276 90% 99% 93% 95% 91% 98% 96% 95%Feb 481 91% 99% 92% 97% 94% 96% 91% 98%Mar 400 92% 99% 88% 95% 93% 95% 96% 97%Apr 293 90% 99% 93% 95% 91% 97% 95% 94%May 148 97% 99% 90% 96% 90% 98% 98% 97%Jun 197 95% 100% 94% 97% 91% 100% 99% 97%Jul 92 99% 99% 92% 94% 90% 97% 99% 97%Aug 60 99% 98% 98% 91% 89% 95% 100% 96%Sep 55 99% 98% 97% 90% 89% 95% 100% 96%Oct 63 99% 98% 98% 91% 89% 95% 100% 96%Nov 109 98% 99% 89% 95% 90% 97% 98% 97%Dec 341 91% 99% 90% 95% 92% 96% 95% 95%

BG03.xlsAppendix C 16

Page 122: Cypress SB3 20100826 Main - Texas

LT154

SLACK WATER SWIFT WATERSAND AND GRAVEL VEGITATION CERVICE SAND AND GRAVEL CERVICE

BB_DrySPOTTED SUCKER

SPOTTED BASS PICKEREL

BlUNTNOSE DARTER

FLATHEAD CATFISH

IRONCOLOR SHINER

BLACKSIDE DARTER

BLACKTAIL SHINER

Jan 112 76% 83% 36% 62% 63% 65% 66% 53%Feb 186 96% 97% 72% 95% 97% 93% 96% 81%Mar 219 99% 99% 72% 99% 95% 96% 99% 92%Apr 158 92% 94% 64% 89% 91% 86% 89% 69%May 86 72% 82% 26% 54% 52% 62% 61% 52%Jun 38 72% 87% 52% 69% 68% 85% 77% 71%Jul 12 65% 77% 99% 86% 95% 97% 94% 70%Aug 5 54% 63% 85% 74% 87% 81% 79% 47%Sep 5 54% 63% 85% 74% 87% 81% 79% 47%Oct 5 54% 63% 85% 74% 87% 81% 79% 47%Nov 18 69% 81% 90% 83% 89% 98% 93% 76%Dec 68 71% 84% 27% 56% 52% 67% 64% 57%

BB_AvgJan 242 100% 100% 67% 100% 90% 96% 98% 98%Feb 417 95% 96% 34% 85% 76% 61% 67% 83%Mar 415 95% 96% 34% 85% 76% 61% 67% 83%Apr 287 98% 99% 49% 90% 79% 82% 82% 98%May 155 92% 94% 63% 89% 90% 85% 88% 68%Jun 96 72% 80% 28% 54% 53% 60% 60% 49%Jul 26 70% 84% 73% 75% 78% 93% 86% 76%Aug 10 63% 74% 100% 85% 95% 95% 93% 66%Sep 10 63% 74% 100% 85% 95% 95% 93% 66%Oct 19 69% 81% 87% 82% 88% 97% 92% 77%Nov 65 72% 84% 28% 57% 53% 68% 65% 58%Dec 144 89% 92% 58% 83% 85% 81% 83% 64%

BB_WetJan 462 91% 91% 31% 80% 73% 55% 62% 81%Feb 570 83% 78% 24% 67% 64% 42% 50% 76%Mar 548 85% 81% 26% 70% 66% 45% 52% 77%Apr 466 91% 90% 31% 79% 72% 55% 61% 81%May 320 97% 98% 42% 86% 76% 74% 75% 95%Jun 179 95% 96% 70% 94% 95% 91% 94% 78%Jul 80 71% 82% 24% 54% 51% 63% 62% 53%Aug 30 71% 85% 65% 72% 74% 90% 82% 74%Sep 33 71% 86% 60% 70% 72% 88% 80% 73%Oct 53 72% 86% 36% 62% 58% 74% 69% 63%Nov 133 84% 89% 50% 76% 77% 76% 77% 60%Dec 250 100% 100% 65% 100% 88% 96% 98% 100%

LT154.xlsAppendix C 17

Page 123: Cypress SB3 20100826 Main - Texas

LT3001

SLACK WATER SWIFT WATERSAND AND GRAVEL VEGITATION CERVICE SAND AND GRAVEL CERVICE

BB_DrySPOTTED SUCKER

SPOTTED BASS PICKEREL

BlUNTNOSE DARTER

FLATHEAD CATFISH

IRONCOLOR SHINER

BLACKSIDE DARTER

BLACKTAIL SHINER

Jan 112 85% 90% 89% 86% 87% 89% 87% 77%Feb 186 99% 99% 100% 99% 99% 100% 99% 97%Mar 219 98% 98% 89% 93% 93% 95% 94% 98%Apr 158 97% 98% 100% 100% 100% 100% 98% 91%May 86 74% 79% 75% 75% 72% 78% 76% 71%Jun 38 57% 58% 66% 63% 53% 64% 62% 66%Jul 12 43% 43% 54% 55% 41% 56% 56% 45%Aug 5 33% 34% 41% 40% 34% 45% 46% 28%Sep 5 33% 34% 41% 40% 34% 45% 46% 28%Oct 5 33% 34% 41% 40% 34% 45% 46% 28%Nov 18 46% 46% 57% 56% 43% 57% 57% 52%Dec 68 66% 69% 65% 68% 61% 70% 67% 69%

BB_AvgJan 242 96% 96% 77% 86% 87% 89% 86% 95%Feb 417 82% 79% 25% 62% 63% 53% 54% 70%Mar 415 82% 79% 25% 62% 63% 53% 55% 70%Apr 287 95% 94% 54% 79% 78% 81% 77% 89%May 155 97% 98% 100% 100% 100% 100% 98% 90%Jun 96 79% 85% 82% 80% 80% 83% 81% 72%Jul 26 52% 52% 63% 60% 48% 61% 61% 60%Aug 10 43% 42% 53% 54% 41% 56% 56% 42%Sep 10 43% 42% 53% 54% 41% 56% 56% 42%Oct 19 47% 47% 57% 56% 43% 57% 57% 53%Nov 65 65% 68% 64% 67% 60% 68% 66% 69%Dec 144 94% 97% 98% 98% 98% 98% 96% 87%

BB_WetJan 462 77% 72% 20% 57% 59% 46% 48% 65%Feb 570 63% 57% 7% 45% 50% 29% 34% 55%Mar 548 66% 60% 10% 48% 52% 32% 37% 57%Apr 466 76% 72% 19% 57% 59% 45% 48% 65%May 320 93% 91% 44% 74% 74% 74% 71% 84%Jun 179 98% 99% 100% 99% 99% 100% 99% 95%Jul 80 72% 76% 70% 72% 68% 75% 73% 70%Aug 30 53% 53% 63% 60% 48% 61% 60% 62%Sep 33 55% 55% 65% 61% 50% 62% 61% 63%Oct 53 61% 62% 62% 65% 55% 64% 62% 68%Nov 133 91% 94% 95% 94% 94% 95% 93% 83%Dec 250 96% 95% 72% 84% 85% 87% 84% 94%

LT3001.xlsAppendix C 18

Page 124: Cypress SB3 20100826 Main - Texas

BL

SLACK WATER SWIFT WATERSAND AND GRAVEL VEGITATION CERVICE SAND AND GRAVEL CERVICE

BB_DrySPOTTED SUCKER

SPOTTED BASS PICKEREL

BlUNTNOSE DARTER

FLATHEAD CATFISH

IRONCOLOR SHINER

BLACKSIDE DARTER

BLACKTAIL SHINER

Jan 125 95% 99% 62% 89% 87% 71% 67% 76%Feb 201 97% 96% 60% 94% 91% 69% 65% 80%Mar 242 97% 97% 65% 92% 96% 68% 65% 82%Apr 140 97% 100% 62% 93% 88% 72% 68% 77%May 80 89% 93% 54% 81% 77% 67% 62% 74%Jun 42 91% 95% 66% 90% 79% 78% 75% 83%Jul 11 85% 87% 95% 94% 86% 94% 90% 85%Aug 4 81% 84% 100% 98% 93% 100% 100% 75%Sep 4 81% 84% 100% 98% 93% 100% 100% 75%Oct 4 81% 84% 100% 98% 93% 100% 100% 75%Nov 19 89% 92% 80% 94% 86% 88% 85% 86%Dec 91 91% 96% 58% 81% 82% 68% 64% 74%

BB_AvgJan 222 97% 96% 63% 93% 93% 69% 65% 81%Feb 300 99% 98% 68% 96% 100% 70% 68% 87%Mar 306 100% 98% 68% 96% 100% 70% 68% 87%Apr 205 97% 96% 61% 94% 91% 69% 65% 80%May 156 98% 100% 62% 96% 89% 73% 68% 78%Jun 95 92% 97% 60% 81% 84% 68% 65% 74%Jul 32 91% 94% 70% 91% 82% 81% 78% 84%Aug 5 82% 84% 99% 97% 92% 99% 98% 76%Sep 4 81% 84% 100% 98% 93% 100% 100% 75%Oct 13 87% 89% 92% 94% 87% 92% 89% 86%Nov 74 88% 92% 52% 81% 75% 67% 62% 74%Dec 209 97% 96% 61% 94% 92% 69% 65% 80%

BB_WetJan 322 100% 98% 68% 97% 99% 70% 68% 88%Feb 366 100% 96% 69% 99% 98% 71% 67% 92%Mar 382 100% 96% 69% 99% 98% 71% 66% 93%Apr 327 100% 97% 68% 97% 99% 70% 67% 89%May 210 97% 96% 61% 94% 92% 69% 65% 80%Jun 191 97% 97% 60% 94% 90% 70% 66% 79%Jul 63 91% 95% 58% 86% 78% 73% 68% 78%Aug 14 87% 89% 91% 93% 87% 91% 88% 86%Sep 19 89% 92% 80% 94% 86% 88% 85% 86%Oct 45 92% 95% 65% 89% 78% 77% 74% 82%Nov 158 97% 99% 62% 96% 89% 73% 68% 78%Dec 294 99% 98% 68% 96% 99% 70% 68% 86%

BL.xlsAppendix C 19

Page 125: Cypress SB3 20100826 Main - Texas

DRAFT 

Appendix D 1

APPENDIX D  ATTAINMENT TARGETS {A draft of  this document entitled Draft Discussion Paper on Water Availability was provided at  the Third  flows 

workshop in December 2008} 

The policy approach to evaluating compliance with instream flow requirements is currently undergoing transition 

in Texas. Traditionally instream flow requirements have been included in water rights permits as special conditions 

that limited diversions subject to the maintenance of these “minimum” flows.  With the passage of SB3, the TCEQ 

was directed to determine a flow reservation through rule making.  

On the scientific side, a general understanding has developed that the concept of a minimum flow is not sufficient 

to protect the ecological health of a river. This view, supported by the recent National Academy of Sciences review 

of the Texas Instream Flow Program recognizes that healthy rivers require a full range of flows,  including natural 

variability.  

The Cypress Flows Project (CFP) recognizes these current science and policy perspectives and has developed the 

first  steps  for  an  SB  3  type  of  flow  reservation.   Water  availability  analysis  tools  and  implementation  options 

needed  to  convert  the  flow  components of  the  regime  into  a  reservation or  set  aside have not  yet been  fully 

developed by TCEQ.  Thus, the CFP has begun developing some options and tools to investigate these issues in the 

Cypress basin. 

Monthly Water Availability Analysis 

One  important disconnect between  the  traditional analysis of availability  in Texas and current understanding of 

instream  flow  requirements  is  the use of a monthly Water Availability Model  (WAM).   The WAM  is a FORTRAN 

based computer model  that  implements  the prior appropriation doctrine  for  the Cypress basin. Calculations are 

performed by overlaying current water rights on historical hydrology to predict available diversions and resulting 

river flows on a monthly time step.  A monthly timestep is not suitable for determining impacts on environmental 

flows;  the ecosystem  responds  to  instream  flows on much  shorter  time  step.   This  is particularly  true  for  short 

duration  high  flow  pulse  and  flood  flows.    For  example  a  6,000  cubic  feet  per  second  (cfs)  pulse  event  is 

indistinguishable in the WAM from a constant average flow of 200 cfs for 30 days, however these regimes result in 

very different biological responses.  An analogous situation occurs at the low flow end where a month of extremely 

low flows can be masked by short duration high flow events. 

One option for addressing this problem is to develop a daily time step WAM.  Some effort has been made towards 

this objective; however, the daily datasets necessary to drive a daily model have not yet been developed. A second 

option is to scale the daily targets up to monthly, while recognizing the inherent problem described above, in order 

to make a gross evaluation of how well  the system meets  the  instream  flow needs and conversely what  impact 

meeting these  instream targets would have on future water rights. A third option  is to convert monthly outputs 

into a daily time series based on a daily distribution pattern from a suitable reference gage. 

Applying  this  second option  to  the  current  flow  regimes  for  the Cypress Basin,  the  first  step  is  to  convert  the 

instantaneous flow rates in cfs into a monthly volume of acre‐feet (ACFT). Recall that the building blocks developed 

by  the  CFP  included  targets  for  dry,  average  and  wet  conditions,  thus  three  sets  of monthly  volumes  were 

developed for each creek.  The WAM includes the years 1948‐1998 (51 years or 612 months).  

Table 1 shows the frequency of meeting the flows proposed in the building blocks on a monthly volumetric, basis.  

This table and subsequent tables display results for three scenarios. The first column “Naturalized” represents the 

Page 126: Cypress SB3 20100826 Main - Texas

DRAFT 

Appendix D 2

flows that would have occurred in the absence of man’s activities.  Typically, naturalized flows are developed from 

USGS  gages  by  making  adjustments  based  on  upstream  diversions  and  returns.  The  “Current  Conditions” 

simulation, as  the name  implies,  is  intended  to  represent  the  flow  that would occur assuming current  levels of 

withdrawals and returns. This alternative could be useful in helping to identify water that has been permitted but 

is not currently being fully utilized.   The “Full Authorization” simulation includes maximum permitted withdrawals 

and assumes 100%  reuse; no  return  flows.   This very  conservative approach ensures  that TCEQ does not grant 

permits that would overappropriate the basin, but does not represent a very realistic portrayal of current or even 

future  conditions.  TCEQ  uses  the  fully  appropriated  simulation  to  consider  water  availability  for  new  water 

applications. 

Table 1  Annual frequency of meeting initial building blocks targets for base flows 

 

These results show that for Black and Little Cypress the dry condition targets are met or exceeded about 80% of 

the  time,  the average  targets about 70% of  the  time and wet  targets about 50% of  the  time under natural and 

regulated conditions.   Given  the  relatively  small quantity of water diversions  from  these  two creeks,  this  is not 

surprising.  The difference between 83% and 81% for Little Cypress means that there were just 12 months out of 

612 during which natural monthly  flows would have met  the base dry  target while  flows  resulting  from  the  full 

authorization simulation would not.   The shortfalls during these months ranged from 51 ACFT/Month (about 0.8 

cfs) to 1,720 ACFT/Month (about 30 cfs). Ten of the 12 months had shortfalls less than 1,000 ACFT/Month (about 

15 cfs). 

The analysis of flows for Big Cypress shows the impact of Lake O’ the Pines (LOP). While naturalized flows show a 

pattern  similar  to  the other  two  tributaries,  regulated  flows, assuming  full authorization and  zero  return  flows, 

indicate a  substantial decrease, over 50%,  in  the  frequency of meeting  the  targets under  the  full authorization 

simulation. Since the WAM is based on the prior appropriation doctrine, whenever LOP (priority date 1959) is not 

full or spilling, no water is released except for water rights with a senior date. Zero flow months predicted by the 

WAM are not that uncommon ‐ about 11% of the months – and there are many months (~75%) in which flows are 

predicted  to average  less  than 6  cfs  (the  lowest value  in  the  initial  recommendations).   There are a number of 

reasons for these results including  

1. the  rather  conservative  assumptions  used  in water  rights  permitting,  e.g.  full  authorization  and  zero 

return flows,  

2. the  fact  that  the model  does  not  show  releases  for  downstream  contracts;  therefore  the  entire  LOP 

permitted withdrawals are assumed to occur lake side (Currently NETMWD has a contract for 9,000 ACFT 

to supply water to Marshall which diverts from Big Cypress below LOP however since this  is a contract, 

this diversion is assumed to occur lakeside and thus is not reflected in the WAM at the Big Cypress gage 

location), and  

3. the WAM does not  include any conditions not explicitly  included  in state water rights permits thus does 

not include the minimum 5 cfs flow release required for  LOP (This 5 cfs flow requirement is mandated by 

federal law and could not be violated even if the Cypress Flows Project were to recommend lower flows).  

Dry Average Wet

Site NaturalizedCurrent

ConditionsFull

Authorization NaturalizedCurrent

ConditionsFull

Authorization NaturalizedCurrent

ConditionsFull

AuthorizationBig Cypress Creek 78% 50% 23% 67% 41% 19% 60% 37% 17%Little Cypress Creek 82% 83% 81% 71% 71% 69% 53% 53% 52%Black Cypress Bayou 79% 79% 79% 66% 66% 66% 52% 52% 52%

Page 127: Cypress SB3 20100826 Main - Texas

DRAFT 

Appendix D 3

While  the  initial building blocks were derived  from  low  flow percentiles,  the  frequency  at which  these  targets 

should be achieved was not explicitly defined.  There are a number of reasonable options that could be proposed.  

For example, every period could be designated as either dry, average or wet; dry  implying the driest third of the 

time, average the middle third and wet the wettest third, which translates to dry should be met 100% of the time, 

average at  least 66% of  the  time, and wet at  least 33% of  the  time.   A second option could be  that  the  targets 

should  be  met  at  their  natural  frequency  (or  perhaps  some  acceptable  level  below  that  frequency  in 

acknowledgement of  the  impact of development).    From  Table  1  that would mean  that dry  should be met or 

exceeded about 80% of the time, average about 70% of the time, and wet about 50% of the time.  (Note that these 

percentiles differ from the 75th, 50th and 25th low flow statistics used in the building blocks.  The discrepancies are 

due  to  two  factors.  First,  the  percentiles were  based  on  flow  separated,  low  flow  conditions  and  thus  do  not 

include the percent of the time when the flows were high. (See IHA flow separation algorithm, TNC 2007)  Second, 

the results  in Table 1 represent  frequencies based on  the WAM simulated  flows  for  the period  from 1948‐1998 

while the base flow recommendations were derived for gaged pre‐LOP flows from 1924‐1959.)   One should also 

note that this second option for desired frequencies would imply that there would be times that flows would fall 

below  the dry  target  levels,  as  they have naturally.  That might  suggest  the need  for  subsistence  targets or  an 

absolute minimum that flows should never violate.  Finally, these issues might be viewed differently for regulated 

versus unregulated systems.   For example while  it  is possible  to ensure an absolute minimum  flow  (base‐dry or 

subsistence) on Big Cypress via reservoir releases, that option is not available on the unregulated streams.  

A more sophisticated analysis (presented in Table 2 – Big Cypress only, statistics for Little and Black are included in 

the appendices) evaluates the frequency of meeting the various targets for each month. 

Table 2  Monthly frequency of meeting initial building blocks targets for base flows in Big Cypress 

 

It  is notable that some of the  lowest frequencies occur  in months for which  initial building blocks were adjusted 

upward based on professional  judgment and review of existing  instream  flow studies. Nonetheless,  this analysis 

supports the conclusion that based on existing water availability modeling, the building blocks targets would not 

be met at the desired frequencies under either of the options described above. The results also suggest that there 

is substantial unperfected water.   This water, which has been permitted but currently  is not being diverted or  is 

not  being  reused,  is  reflected  in  the  current  conditions  simulation.    Significant  increases  in  the  frequencies  of 

meeting the  initial recommendations could be achieved by dedicating some of this water to meet  instream flow 

needs. 

Base Flow Targets Percent ExcedenceDry Average Wet

NaturalizedCurrent

ConditionsFull

Authorization NaturalizedCurrent

ConditionsFull

Authorization NaturalizedCurrent

ConditionsFull

AuthorizationJan 92% 65% 29% 75% 49% 29% 61% 41% 27%Feb 98% 75% 37% 80% 63% 33% 75% 57% 31%Mar 94% 75% 45% 80% 67% 43% 73% 63% 31%Apr 88% 71% 35% 76% 63% 33% 71% 57% 25%May 86% 71% 33% 78% 71% 33% 75% 65% 29%Jun 80% 51% 24% 78% 47% 22% 71% 45% 20%Jul 73% 22% 8% 59% 16% 4% 45% 10% 4%

Aug 57% 31% 16% 31% 6% 0% 31% 6% 0%Sep 61% 37% 20% 39% 12% 6% 39% 12% 6%Oct 55% 18% 2% 55% 18% 2% 51% 16% 0%Nov 71% 31% 10% 71% 31% 10% 71% 31% 10%Dec 82% 49% 16% 75% 49% 16% 57% 47% 14%

All Months 78% 50% 23% 67% 41% 19% 60% 37% 17%

Page 128: Cypress SB3 20100826 Main - Texas

DRAFT 

Appendix D 4

Daily Water Availability Analysis 

Although daily time step WAMs have not yet been developed for the Cypress basin,  it  is possible to convert the 

monthly outputs  from  the WAM  into daily  flow estimates.   This  is accomplished by applying a  flow distribution 

pattern to the monthly values to distribute these monthly volumes to daily flow rates.  For Little and Black Cypress, 

which have only been moderately altered, this is a straightforward exercise commonly applied in water planning. 

Daily gage records for a given month are used to pro‐rate the monthly flows from the WAM. 

In the case of Big Cypress, where flow has been substantially altered, the issue is slightly more complicated.  When 

distributing monthly‐naturalized flows to daily, it does not make sense to use the pattern produced at a regulated 

flow  gage.  Likewise,  for  regulated  flows,  it  does  not make  sense  to  apply  a  natural  flow  pattern  to  produce 

regulated  daily  flows.    For  this  analysis,  if  the  appropriate  distribution  pattern was  not  available,  flows were 

distributed based  on  a  pattern  derived  from  another  time  period  but  for which  the  total monthly  flows were 

roughly the same. 

Once daily  flows are produced  for natural and  regulated  simulations,  the  frequencies and durations of meeting 

each of the flow components defined  in the building blocks can be assessed  including the sub‐monthly high flow 

targets.  Table 3 presents the results of this daily analysis. 

Table 3  frequency of meeting initial building blocks targets for base, pulse and flood flows in Big Cypress. 

 

For the base flow targets, these results suggest that the monthly analysis presented above slightly over estimate 

the frequency of meeting the targets.  The monthly analysis over predicts the frequency of meeting the targets by 

about 5 %, for example the June base average target is met 80% of the time according to the monthly analysis but 

only 75% of the time in the daily analysis.  Figure 1 provides and illustrative example to explain this difference. 

Base Flow Targets Percent ExcedenceDry Average Wet

NaturalizedCurrent

ConditionsFull

Authorization NaturalizedCurrent

ConditionsFull

Authorization NaturalizedCurrent

ConditionsFull

AuthorizationJan 90% 57% 24% 66% 42% 19% 56% 38% 16%Feb 98% 63% 29% 77% 54% 21% 68% 49% 16%Mar 88% 61% 30% 76% 55% 22% 68% 51% 18%Apr 79% 57% 24% 69% 53% 20% 62% 49% 16%May 77% 59% 27% 72% 57% 24% 64% 54% 23%Jun 75% 47% 15% 68% 37% 14% 56% 31% 11%Jul 67% 22% 8% 50% 15% 7% 38% 10% 5%

Aug 49% 21% 15% 27% 4% 6% 27% 4% 6%Sep 50% 29% 17% 27% 11% 8% 27% 11% 8%Oct 44% 14% 6% 44% 14% 6% 41% 14% 5%Nov 62% 25% 7% 62% 25% 7% 61% 25% 7%Dec 76% 42% 13% 72% 42% 12% 56% 36% 9%

All Months 71% 41% 18% 59% 34% 14% 52% 31% 12%

High Pulse Small Flood Large Flood

NaturalizedCurrent

ConditionsFull

Authorization NaturalizedCurrent

ConditionsFull

Authorization NaturalizedCurrent

ConditionsFull

Authorization33% 37% 14% 33% 2% 0% 22% 0% 0%

Page 129: Cypress SB3 20100826 Main - Texas

DRAFT 

Appendix D 5

 

Figure 1  Simulated daily and monthly flows as compared to initial building blocks base flow – average target. 

In  this example,  the WAM predicts a  regulated monthly volume of 22,404 ACFT or approximately 377  cfs daily 

average flow.  The base average target for August is 330 cfs, so according to the monthly WAM analysis this target 

would be met, however when an appropriate daily distribution is applied to this monthly flow (as described above) 

half of the days fail to meet the target flow. 

Unlike the monthly WAM analysis, the daily analysis allows for some interpretation of the effect of the regulated 

flow on satisfying short duration high flow events. The results presented at the bottom of Table 3 represent the 

annual frequency of meeting the high flow components defined in the building blocks.  Thus, for instance, the 33% 

for  the high  flow pulse  target under naturalized  flows means  that  in 33% of  the years  there were at  least  four 

events for which flows exceeded 1,500 cfs for at least 2 days.  The regulated simulation predicts that the high flow 

pulse targets are only met in 14% of the years under the fully authorized simulation. 

Conclusions 

This analysis suggests three principle findings.  First, the options for desired frequencies at which flow conditions 

(dry, average and wet) are applicable will need to be considered if not defined.  Second, in general, it appears that 

base  flow  targets  could be met  at  a  reasonable  frequency  at  Little  and Black Cypress  even  assuming  the  fully 

permitted  conditions.  Therefore,  a  reservation, which  limits  future  diversions  to  protect  flows  in  the  building 

blocks (assuming an appropriate trigger method to determine dry, average and wet conditions can be developed), 

might be adequate to meet the objectives of this project.  Finally, in Big Cypress it appears that existing permits, as 

they are analyzed  in the WAM, could result  in  lower frequencies of meeting the target conditions than might be 

desired. A more detailed daily  reservoir operations model will  likely be necessary  to  evaluate  the potential of 

various alternatives that could be used to increase the frequency of meeting these targets. 

Simulated Daily Flows for Big Cypress in August 1948

0

100

200

300

400

500

600

700

800

900

1000

4/1/1948 4/6/1948 4/11/1948 4/16/1948 4/21/1948 4/26/1948

Date

Flo

w (

cfs) Daily

Monthly Average

Target

Page 130: Cypress SB3 20100826 Main - Texas

DRAFT 

Appendix D 6

Appendix D1 

Monthly analysis  for Naturalized Flows, Current Conditions  (TCEQ‐Run8), and Full Authorization  (TCEQ‐Run3)  for 

Little and Black Cypress Creeks. 

Table 4  Monthly frequency of meeting initial building blocks target flows in Little Cypress. 

 

Table 5  Monthly frequency of meeting initial building blocks target flows in Black Cypress. 

 

Base Flow Targets Percent ExcedenceDry Average Wet

NaturalizedCurrent

ConditionsFull

Authorization NaturalizedCurrent

ConditionsFull

Authorization NaturalizedCurrent

ConditionsFull

AuthorizationJan 88% 88% 86% 75% 75% 71% 51% 51% 47%Feb 86% 86% 86% 82% 82% 76% 67% 67% 65%Mar 88% 88% 88% 75% 75% 75% 75% 75% 75%Apr 90% 90% 90% 84% 84% 82% 63% 63% 63%May 90% 90% 90% 86% 86% 84% 75% 75% 75%Jun 86% 86% 84% 73% 71% 71% 51% 51% 51%Jul 80% 80% 76% 69% 71% 67% 39% 37% 37%

Aug 65% 67% 59% 55% 57% 55% 41% 41% 41%Sep 65% 67% 63% 57% 57% 57% 39% 39% 37%Oct 75% 76% 75% 57% 57% 57% 43% 41% 41%Nov 86% 86% 86% 65% 65% 65% 43% 41% 39%Dec 88% 84% 84% 73% 73% 73% 55% 55% 53%

All Months 82% 83% 81% 71% 71% 69% 53% 53% 52%

Base Flow Targets Percent ExcedenceDry Average Wet

NaturalizedCurrent

ConditionsFull

Authorization NaturalizedCurrent

ConditionsFull

Authorization NaturalizedCurrent

ConditionsFull

AuthorizationJan 84% 84% 84% 69% 69% 69% 57% 57% 57%Feb 84% 84% 84% 78% 78% 78% 75% 75% 75%Mar 76% 76% 76% 75% 75% 75% 71% 71% 71%Apr 90% 90% 90% 78% 78% 78% 59% 59% 59%May 90% 90% 90% 76% 76% 76% 76% 76% 76%Jun 82% 82% 82% 63% 63% 63% 49% 49% 49%Jul 75% 75% 75% 55% 55% 55% 37% 37% 37%

Aug 61% 61% 61% 59% 59% 59% 45% 45% 45%Sep 67% 67% 67% 67% 67% 67% 35% 35% 35%Oct 75% 75% 75% 59% 59% 59% 37% 37% 37%Nov 82% 82% 82% 55% 55% 55% 35% 35% 35%Dec 76% 76% 76% 57% 57% 57% 43% 43% 43%

All Months 79% 79% 79% 66% 66% 66% 52% 52% 52%

Page 131: Cypress SB3 20100826 Main - Texas

DRAFT 

Appendix D 7

Appendix D2 

Daily analysis for Naturalized Flows, Current Conditions (TCEQ‐Run8), and Full Authorization (TCEQ‐Run3) for Little 

and Black Cypress Creeks. 

Table 6  Daily frequency of meeting initial building blocks target flows in Little Cypress. 

 

Table 7  Daily frequency of meeting initial building blocks target flows in Black Cypress. 

 

Base Flow Targets Percent ExcedenceDry Average Wet

NaturalizedCurrent

ConditionsFull

Authorization NaturalizedCurrent

ConditionsFull

Authorization NaturalizedCurrent

ConditionsFull

AuthorizationJan 84% 83% 83% 68% 68% 66% 49% 48% 47%Feb 87% 86% 85% 73% 73% 71% 60% 60% 57%Mar 88% 87% 86% 73% 73% 72% 64% 64% 63%Apr 86% 85% 85% 70% 70% 69% 57% 57% 56%May 87% 87% 86% 75% 75% 74% 61% 61% 60%Jun 78% 77% 76% 60% 59% 58% 45% 44% 43%Jul 69% 70% 68% 54% 54% 52% 34% 34% 33%

Aug 57% 61% 56% 48% 50% 47% 27% 27% 26%Sep 56% 58% 56% 49% 50% 48% 29% 28% 28%Oct 65% 67% 65% 48% 48% 46% 32% 32% 31%Nov 79% 79% 78% 58% 58% 56% 41% 40% 39%Dec 82% 81% 80% 68% 68% 66% 52% 52% 51%

All Months 76% 77% 75% 62% 62% 60% 46% 45% 44%

High Pulse Sm Flood Lg Flood

NaturalizedCurrent

ConditionsFull

Authorization NaturalizedCurrent

ConditionsFull

Authorization NaturalizedCurrent

ConditionsFull

Authorization39% 39% 37% 35% 35% 35% 16% 16% 16%

Base Flow Targets Percent ExcedenceDry Average Wet

NaturalizedCurrent

ConditionsFull

Authorization NaturalizedCurrent

ConditionsFull

Authorization NaturalizedCurrent

ConditionsFull

AuthorizationJan 79% 79% 79% 60% 60% 60% 51% 51% 51%Feb 81% 81% 81% 69% 69% 69% 61% 61% 61%Mar 76% 76% 76% 68% 68% 68% 57% 57% 57%Apr 82% 82% 82% 71% 71% 71% 51% 51% 51%May 82% 82% 82% 69% 69% 69% 60% 60% 60%Jun 70% 70% 70% 53% 53% 53% 35% 35% 35%Jul 65% 65% 64% 44% 44% 44% 30% 30% 30%

Aug 56% 56% 55% 52% 52% 52% 36% 36% 36%Sep 52% 52% 52% 52% 52% 52% 30% 30% 30%Oct 62% 62% 62% 49% 49% 49% 30% 30% 30%Nov 73% 73% 73% 49% 49% 49% 34% 34% 34%Dec 75% 75% 75% 51% 51% 51% 41% 41% 41%

All Months 71% 71% 71% 57% 57% 57% 43% 43% 43%

High Pulse Sm Flood Lg Flood

NaturalizedCurrent

ConditionsFull

Authorization NaturalizedCurrent

ConditionsFull

Authorization NaturalizedCurrent

ConditionsFull

Authorization39% 39% 39% 35% 35% 35% 8% 8% 8%

Page 132: Cypress SB3 20100826 Main - Texas

DRAFT 

Appendix D 8

Appendix D3 

Analysis of gage flows for Big Cypress 

Although gage  records are not directly used  for water availability analysis, since  they do not necessarily  include 

existing water rights commitments, a review of pre‐ and post LOP gage records and their comparison to the initial 

building blocks may be insightful.  Pre‐LOP has a period of record from 1924‐1959 and post‐LOP is from 1980‐2005. 

Table 8  Monthly frequency of meeting initial building blocks target flows on Big Cypress based on gage data. 

 

Table 9  Daily frequency of meeting initial building blocks target flows on Big Cypress based on gage data. 

 

 

Base Flow Targets Percent ExcedenceDry Average Wet

Pre Post Pre Post Pre PostJan 91% 78% 60% 59% 40% 37%Feb 97% 81% 51% 59% 40% 52%Mar 80% 78% 69% 59% 46% 52%Apr 83% 59% 69% 44% 43% 37%May 89% 52% 86% 52% 69% 44%Jun 66% 63% 66% 56% 51% 44%Jul 74% 89% 60% 52% 40% 37%

Aug 64% 100% 22% 8% 19% 8%Sep 61% 96% 17% 27% 17% 27%Oct 25% 52% 25% 52% 25% 52%Nov 33% 48% 33% 48% 33% 48%Dec 64% 67% 58% 67% 33% 56%

All Months 69% 79% 51% 61% 38% 56%

Base Flow Targets Percent ExcedenceDry Average Wet

Pre Post Pre Post Pre PostJan 93% 69% 71% 62% 60% 55%Feb 99% 85% 77% 76% 62% 66%Mar 86% 79% 75% 73% 65% 65%Apr 85% 68% 76% 60% 69% 53%May 91% 57% 84% 52% 69% 44%Jun 82% 81% 67% 64% 50% 54%Jul 80% 97% 55% 64% 41% 46%

Aug 70% 100% 28% 54% 28% 52%Sep 53% 89% 24% 57% 23% 53%Oct 28% 56% 28% 56% 25% 46%Nov 44% 49% 43% 48% 35% 41%Dec 74% 66% 60% 61% 44% 57%

All Months 74% 75% 57% 60% 47% 53%

High Pulse Small Flood Large FloodPre Post Pre Post Pre Post44% 35% 44% 0% 31% 0%

Page 133: Cypress SB3 20100826 Main - Texas

DRAFT 

Appendix E 1

APPENDIX E  IMPLEMENTATION EXAMPLE {A draft of  this document entitled Draft Discussion Paper on Triggers  for Flows was provided at  the  third  flows 

workshop in December 2008} 

The CFP has developed  the  first steps  for an SB3  type of  flow  reservation. These  recommendations provide  the 

critical flow components for the flow regime including natural variation.  This variation is captured by including the 

full  flow  regime with  associated  seasonal  variability  and by  recognizing  the need  for  intra‐annual  variability  to 

account  for  dry,  average  or  wet  water  conditions.  One  of  the  challenges  to  the  implementation  of  these 

recommendations is the need to identify the current water condition (i.e. dry, average or wet) and develop triggers 

to ensure that  flow recommendations associated with the water conditions are met at desired  frequencies. The 

question of desired frequency was  introduced and briefly discussed  in Appendix D, which addressed the  issue of 

determining attainment frequency of the various flow recommendations. Assuming that desired frequency can be 

determined,  this  appendix  presents  some  first  steps  and  ideas  that  will  need  to  be  considered  in  order  to 

implement  a  management  approach  on  a  regulated  system  to  achieve  the  goals  of  the  recommendations. 

Accompanying  this paper  is a  spreadsheet model  that will be used  to explain  and examine  some of  the  issues 

discussed below. Please note  that  this  is a highly  idealized exercise,  intended  to stimulate discussion and  is not 

meant  to  serve as  the basis  for a  final  recommendation or as a  replacement  for a more detailed and  thorough 

analysis. 

What parameter will be used to determine whether the conditions are Dry, Average or Wet? 

One of the first issues that will need to be address is the selection of an appropriate parameter or parameters that 

could be used  to define dry,  average or wet  conditions.   At  least  three  candidates  seem worth  consideration.  

These are meteorology  (temperature, precipitation or some combination),  flow and  reservoir storage.   From an 

ecological  perspective,  natural  inflow  to  Lake O’  the  Pines would  be  an  ideal  choice,  however  since  there  are 

reservoirs and diversions upstream, estimating naturalized inflows may prove difficult. Theoretically, inflows could 

be adjusted to account for diversions and evaporations and removal of upstream return flows; other alternatives 

might  include  rainfall  or  a  rainfall‐runoff model.    From  a  reservoir  operations  perspective  the  simplest  trigger 

would be to use reservoir levels, though these have problems; if for instance reservoirs are lowered in the future 

to supply demands out of basin but  in  reality  flow conditions  in  the basin are about average, we might end up 

managing for dry conditions when we are actually  in an average period.   Ultimately the choice of an  indicator  is 

perhaps less important than that the indicator can be used to set triggers which maintain the ecological objectives 

defined in the building blocks. (‐ the important thing is that if we decide we need dry conditions exceeded 80 % of 

the  time  then  a  trigger  level  that  occurs  about  80  percent  of  the  time  should  be  selected.    This  could  be 

accomplished with reservoir  levels or flows.   To the extent that this trigger  is an actual  indicator of dry, average 

and wet would be best because it would keep flow more in synch with the natural system i.e. long term cycles etc.) 

It is likely that a balance between both reservoir elevations and inflows will guide this decision. For the purposes of 

developing a simple example, we chose the flow at the nearby, less impacted gage on Black Cypress as a surrogate 

for water conditions in Big Cypress. 

What time frame will be used to determine the current water conditions? 

The next  important question that needs to be addressed  is the temporal window that will be used to define the 

conditions. Again,  there are  three main possibilities.   These are past,  current or  future  (forecasted)  conditions.  

With perfect knowledge forecasted approach would be ideal though in the real world may not be feasible.  Current 

conditions may also be difficult to implement in that it might result in constantly switching from dry, average and 

Page 134: Cypress SB3 20100826 Main - Texas

DRAFT 

Appendix E 2

wet on a daily basis.  We used the cumulative inflow for the previous three months to determine whether we are 

in a dry, average or wet period. The previous  three‐month  inflow  for each month was  calculated  for  the Black 

Cypress gage for the period of record. This data  is used to select trigger flows corresponding to the frequency at 

which the various water conditions should be met. 

At what frequencies should the various water conditions targets be met? 

As discussed in the Water Availability paper, selection of these frequencies requires some additional consideration. 

For this example, the hydrograph was divided into three equal parts, with wet being those times when upstream 

inflows were greater than the 33rd percentile flow, average when greater than the 66th percentile flows and dry the 

rest of the time.  Since flows show a strong seasonal component, these percentiles where calculated on a monthly 

basis.    Table  10  shows  the  33rd  and  66th  percentile  three‐month  antecedent  flows  for  Black  Cypress  Bayou  at 

Jefferson gage records.  

Table 10  Black Cypress Bayou at Jefferson 33rd and 66th percentile three month antecedent flows (ACFT/3 Months). 

 

The  approach  proposed  in  this  example  is  that  on  the  first  day  of  each month  the  cumulative  inflow  for  the 

previous three months is calculated.  If the value is less than the 33rd percentile flow, the dry targets should be in 

force  for  the month.    If the value  is between  the 33rd and 66th percentile  flows,  the average should be  in  force. 

When the flows are greater than the 66th percentile flows, the wet targets should be in force. 

How does this help to develop an implementation strategy? 

Evaluation of  this approach will  require analysis of  impacts on  reservoir  storage of meeting  constant base  flow 

targets and on the potential to utilize flood storage to capture and redistribute high flows as prescribed in the flow 

recommendations.  This detailed analysis has not yet been performed; however, as a preliminary analysis, historic 

flow records were reviewed. The example considers potential releases from Lake O’ the Pines (LOP) for 1996‐1998. 

Based on annual flows 1996 was a dry year, 1997 was wet and 1998 was average. Figure 2 shows flows at Big and 

Black Cypress gages. 

Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec0.33 23,063 47,528 73,835 84,525 80,629 69,311 46,943 34,319 10,609 4,067 1,792 5,4740.66 57,828 89,388 124,636 133,535 117,334 114,681 92,753 63,791 31,518 12,307 10,748 27,168

Page 135: Cypress SB3 20100826 Main - Texas

DRAFT 

Appendix E 3

 

Figure 2  Daily flows at Big and Black Cypress gages 1996‐1998 

Based on  the 3 month antecedent  flow  the water conditions  for each month  is designated.   Figure 3 shows  the 

gage flows (now just Black Cypress) on the left side y‐axis and a code for water condition (dry, average and wet) on 

the right side axis. 

0100020003000400050006000700080009000

10000

Jan

-96

Ap

r-9

6

Jul-

96

Oct

-96

Jan

-97

Ap

r-9

7

Jul-

97

Oct

-97

Jan

-98

Ap

r-9

8

Jul-

98

Oct

-98

Flo

w (c

fs)

Date

Big

Black

Page 136: Cypress SB3 20100826 Main - Texas

DRAFT 

Appendix E 4

 

Figure 3  Daily flows at Black Cypress gage and designated water condition. 

Conditions were dry  for most of  1996, wet  for  1997  and  variable  in  1998. Based on  the water  conditions  the 

desired base flow targets can be set for Big Cypress. Figure 4 shows the base flow targets as well as the Big Cypress 

historical gage flows (what was actually released from LOP) 

-1

0

1

-5000

-3000

-1000

1000

3000

5000

7000

9000

11000

Jan

-96

Ap

r-9

6

Jul-

96

Oct

-96

Jan

-97

Ap

r-9

7

Jul-

97

Oct

-97

Jan

-98

Ap

r-9

8

Jul-

98

Oct

-98 Wa

ter

Co

nd

ito

n

Flo

w (c

fs)

Black

Condition

Wet

Avg

Dry

Page 137: Cypress SB3 20100826 Main - Texas

DRAFT 

Appendix E 5

 

Figure 4  Daily flows at Big Cypress gage, designated water condition, recommended release. 

Figure 5 shows the same information as Figure 3 but focuses on the low flow (<500 cfs) part of the hydrograph. 

-1

0

1

-2000

-1000

0

1000

2000

3000

4000

Jan

-96

Ap

r-96

Jul-

96

Oct

-96

Jan

-97

Ap

r-97

Jul-

97

Oct

-97

Jan

-98

Ap

r-98

Jul-

98

Oct

-98

Wa

ter

Co

nd

itio

n

Flo

w (c

fs)

Date

Big

EcoQ

Condition

Wet

Avg

Dry

Page 138: Cypress SB3 20100826 Main - Texas

DRAFT 

Appendix E 6

 

Figure 5  Daily flows at Big Cypress gage, designated water condition, recommended release (flows < 500 cfs only) 

From Figure 5 we see that during the dry 1996 year, the base flow prescriptions recommend flows that are higher 

than what was  historically  released.    During  the wet  1997  year,  even  the wet  period  targets were  generally 

exceeded. Finally, in 1998 targets flows are reasonable close to what was released. 

The next step is to include some of the high flow recommendations.  Since current constraints on releases limit the 

maximum  flow  to 3,000 cfs, we modified,  for  this exercise only,  the building blocks recommendations.   For  this 

exercise, average conditions will  include  four high  flow pulses of 1,500 cfs and wet conditions will  include three 

high flow pulses of 1,500 cfs and one of 3,000 cfs.  We also include the concept of an amount of storage that could 

be used  to  satisfy  the  flow prescriptions.   We have assumed  that 40,000 ACFT could be available  for meet  the 

targets on the first day of the exercise (January 1, 1996).   This value will go up or down based on the difference 

between the prescribed release and the actual historical release but will never exceed 40,000 ACFT. 

Based on  the designated water condition and  the  seasonal  timing  for high  flows  the  first  time  that a high  flow 

release would be required would be in December 1997. December is designated wet based on antecedent flow so 

on a 3,000 cfs release would be initiated.  In a similar manor, three additional high flow pulses would be made in 

the spring of 1997 based on water condition and the availability of storage.  In December 1997, water conditions 

are designated as average therefore only the 1,500 cfs release is prescribed. By February 1998, conditions are wet 

and a 3,000 cfs is made.  Figure 6 show the results of this exercise in terms of a prescribed release pattern (EcoQ). 

050

100150200250300350400450500

Jan

-96

Ap

r-96

Jul-

96

Oct

-96

Jan

-97

Ap

r-97

Jul-

97

Oct

-97

Jan

-98

Ap

r-98

Jul-

98

Oct

-98

Flo

w (c

fs)

Date

Big

EcoQ

Page 139: Cypress SB3 20100826 Main - Texas

DRAFT 

Appendix E 7

 

Figure 6  Daily flows at Big Cypress gage, designated water condition, and recommended release including pulse releases. 

At the completion of this exercise, the simulated 40,000 of storage would have fallen to its minimum of 9,350 ACFT 

on May  31,  1996,  suggesting  storage  of  closer  to  30,000  ACFT  would  satisfy most  of  the  prescribed  release 

requirements during  low  flow periods.  For most of  the  time,  less water would have been prescribed  than was 

historically released.  Clearly, the flood events in the spring 1997 would need to be evacuated from the flood pool 

and maintenance of  the  recommended environmental  flows would be  a  secondary  concern during  this period.  

Storage of 30,000‐40,000 that may be necessary to maintain flows during dry periods represents about two feet at 

LOP at top of conservation pool. 

 

-1

0

1

-2000

-1000

0

1000

2000

3000

4000

Jan

-96

Ap

r-96

Jul-

96

Oct

-96

Jan

-97

Ap

r-97

Jul-

97

Oct

-97

Jan

-98

Ap

r-98

Jul-

98

Oct

-98 W

ate

r C

on

dit

ion

Flo

w (c

fs)

Date

Big

EcoQ

Condition

PulseConditionWet

Avg

Dry

Page 140: Cypress SB3 20100826 Main - Texas

DRAFT 

Appendix F 1

APPENDIX F  NARRATIVE STANDARDS {This document was produced after  the  third  flows workshop  in December 2008.     While  it has been  review by 

several workgroup members,  it has not been  approved by  the  full Cypress  Flow Workgroup. As  such  it  is only 

intended as an example that may be useful in investigating how narrative standards developed for Black and Little 

Cypress may be implemented in the state's water availability and permitting framework.} 

This appendix  introduces an approach  for the transition  from an environmental  flow regime  (Building Blocks) to 

environmental  standards  for  the unregulated  streams  in  the Cypress basin. The  consensus at  the  third Cypress 

Flow Project meeting (December 2008) was that the regimes developed for Black and Little Cypress did not fully 

capture the goals of protecting the ecological health of Caddo Lake and its associated wetlands.  Furthermore, the 

transition from a regime to a standard in the Big Cypress required the recognition that, at least for the near future, 

high flow flooding events could not be provided from Big Cypress given the practical limitations on releases from 

Lake O’  the Pines. The workgroup did not explicitly define how  the narrative  standards might be  implemented, 

however  the  goal  of  the  standards  for  the  tributaries was  to maintain  the  natural  high  flow  events  from  this 

system.  Furthermore,  given  that  Black  Cypress  represents  a  least  impacted  stream  for  the  region,  a  rather 

conservative, “hands off” approach to development in this drainage should be pursued.  This paper proposes some 

options for turning these concepts into a practical implementation. 

Much of what  follows builds on  ideas presented  in appendix E on  the development of  triggers  for determining 

what are wet, average and dry conditions and will not be repeated here.   For the regulated Big Cypress system, 

one of  the  important questions was how  releases  can be modified  to meet  the  standards and  specifically how 

much water might be needed to meet these goals. For the unregulated tributaries, the question becomes how to 

regulate future diversions to maintain these relatively more natural flow regimes into the future. There are several 

options  that might be considered  including  the  idea of  limiting diversions  to a percentage of streamflow  (this  is 

similar to the approach used in Florida), however for the purposes of these examples we have chosen to employ a 

maximum diversion rate as simpler option and one that is already commonly employed in Texas water rights.  The 

challenge  is  to select a value  for  this maximum diversion rate. As  there are still some knowledge gaps on  these 

tributaries, the options proposed below present a range of values to evaluate the tradeoffs between maintaining 

ecological health versus the need for out of stream water supply. This discussion  is  intended to address the flow 

standards and as  such  is not  strictly  limited  to  the  science  to determine ecological health. Finally, as  there was 

clearly a difference  in  the  level of protection of  instream  flows  that  is desired  for Black and  Little Cypress,  the 

options  for meeting  the goals of each of  these systems  is presented separately.   Options  for  the other ungaged 

inflow to Caddo Lake are not specifically discussed but it is assumed that some combination of the approaches for 

Black and Little Cypress Creeks, after appropriate scaling, could be developed for those tributaries. 

Black Cypress 

After some discussion of the high stakeholder value assigned to this system, which will not be repeated here, the 

consensus of the group was that a conservative, “hands off” approach should be taken to protect flows  in Black 

Cypress.  Generally, the group wanted to allow for very limited alteration to this regionally least disturbed stream.  

A simple approach to meeting these goals would be to limit diversions to some maximum amount. While a percent 

of  streamflow  approach,  similar  to  the  approach  used  in  Florida,  could  be  used  to meet  this  objective,  this 

approach has not been routinely used in Texas. A more common option, which is easily implemented in the states 

water availability model (WAM), is to set a maximum diversion rate.  To ensure that diversions do not dewater the 

stream, we also propose that the building blocks be used as a floor below which no water would be available for 

diversion.  The challenge is to select the actual rate to be used.  It is perhaps instructive to consider some bounds.  

Page 141: Cypress SB3 20100826 Main - Texas

DRAFT 

Appendix F 2

If the maximum diversion rate is set equal to zero then the resulting flows for Black Cypress are identical to their 

historic condition and there  is no water available for future diversions.   If the maximum diversion rate  is set at a 

very high  level,  say 2,000  cfs  the  resulting  flows  in Black Cypress would  essentially  equal  the minimum of  the 

building blocks  recommendations or  the historic  flow.  Figure 7  and Table 11 depict  the  streamflow  and water 

availability1 for the 2,000 cfs maximum diversion scenario. (Setting a rate higher than about 2,000 cfs would have 

very  little  impact  on  either  streamflow  or water  availability,  as  these  events  are  infrequent.  It  is  unlikely  that 

projects for water supply would be sized for these types of events.) 

 

Figure 7 Hydrograph for maximum diversion equal to 2,000 cfs 

The 2,000 cfs scenario depicted above represents the fairly strict  interpretation of the building blocks which the 

group felt was not sufficiently protective of this system.  The goal of the analysis presented in this document is to 

determine a maximum diversion rate that balances protection of the flow regime with the ability to supply some 

out of stream water demands.   Clearly, this determination will require exchange between objective analysis and 

subjective values.  

                                                                 1 These and following simulations are based on outputs from the TCEQ WAM Run 3, which includes full utilization of existing permits. 

0

200

400

600

800

1,000

1,200

1,400

1,600

1,800

2,000

Jan

-96

Feb

-96

Mar

-96

Ap

r-96

Ma

y-9

6Ju

n-9

6J

ul-

96

Au

g-9

6S

ep

-96

Oct

-96

No

v-9

6D

ec-

96

Jan

-97

Feb

-97

Mar

-97

Ap

r-97

Ma

y-9

7Ju

n-9

7J

ul-

97

Au

g-9

7S

ep

-97

Oct

-97

No

v-9

7D

ec-

97

Jan

-98

Feb

-98

Mar

-98

Ap

r-98

Ma

y-9

8Ju

n-9

8J

ul-

98

Au

g-9

8S

ep

-98

Oct

-98

No

v-9

8D

ec-

98

Date

Flo

w (

cfs

)

0

1

2

Wat

er C

on

dit

ion

WAM Regulated

Proposed

Building Blocks Target

Condition

Pulse Condition

Wet

Avg

Dry

Page 142: Cypress SB3 20100826 Main - Texas

DRAFT 

Appendix F 3

Table 11 Water Availability for maximum diversion equal to 2,000 cfs 

 

1 2 3 4 5 6 7 8 9 10 11 12 Annual1948 23,247 54,248 43,408 3,404 40,599 109 339 0 0 0 1,281 0 166,6361949 10,089 19,501 16,540 23,911 19,948 1 9,775 6,099 4,213 30,959 23,139 218 164,3931950 48,500 52,620 4,973 1,567 70,021 11,152 2,175 5,710 29,650 3,523 0 0 229,8921951 7,080 29,694 14,887 11,469 14,907 563 31 14 4,582 27 91 4 83,3511952 3,575 4,836 8,341 40,575 16,359 13,599 0 54 0 0 259 3,076 90,6741953 10,964 9,610 28,116 11,571 78,620 920 4,709 3,175 2,239 0 1,114 10,164 161,2021954 15,981 8,023 288 4,649 23,504 10,027 0 0 0 0 2,645 806 65,9231955 2,086 14,378 36,452 35,876 1,362 58 854 5,347 2,783 1,278 0 0 100,4731956 146 15,558 0 10 18,697 0 0 0 0 0 0 0 34,4121957 0 0 2,200 37,719 64,828 59,779 1,912 138 345 22,092 70,040 15,723 274,7761958 41,126 7,586 10,810 29,621 52,380 9,086 17,482 1,627 5,334 4,711 0 0 179,7631959 933 19,437 20,234 52,593 28,047 15,167 3,520 2,772 50 501 89 13,599 156,9421960 38,996 14,730 35,479 0 59 585 1,504 31 812 4,039 4,384 61,829 162,4491961 34,917 29,293 35,839 33,376 59 5,701 22,867 1,617 2,761 2,143 8,238 43,894 220,7061962 22,956 20,640 31,536 8,878 19,262 850 1,190 212 1,348 2,585 1,270 14 110,7421963 1,716 0 0 5,395 31,921 88 0 0 0 0 0 0 39,1201964 0 0 0 1,509 3,117 0 0 387 686 829 0 2,222 8,7501965 5,904 23,764 9,767 8,177 19,021 19,398 637 0 58 0 0 0 86,7271966 0 0 0 27,810 44,736 0 0 73 965 430 0 87 74,1011967 117 0 0 3,407 15,596 37,648 651 0 0 0 2 1,097 58,5151968 18,376 4,831 15,580 24,539 74,607 3,461 4,312 660 4,144 599 4,000 16,611 171,7211969 2,573 30,119 48,062 55,428 22,714 1,301 0 0 0 0 7,194 3,959 171,3511970 23,322 8,255 35,117 16,135 14,999 10,055 618 207 77 663 3,361 0 112,8081971 72 633 871 780 2,474 0 40 4,415 253 84 294 11,244 21,1601972 24,768 2,228 39 1,521 2,853 0 59 2 444 1,953 14,541 19,057 67,4641973 14,466 16,523 53,427 67,713 13,383 26,548 1,648 313 8,828 22,801 29,800 52,928 308,3781974 29,515 13,011 926 26,963 5,973 39,325 0 973 33,450 12,799 61,246 32,369 256,5501975 14,141 46,514 34,200 7,549 58,373 12,035 2,839 998 482 83 20 740 177,9741976 12,290 6,433 33,262 3,588 7,708 3,456 7,839 103 878 294 0 11,342 87,1931977 7,382 36,857 30,852 49,990 967 168 0 249 188 0 4,830 7,014 138,4981978 16,021 14,455 21,323 2,423 22,146 839 0 0 0 0 744 3,045 80,9961979 40,431 10,854 33,251 54,192 30,993 21,846 3,964 34,336 7,882 1,863 7,702 11,769 259,0831980 35,708 21,939 10,748 36,323 22,832 487 0 0 11 715 3,268 1,187 133,2201981 129 0 1,842 1,724 35,374 38,884 1,006 13 2 10,238 915 0 90,1271982 1,510 12,140 1,968 7,349 15,154 14,940 4,031 1,351 0 0 1,993 56,340 116,7751983 8,914 38,839 11,858 7,717 13,982 2,050 6,863 684 0 0 311 5,402 96,6201984 1,826 11,800 16,145 9,314 350 0 0 43 0 11,273 9,895 9,331 69,9771985 6,311 7,524 17,684 22,244 26,690 1,546 317 112 0 916 8,547 33,159 125,0501986 0 17,347 0 11,338 20,386 28,413 12,867 0 0 610 10,910 42,784 144,6561987 9,616 19,451 39,341 93 70 785 2,296 100 109 459 24,908 67,468 164,6941988 23,948 17,928 18,338 14,920 0 0 637 4 0 338 7,616 17,721 101,4501989 15,007 29,052 24,538 23,699 42,308 24,079 15,722 3,915 173 0 0 617 179,1111990 23,332 24,390 51,088 41,320 21,363 7,242 0 996 1,130 5,228 19,450 15,828 211,3661991 58,304 29,688 16,571 42,025 71,283 14,635 362 2,182 9,112 507 28,820 43,751 317,2401992 11,138 44,295 39,228 666 4,421 13,876 28,726 8,469 8,852 730 14,993 41,107 216,5021993 46,454 6,869 29,494 7,299 4,281 12,666 1,484 1,477 346 18,118 6,075 1,331 135,8941994 5,897 15,403 28,317 5,171 15,855 21,053 21,458 968 68 23,258 33,907 44,547 215,9021995 63,341 14,819 11,362 27,113 30,844 258 1,252 0 336 4 19 304 149,6511996 90 0 0 2,509 930 5,285 884 4,933 11,287 18,642 15,099 22,393 82,0511997 14,925 36,730 46,353 15,017 27,791 22,990 4,647 565 0 1,232 3,530 8,800 182,5811998 31,934 31,175 33,066 11,063 455 0 0 0 11,398 21,833 9,524 22,506 172,956

Min 0 0 0 0 0 0 0 0 0 0 0 0 8,750Ave 16,276 17,530 19,681 18,416 23,031 10,058 3,755 1,869 3,045 4,478 8,746 14,851 141,736Max 63,341 54,248 53,427 67,713 78,620 59,779 28,726 34,336 33,450 30,959 70,040 67,468 317,24075/75 115,947

Page 143: Cypress SB3 20100826 Main - Texas

DRAFT 

Appendix F 4

The objective part of this analysis will proceed in three steps.  

Propose metrics that will be used to evaluate impacts 

Calculate metrics  for a range of options  including the current default methodology used  in Texas water 

rights permitting 

Determine  an  alternative  to  the  default method,  as  proposed  herein  a maximum  diversion  rate  that 

meets the objective of balancing instream flow protections and desired supply for out of stream uses. 

First step is to propose the metrics, or measures of performance, to assess alternatives. The proposed metrics fall 

into two categories; water availability and instream flow alteration. Within the Texas regulatory system, there are 

two common measure of water availability.  One is the firm yield of the system, which is how much water may be 

diverted with 100% percent reliability.  This value is defined by the drought of record.  Firm yield is often calculated 

for projects for which there is associated storage however, this analysis requires specifics related to pumping rates 

and  reservoir  capacities.    The  TCEQ  also  sometimes  determines  availability  based  on  the  so‐called  75/75  rule, 

which  is the amount of water 75% of which  is available 75% of the time.   This  less restrictive standard  is used  in 

cases in which water might be used on an interruptible basis or when alternative sources such as groundwater or 

storage  surface water may be  available  for backup.     The  second  type of metric has  to do with  the  remaining 

instream flows.  Development of this metric is more subjective and illustrates the difficulty of attempting to define 

a narrative standard within the  inherently quantitative setting of water rights permitting.   Part of the evaluation 

will be accomplished based on a visual  inspection of the hydrographs predicted based on the range of maximum 

diversions applied.   To make this analysis quantitative, the frequencies of exceeding a range of flows will also be 

calculated and compared relative the frequencies expected under the WAM fully permitted scenario.  

Water availability results are presented  in Table 12 suggest that maximum diversion rate has  little effect on firm 

yield until the rate drops below about 250 cfs.  Clearly the sensitivity to changes in the maximum diversion rate are 

greater  for  the  75/75  yield,  exactly  what  this  means  in  terms  of  water  supply  would  require more  specific 

information and a more detailed analysis. 

Table 12 Water Availability Summary for maximum diversion equal to 50 to 2,000 cfs 

  

Figure  8  ‐  Figure  11  present  predicted  hydrographs  for maximum  diversion  rates  of  50,  100,  250  and  500  cfs 

simulated for 1996‐1998 (selected simply because these years include dry, wet and average conditions).  While the 

impact  on  streamflow  might  be  evaluated  more  quantifiably  by  the  statistics  presented  in  Table  13,  visual 

interpretation of Figure 8 ‐ Figure 11 may be just as informative. For instance, while it may be difficult to precisely 

quantify the ecological value of providing the approximately 800 cfs in channel pulses in winter 1996‐97 under the 

100 cfs option versus not providing them under the 500 cfs maximum diversion option, this is the type of natural 

variability that the group wishes to maintain which would not be maintained were we to implement a more strict 

interpretation of  the building blocks.   What  the graphs and  tables show  is  that higher maximum diversion rates 

mean more water availability while  lower maximum diversion  rates provide  flows more  similar  to  their natural 

pattern. 

Yield Max50 Max100 Max250 Max500 Max2000Min 4,034 5,974 8,689 8,750 8,750Avg 17,458 31,445 62,554 93,842 141,736Max 28,051 53,282 115,839 182,314 317,24075/75 20,059 35,408 67,754 92,398 115,947

Page 144: Cypress SB3 20100826 Main - Texas

DRAFT 

Appendix F 5

 

Figure 8 Hydrograph for maximum diversion equal to 50 cfs 

 

Figure 9 Hydrograph for maximum diversion equal to 100 cfs 

0

200

400

600

800

1,000

1,200

1,400

1,600

1,800

2,000

Jan

-96

Feb

-96

Mar

-96

Ap

r-96

Ma

y-9

6Ju

n-9

6J

ul-

96

Au

g-9

6S

ep

-96

Oct

-96

No

v-9

6D

ec-

96

Jan

-97

Feb

-97

Mar

-97

Ap

r-97

Ma

y-9

7Ju

n-9

7J

ul-

97

Au

g-9

7S

ep

-97

Oct

-97

No

v-9

7D

ec-

97

Jan

-98

Feb

-98

Mar

-98

Ap

r-98

Ma

y-9

8Ju

n-9

8J

ul-

98

Au

g-9

8S

ep

-98

Oct

-98

No

v-9

8D

ec-

98

Date

Flo

w (

cfs

)

0

1

2

Wat

er C

on

dit

ion

WAM Regulated

Proposed

Building Blocks Target

Condition

Pulse Condition

Wet

Avg

Dry

0

200

400

600

800

1,000

1,200

1,400

1,600

1,800

2,000

Jan

-96

Feb

-96

Mar

-96

Ap

r-96

Ma

y-9

6Ju

n-9

6J

ul-

96

Au

g-9

6S

ep

-96

Oct

-96

No

v-9

6D

ec-

96

Jan

-97

Feb

-97

Mar

-97

Ap

r-97

Ma

y-9

7Ju

n-9

7J

ul-

97

Au

g-9

7S

ep

-97

Oct

-97

No

v-9

7D

ec-

97

Jan

-98

Feb

-98

Mar

-98

Ap

r-98

Ma

y-9

8Ju

n-9

8J

ul-

98

Au

g-9

8S

ep

-98

Oct

-98

No

v-9

8D

ec-

98

Date

Flo

w (

cfs

)

0

1

2

Wat

er C

on

dit

ion

WAM Regulated

Proposed

Building Blocks Target

Condition

Pulse Condition

Wet

Avg

Dry

Page 145: Cypress SB3 20100826 Main - Texas

DRAFT 

Appendix F 6

 

Figure 10 Hydrograph for maximum diversion equal to 250 cfs 

 

Figure 11 Hydrograph for maximum diversion equal to 500 cfs 

0

200

400

600

800

1,000

1,200

1,400

1,600

1,800

2,000

Jan

-96

Feb

-96

Mar

-96

Ap

r-96

Ma

y-9

6Ju

n-9

6J

ul-

96

Au

g-9

6S

ep

-96

Oct

-96

No

v-9

6D

ec-

96

Jan

-97

Feb

-97

Mar

-97

Ap

r-97

Ma

y-9

7Ju

n-9

7J

ul-

97

Au

g-9

7S

ep

-97

Oct

-97

No

v-9

7D

ec-

97

Jan

-98

Feb

-98

Mar

-98

Ap

r-98

Ma

y-9

8Ju

n-9

8J

ul-

98

Au

g-9

8S

ep

-98

Oct

-98

No

v-9

8D

ec-

98

Date

Flo

w (

cfs

)

0

1

2

Wat

er C

on

dit

ion

WAM Regulated

Proposed

Building Blocks Target

Condition

Pulse Condition

Wet

Avg

Dry

0

200

400

600

800

1,000

1,200

1,400

1,600

1,800

2,000

Jan

-96

Feb

-96

Mar

-96

Ap

r-96

Ma

y-9

6Ju

n-9

6J

ul-

96

Au

g-9

6S

ep

-96

Oct

-96

No

v-9

6D

ec-

96

Jan

-97

Feb

-97

Mar

-97

Ap

r-97

Ma

y-9

7Ju

n-9

7J

ul-

97

Au

g-9

7S

ep

-97

Oct

-97

No

v-9

7D

ec-

97

Jan

-98

Feb

-98

Mar

-98

Ap

r-98

Ma

y-9

8Ju

n-9

8J

ul-

98

Au

g-9

8S

ep

-98

Oct

-98

No

v-9

8D

ec-

98

Date

Flo

w (

cfs

)

0

1

2

Wat

er C

on

dit

ion

WAM Regulated

Proposed

Building Blocks Target

Condition

Pulse Condition

Wet

Avg

Dry

Page 146: Cypress SB3 20100826 Main - Texas

DRAFT 

Appendix F 7

Table 13 and Table 14 summarize historical frequencies of meeting a range of flows. 

Table 13 Frequency of meeting or exceeding a range of low rates under alternative scenarios 

 

Table 14 Percent decrease, relative to WAM Run3, of meeting or exceeding a range of low rates under alternative scenarios 

 

Table 14  shows  that a maximum diversion  rate of 50 cfs would  result  in about a 10% decrease  in meeting mid 

range flows (250‐1,000 cfs) and about a 5% decrease in meeting higher flows (1,000‐6,000 cfs).  These percentages 

about double when the maximum diversion rate is increased to 100 cfs and double again at a maximum diversion 

of 250 cfs.  When the maximum diversion rate is greater than 500 cfs the mid range flows are meet only about half 

as often as the fully permitted WAM scenario and the higher flows 20‐30% less often. 

The  second  step  in  this evaluation  is  to determine  the yield  that would be available under  the  current default 

methodology used by TCEQ  in evaluating  the water  rights permits.   This method, called  the Lyons method, sets 

minimum flow targets based on a percent of the historical monthly medians (60% in the summer and 40 % in the 

winter months).  Table 15 shows the Lyons target alongside the building blocks (low flow targets) for Black Cypress.  

The Lyons method does not afford and protection other portions of the hydrograph beyond low flows. 

Flow WAM (Run3) Max50 Max100 Max250 Max500 Max2000250 7,017 6,427 5,967 4,869 3,905 3,208500 3,939 3,535 3,074 2,203 1,397 641600 3,074 2,739 2,474 1,786 1,214 572700 2,474 2,203 1,949 1,511 1,041 492800 1,949 1,786 1,652 1,300 874 434900 1,652 1,511 1,397 1,115 749 3881000 1,397 1,300 1,214 966 641 3512000 351 338 320 285 246 1923000 160 153 148 129 111 934000 93 92 88 83 76 615000 61 60 60 56 50 446000 44 42 41 39 35 287000 28 28 26 26 21 218000 21 21 21 21 17 119000 11 11 11 11 11 1110000 11 11 11 11 10 6

Flow WAM (Run3) Max50 Max100 Max250 Max500 Max2000250 - 8% 15% 31% 44% 54%500 - 10% 22% 44% 65% 84%600 - 11% 20% 42% 61% 81%700 - 11% 21% 39% 58% 80%800 - 8% 15% 33% 55% 78%900 - 9% 15% 33% 55% 77%1000 - 7% 13% 31% 54% 75%2000 - 4% 9% 19% 30% 45%3000 - 4% 8% 19% 31% 42%4000 - 1% 5% 11% 18% 34%5000 - 2% 2% 8% 18% 28%6000 - 5% 7% 11% 20% 36%7000 - 0% 7% 7% 25% 25%8000 - 0% 0% 0% 19% 48%9000 - 0% 0% 0% 0% 0%10000 0% 0% 0% 9% 45%

Page 147: Cypress SB3 20100826 Main - Texas

DRAFT 

Appendix F 8

Table 15 Low flow targets (Lyons and Building Blocks) 

 

Using  the  same  approach  applied  above,  the  firm  yield  that would  be  expected  assuming  the  TCEQ’s  default 

methodology would be 6,898 ACFT per year. Through  trial and error  iteration  it was determined  that  this same 

firm yield would be expected based on application of the building blocks targets with a maximum diversion rate of 

129 cfs. 

Table  16  ‐  Table  18  below  repeat  the  results  provided  above  but  include  the  simulations  for  Lyons  and  the 

maximum diversion rate of 129 cfs. 

Table 16  Water Availability Summary for maximum diversion equal to 50 to 2,000 cfs and Lyons 

 

Table 17  Frequency of meeting or exceeding a range of low rates under alternative scenarios including Lyons 

 

Month Lyons Dry Avg WetJan 142 125 222 322Feb 190 201 300 366Mar 296 242 306 382Apr 188 140 205 327May 134 80 156 210Jun 78 42 95 191Jul 17 11 32 63Aug 3 4 5 14Sep 2 4 4 19Oct 4 4 13 45Nov 43 19 74 158Dec 114 91 209 294

Building Blocks Low Flow Targets

Yield Max50 Max100 Max129 Max250 Max500 Max2000 LyonsMin 4,034 5,974 6,816 8,689 8,750 8,750 6,898Avg 17,458 31,445 38,540 62,554 93,842 141,736 184,627Max 28,051 53,282 67,117 115,839 182,314 317,240 436,90575/75 20,059 35,408 41,493 67,754 92,398 115,947 125,773

Flow WAM (Run3) Max50 Max100 Max129 Max250 Max500 Max2000 Lyons250 7,017 6,427 5,967 5,712 4,869 3,905 3,208 1,192500 3,939 3,535 3,074 2,888 2,203 1,397 641 0600 3,074 2,739 2,474 2,314 1,786 1,214 572 0700 2,474 2,203 1,949 1,842 1,511 1,041 492 0800 1,949 1,786 1,652 1,567 1,300 874 434 0900 1,652 1,511 1,397 1,340 1,115 749 388 01000 1,397 1,300 1,214 1,168 966 641 351 02000 351 338 320 318 285 246 192 03000 160 153 148 146 129 111 93 04000 93 92 88 88 83 76 61 05000 61 60 60 59 56 50 44 06000 44 42 41 40 39 35 28 07000 28 28 26 26 26 21 21 08000 21 21 21 21 21 17 11 09000 11 11 11 11 11 11 11 010000 11 11 11 11 11 10 6 0

Page 148: Cypress SB3 20100826 Main - Texas

DRAFT 

Appendix F 9

Table 18  Percent decrease, relative to WAM Run3, of meeting or exceeding a range of low rates under alternative scenarios including Lyons 

 

Flow WAM (Run3) Max50 Max100 Max129 Max250 Max500 Max2000 Lyons250 - 8% 15% 19% 31% 44% 54% 83%500 - 10% 22% 27% 44% 65% 84% 100%600 - 11% 20% 25% 42% 61% 81% 100%700 - 11% 21% 26% 39% 58% 80% 100%800 - 8% 15% 20% 33% 55% 78% 100%900 - 9% 15% 19% 33% 55% 77% 100%1000 - 7% 13% 16% 31% 54% 75% 100%2000 - 4% 9% 9% 19% 30% 45% 100%3000 - 4% 8% 9% 19% 31% 42% 100%4000 - 1% 5% 5% 11% 18% 34% 100%5000 - 2% 2% 3% 8% 18% 28% 100%6000 - 5% 7% 9% 11% 20% 36% 100%7000 - 0% 7% 7% 7% 25% 25% 100%8000 - 0% 0% 0% 0% 19% 48% 100%9000 - 0% 0% 0% 0% 0% 0% 100%10000 0% 0% 0% 0% 9% 45% 100%

Page 149: Cypress SB3 20100826 Main - Texas

DRAFT 

Appendix F 10

Little Cypress 

In  discussing  Little  Cypress,  the  stakeholder  group  recognized  that  this  stream  has  experienced  moderate 

alterations  and  is  being  considered  for  future  water  development;  however  the  group  also  recognized  that 

protection of high flows in this stream would be desirable given that the high flow events from Big Cypress will be 

limited by  releases  from Lake O’  the Pines.   As a  result,  the group  felt  that a hybrid approach between a  strict 

interpretation of  the building block approach being applied  to Big Cypress and  the more conservative hands off 

approach being proposed  for Black Cypress. While  the  group was not  specific on  exactly what  this means, we 

interpreted the goal as meaning water below bankfull would be available for diversion subject to the constraints of 

the  numerical  building  blocks  targets  but  flows  above  bankfull would  be  subject  to  greater  protection  via  the 

application of a maximum diversion  rate  similar  to  the approach described above. To  state  this operationally  if 

flows  are  greater  than  bank  full water  can  be  diverted  to  just  above  bankfull  subject  to  limits  of  a maximum 

diversion rate. If the flow is below bankfull, then water can be diverted down to the building block level but is not 

subject  to  a maximum diversion  rate, put  another way  in  channel pulses  that  are not  explicitly defined  in  the 

building blocks  can be diverted.   The methodology will  likely need  refinements, one potential  issue  that might 

cause concern  is that fact the diversions can be greater for flow  just below bankfull than higher flows  just above 

bankfull.  The following pages present results identical to those presented above for Black Cypress.  

What is particularly notable from the following figures and tables is how much less sensitive both the changes in 

stream flow and changes  in water availability are to changes  in the maximum diversion rate.   What  is  likely a far 

more critical parameter  is the estimate of bankfull flow.   The bankfull estimate  included  in the building blocks  is 

represented by  the 2‐year  recurrence  interval estimate which  for Little Cypress  is 2,700 cfs.   The  figures below 

show that flows greater than bankfull are relatively unaltered regardless of maximum diversion rate. However,  if 

as was  the  case  in  Big  Cypress,  field work  (planned  for  this  year) were  to  conclude  that  bankfull  is  actually 

considerably  lower, say 1,500 cfs then many of  the smaller, yet assumed  to be  in channel, peaks that would be 

diverted if bankfull were 2,700 cfs would be protected from diversion if bankfull is actually 1,500 cfs.  

Page 150: Cypress SB3 20100826 Main - Texas

DRAFT 

Appendix F 11

0 cfs 

 

 

Little Cypress

0

1000

2000

3000

4000

5000

6000

7000

8000

Jan

-96

Feb

-96

Mar

-96

Ap

r-96

Ma

y-9

6Ju

n-9

6J

ul-

96

Au

g-9

6S

ep

-96

Oct

-96

No

v-9

6D

ec-

96

Jan

-97

Feb

-97

Mar

-97

Ap

r-97

Ma

y-9

7Ju

n-9

7J

ul-

97

Au

g-9

7S

ep

-97

Oct

-97

No

v-9

7D

ec-

97

Jan

-98

Feb

-98

Mar

-98

Ap

r-98

Ma

y-9

8Ju

n-9

8J

ul-

98

Au

g-9

8S

ep

-98

Oct

-98

No

v-9

8D

ec-

98

Date

Flo

w (

cfs

)

0

1

2

Wat

er C

on

dit

ion

LittleRegulatedTargetBase

Little Cypress

0

200

400

600

800

1000

1200

1400

1600

1800

2000

Jan

-96

Feb

-96

Mar

-96

Ap

r-96

Ma

y-9

6Ju

n-9

6J

ul-

96

Au

g-9

6S

ep

-96

Oct

-96

No

v-9

6D

ec-

96

Jan

-97

Feb

-97

Mar

-97

Ap

r-97

Ma

y-9

7Ju

n-9

7J

ul-

97

Au

g-9

7S

ep

-97

Oct

-97

No

v-9

7D

ec-

97

Jan

-98

Feb

-98

Mar

-98

Ap

r-98

Ma

y-9

8Ju

n-9

8J

ul-

98

Au

g-9

8S

ep

-98

Oct

-98

No

v-9

8D

ec-

98

Date

Flo

w (

cfs

)

0

1

2

Wat

er C

on

dit

ion

LittleRegulatedTargetBase

Page 151: Cypress SB3 20100826 Main - Texas

DRAFT 

Appendix F 12

 

Max Diversion = 01 2 3 4 5 6 7 8 9 10 11 12 Annual

1969 8,781 41,933 45,392 68,384 41,500 2,067 0 0 0 0 7,206 13,916 229,1781970 31,287 7,131 52,582 20,709 24,305 1,450 2,071 121 0 1,322 5,641 506 147,1251971 296 1,168 662 561 198 0 0 2,938 231 0 538 16,253 22,8451972 48,978 4,782 4,536 468 2,015 2,515 1,353 0 159 4,282 21,900 42,579 133,5671973 23,913 35,306 42,456 29,094 22,739 49,289 1,767 389 31,980 44,087 40,885 47,514 369,4181974 65,520 27,973 12,651 29,324 17,524 26,588 127 446 50,813 18,268 77,377 78,067 404,6781975 31,099 24,968 37,196 27,598 71,952 24,409 6,175 990 397 137 290 1,470 226,6791976 15,072 9,255 42,200 6,250 17,341 4,552 36,833 1,708 1,801 1,327 369 21,064 157,7731977 19,525 38,208 65,298 52,618 9,287 460 0 7,280 6,359 801 3,249 6,780 209,8641978 14,811 19,380 32,965 6,242 13,819 220 0 26 0 0 169 1,355 88,9871979 62,154 29,131 62,267 38,701 23,383 27,503 7,012 39,148 18,436 12,619 17,314 28,330 365,9981980 36,805 55,771 10,449 57,540 52,667 1,490 0 0 0 260 1,482 403 216,8671981 0 0 879 1,442 39,665 51,300 2,440 54 442 3,898 486 3,146 103,7521982 930 14,009 8,567 4,865 16,516 3,511 2,214 20 0 0 962 53,895 105,4891983 8,303 56,761 37,367 15,384 16,600 6,252 3,368 0 0 0 254 18,609 162,8971984 1,749 24,242 24,462 12,490 549 180 99 0 0 6,231 4,086 3,606 77,6951985 4,457 4,074 29,816 34,897 45,794 7,521 107 14 0 1,633 17,439 55,303 201,0561986 621 36,633 0 15,884 19,577 26,150 2,110 0 0 60 4,885 40,677 146,5961987 2,604 23,038 63,372 2,233 803 13,208 4,407 34 0 104 14,110 55,620 179,5351988 30,980 28,901 35,457 20,777 0 0 811 5 0 276 5,657 2,749 125,6121989 12,986 47,881 14,680 24,307 32,579 33,130 17,593 3,122 63 0 175 141 186,6571990 30,938 58,443 50,983 59,338 31,617 33,295 85 1,595 3,894 6,849 44,817 50,624 372,4761991 53,153 32,549 31,186 42,847 36,000 20,057 4,475 3,150 1,866 432 14,099 66,236 306,0501992 34,723 69,733 49,176 3,455 46 14,214 40,794 2,858 4,415 1,107 25,450 35,224 281,1951993 56,793 27,372 62,543 18,010 19,337 33,346 9,142 3,396 4 14,469 13,803 900 259,1161994 3,132 14,622 36,008 15,667 32,624 4,709 28,780 670 0 37,531 39,259 32,783 245,7861995 63,741 22,068 13,757 47,141 46,568 3,215 1,732 0 379 81 666 613 199,9621996 167 0 0 720 1,139 7,531 861 5,137 19,791 18,805 11,710 38,864 104,7251997 20,007 8,463 74,822 16,078 22,064 21,126 23,673 2,743 0 3,564 3,602 23,841 219,9851998 45,896 50,582 35,937 3,572 95 180 0 56 12,194 42,938 31,650 55,654 278,7551999 26,690 15,759 22,151 24,962 25,716 27,765 13,135 10 0 0 0 1,859 158,0452000 367 1,091 8,533 47,004 66,635 7,718 20,208 0 0 0 22,096 27,019 200,6702001 42,367 31,236 25,730 22,483 8,212 29,092 2,537 303 11,905 31,932 7,133 48,129 261,0572002 9,037 11,881 10,546 38,424 1,898 0 825 1,025 2,227 2,049 1,039 24,831 103,7832003 26,914 19,000 35,459 4,840 7,160 20,928 3,941 2,521 739 74 454 192 122,2222004 4,737 36,298 49,827 7,882 39,164 73,468 23,060 472 0 1,071 14,344 19,597 269,9192005 19,561 25,775 8,910 7,341 0 0 0 0 53 0 0 0 61,6402006 40 226 34,062 4,257 885 0 0 0 0 0 0 766 40,2352007 28,629 5,064 464 4,187 17,851 23,683 54,026 27,604 1,037 0 46 5,633 168,2242008 4,860 32,400 56,253 47,706 28,009 1,392 1,652 4,863 9,832 5,441 6,976 3,719 203,103

Min 0 0 0 468 0 0 0 0 0 0 0 0 22,845Ave 22,315 24,828 30,740 22,142 21,346 15,088 7,935 2,817 4,475 6,541 11,540 23,212 192,980Max 65,520 69,733 74,822 68,384 71,952 73,468 54,026 39,148 50,813 44,087 77,377 78,067 404,678

Page 152: Cypress SB3 20100826 Main - Texas

DRAFT 

Appendix F 13

500 cfs 

 

 

Little Cypress

0

1000

2000

3000

4000

5000

6000

7000

8000

Jan

-96

Feb

-96

Mar

-96

Ap

r-96

Ma

y-9

6Ju

n-9

6J

ul-

96

Au

g-9

6S

ep

-96

Oct

-96

No

v-9

6D

ec-

96

Jan

-97

Feb

-97

Mar

-97

Ap

r-97

Ma

y-9

7Ju

n-9

7J

ul-

97

Au

g-9

7S

ep

-97

Oct

-97

No

v-9

7D

ec-

97

Jan

-98

Feb

-98

Mar

-98

Ap

r-98

Ma

y-9

8Ju

n-9

8J

ul-

98

Au

g-9

8S

ep

-98

Oct

-98

No

v-9

8D

ec-

98

Date

Flo

w (

cfs

)

0

1

2

Wat

er C

on

dit

ion

LittleRegulatedTargetCondition

Little Cypress

0

200

400

600

800

1000

1200

1400

1600

1800

2000

Jan

-96

Feb

-96

Mar

-96

Ap

r-96

Ma

y-9

6Ju

n-9

6J

ul-

96

Au

g-9

6S

ep

-96

Oct

-96

No

v-9

6D

ec-

96

Jan

-97

Feb

-97

Mar

-97

Ap

r-97

Ma

y-9

7Ju

n-9

7J

ul-

97

Au

g-9

7S

ep

-97

Oct

-97

No

v-9

7D

ec-

97

Jan

-98

Feb

-98

Mar

-98

Ap

r-98

Ma

y-9

8Ju

n-9

8J

ul-

98

Au

g-9

8S

ep

-98

Oct

-98

No

v-9

8D

ec-

98

Date

Flo

w (

cfs

)

0

1

2

Wat

er C

on

dit

ion

LittleRegulatedTargetCondition

Page 153: Cypress SB3 20100826 Main - Texas

DRAFT 

Appendix F 14

 

Max Diversion = 5001 2 3 4 5 6 7 8 9 10 11 12 Annual

1969 8,781 38,515 43,706 51,265 41,500 2,067 0 0 0 0 7,206 13,916 206,9551970 31,287 7,131 52,582 20,709 21,519 1,450 2,071 121 0 1,322 5,641 506 144,3381971 296 1,168 662 561 198 0 0 2,938 231 0 538 16,253 22,8451972 45,788 4,782 4,536 468 2,015 2,515 1,353 0 159 4,282 21,900 42,579 130,3771973 23,913 35,306 38,261 39,181 21,846 35,276 1,767 389 31,980 36,918 40,594 56,440 361,8701974 41,298 27,973 12,651 26,184 17,524 31,043 127 446 50,813 18,268 74,156 68,170 368,6521975 31,099 27,586 31,853 27,598 63,761 24,409 6,175 990 397 137 290 1,470 215,7621976 15,072 9,255 42,200 6,250 17,341 4,552 36,833 1,708 1,801 1,327 369 21,064 157,7731977 19,525 38,390 56,957 47,720 9,287 460 0 7,280 6,359 801 3,249 6,780 196,8091978 14,811 19,380 32,965 6,242 13,819 220 0 26 0 0 169 1,355 88,9871979 48,048 29,131 62,267 41,911 30,325 27,503 7,012 39,148 18,502 12,619 17,314 28,330 362,1081980 34,810 39,427 10,449 57,540 52,667 1,490 0 0 0 260 1,482 403 198,5281981 0 0 879 1,442 32,945 51,300 2,440 54 442 3,898 486 3,146 97,0321982 930 14,009 8,567 4,865 16,516 3,511 2,214 20 0 0 962 53,895 105,4891983 8,303 56,761 31,805 15,384 16,600 6,252 3,368 0 0 0 254 18,609 157,3351984 1,749 24,242 24,462 12,490 549 180 99 0 0 6,231 4,086 3,606 77,6951985 4,457 4,074 27,207 34,897 45,794 7,521 107 14 0 1,633 17,439 52,614 195,7581986 621 30,413 0 15,884 19,577 26,150 2,110 0 0 60 4,885 40,677 140,3761987 2,604 20,559 48,714 2,233 803 13,208 4,407 34 0 104 14,110 61,571 168,3481988 30,805 24,300 35,457 20,777 0 0 811 5 0 276 5,657 2,749 120,8361989 12,986 45,455 17,655 22,566 38,013 33,130 17,593 3,122 63 0 175 141 190,8991990 26,503 58,443 46,933 55,870 27,074 33,295 85 1,595 3,894 6,849 36,902 41,024 338,4671991 43,065 21,084 24,728 42,772 42,407 18,448 4,475 3,150 1,866 432 14,099 39,420 255,9451992 34,723 48,173 27,874 3,455 46 14,214 29,326 2,858 4,415 1,107 25,450 35,125 226,7641993 51,965 27,372 62,543 18,010 19,337 29,581 9,142 3,396 4 14,469 13,803 900 250,5231994 3,132 13,287 35,115 15,667 32,624 4,709 28,780 670 0 37,531 36,627 37,166 245,3101995 46,826 16,395 13,757 33,059 39,467 3,215 1,732 0 379 81 666 613 156,1901996 167 0 0 720 1,139 7,531 861 5,137 19,791 18,805 11,710 38,864 104,7251997 20,007 24,331 44,666 18,359 23,730 21,126 23,673 2,743 0 3,564 3,602 23,841 209,6431998 52,802 36,173 35,937 3,572 95 180 0 56 12,194 42,938 31,650 55,654 271,2521999 24,670 17,762 22,151 24,962 25,716 27,765 13,135 10 0 0 0 1,859 158,0292000 367 1,091 8,533 47,004 66,635 7,718 20,208 0 0 0 22,096 30,450 204,1012001 45,513 33,398 42,664 22,483 8,212 26,471 2,537 303 11,905 31,932 7,133 44,321 276,8712002 9,037 11,881 14,057 37,139 1,898 0 825 1,025 2,227 2,049 1,039 24,831 106,0092003 26,914 21,372 30,024 4,840 7,160 20,928 3,941 2,521 739 74 454 192 119,1592004 4,737 36,298 49,827 7,882 39,164 56,846 23,060 472 0 1,071 14,344 19,597 253,2972005 19,561 25,775 8,910 7,341 0 0 0 0 53 0 0 0 61,6402006 40 226 24,357 4,257 885 0 0 0 0 0 0 766 30,5302007 34,802 5,064 464 4,187 17,851 21,572 45,457 27,604 1,037 0 46 5,633 163,7182008 4,860 32,400 56,253 46,393 27,572 1,392 1,652 4,863 9,832 5,441 6,976 3,719 201,354

Min 0 0 0 468 0 0 0 0 0 0 0 0 22,845Ave 20,672 23,210 28,316 21,354 21,090 14,181 7,434 2,817 4,477 6,362 11,189 22,456 183,558Max 52,802 58,443 62,543 57,540 66,635 56,846 45,457 39,148 50,813 42,938 74,156 68,170 368,652

Page 154: Cypress SB3 20100826 Main - Texas

DRAFT 

Appendix F 15

250 cfs 

 

 

Little Cypress

0

1000

2000

3000

4000

5000

6000

7000

8000

Jan

-96

Feb

-96

Mar

-96

Ap

r-96

Ma

y-9

6Ju

n-9

6J

ul-

96

Au

g-9

6S

ep

-96

Oct

-96

No

v-9

6D

ec-

96

Jan

-97

Feb

-97

Mar

-97

Ap

r-97

Ma

y-9

7Ju

n-9

7J

ul-

97

Au

g-9

7S

ep

-97

Oct

-97

No

v-9

7D

ec-

97

Jan

-98

Feb

-98

Mar

-98

Ap

r-98

Ma

y-9

8Ju

n-9

8J

ul-

98

Au

g-9

8S

ep

-98

Oct

-98

No

v-9

8D

ec-

98

Date

Flo

w (

cfs

)

0

1

2

Wat

er C

on

dit

ion

LittleRegulatedTargetCondition

Little Cypress

0

200

400

600

800

1000

1200

1400

1600

1800

2000

Jan

-96

Feb

-96

Mar

-96

Ap

r-96

Ma

y-9

6Ju

n-9

6J

ul-

96

Au

g-9

6S

ep

-96

Oct

-96

No

v-9

6D

ec-

96

Jan

-97

Feb

-97

Mar

-97

Ap

r-97

Ma

y-9

7Ju

n-9

7J

ul-

97

Au

g-9

7S

ep

-97

Oct

-97

No

v-9

7D

ec-

97

Jan

-98

Feb

-98

Mar

-98

Ap

r-98

Ma

y-9

8Ju

n-9

8J

ul-

98

Au

g-9

8S

ep

-98

Oct

-98

No

v-9

8D

ec-

98

Date

Flo

w (

cfs

)

0

1

2

Wat

er C

on

dit

ion

LittleRegulatedTargetCondition

Page 155: Cypress SB3 20100826 Main - Texas

DRAFT 

Appendix F 16

 

Max Diversion = 2501 2 3 4 5 6 7 8 9 10 11 12 Annual

1969 8,781 38,019 40,026 59,659 41,500 2,067 0 0 0 0 7,206 13,916 211,1741970 31,287 7,131 52,582 20,709 21,003 1,450 2,071 121 0 1,322 5,641 506 143,8231971 296 1,168 662 561 198 0 0 2,938 231 0 538 16,253 22,8451972 48,978 4,782 4,536 468 2,015 2,515 1,353 0 159 4,282 21,900 42,579 133,5671973 23,913 35,306 38,410 35,540 23,730 38,533 1,767 389 31,980 35,431 42,373 51,977 359,3471974 58,427 27,973 12,651 29,324 17,524 30,555 127 446 50,813 18,268 74,924 74,021 395,0521975 31,099 28,935 33,860 27,598 72,508 24,409 6,175 990 397 137 290 1,470 227,8651976 15,072 9,255 42,200 6,250 17,341 4,552 36,833 1,708 1,801 1,327 369 21,064 157,7731977 19,525 41,679 65,298 51,362 9,287 460 0 7,280 6,359 801 3,249 6,780 212,0791978 14,811 19,380 32,965 6,242 13,819 220 0 26 0 0 169 1,355 88,9871979 57,953 29,131 62,267 41,074 26,854 27,503 7,012 39,148 16,022 12,619 17,314 28,330 365,2261980 31,339 48,928 10,449 57,540 52,667 1,490 0 0 0 260 1,482 403 204,5571981 0 0 879 1,442 39,665 51,300 2,440 54 442 3,898 486 3,146 103,7521982 930 14,009 8,567 4,865 16,516 3,511 2,214 20 0 0 962 53,895 105,4891983 8,303 56,761 30,813 15,384 16,600 6,252 3,368 0 0 0 254 18,609 156,3431984 1,749 24,242 24,462 12,490 549 180 99 0 0 6,231 4,086 3,606 77,6951985 4,457 4,074 29,816 34,897 45,794 7,521 107 14 0 1,633 17,439 51,999 197,7511986 621 32,898 0 15,884 19,577 26,150 2,110 0 0 60 4,885 40,677 142,8611987 2,604 23,038 50,221 2,233 803 13,208 4,407 34 0 104 14,110 58,596 169,3601988 28,822 28,901 35,457 20,777 0 0 811 5 0 276 5,657 2,749 123,4541989 12,986 44,840 16,167 22,673 33,055 33,130 17,593 3,122 63 0 175 141 183,9451990 28,046 58,443 48,264 53,550 28,740 33,295 85 1,595 3,894 6,849 35,911 46,677 345,3481991 40,618 22,116 25,486 42,184 40,899 16,961 4,475 3,150 1,866 432 14,099 46,461 258,7461992 34,723 55,987 42,004 3,455 46 14,214 31,912 2,858 4,415 1,107 25,450 30,662 246,8331993 55,250 27,372 62,543 18,010 19,337 30,680 9,142 3,396 4 14,469 13,803 900 254,9071994 3,132 11,899 34,709 15,667 32,624 4,709 28,780 670 0 37,531 35,635 32,842 238,1991995 56,886 15,404 13,757 30,083 38,475 3,215 1,732 0 379 81 666 613 161,2921996 167 0 0 720 1,139 7,531 861 5,137 19,791 18,805 11,710 38,864 104,7251997 20,007 16,397 58,637 17,367 20,755 21,126 23,673 2,743 0 3,564 3,602 23,841 211,7141998 50,854 46,689 35,937 3,572 95 180 0 56 12,194 42,938 31,650 55,654 279,8201999 23,679 14,787 22,151 24,962 25,716 27,765 13,135 10 0 0 0 1,859 154,0622000 367 1,091 8,533 47,004 66,635 7,718 20,208 0 0 0 22,096 28,963 202,6142001 41,264 28,439 32,251 22,483 8,212 29,587 2,537 303 11,905 31,932 7,133 48,744 264,7892002 9,037 11,881 12,530 33,667 1,898 0 825 1,025 2,227 2,049 1,039 24,831 101,0102003 26,914 17,901 35,459 4,840 7,160 20,928 3,941 2,521 739 74 454 192 121,1232004 4,737 36,298 49,827 7,882 39,164 60,920 23,060 472 0 1,071 14,344 19,597 257,3712005 19,561 25,775 8,910 7,341 0 0 0 0 53 0 0 0 61,6402006 40 226 34,062 4,257 885 0 0 0 0 0 0 766 40,2352007 29,347 5,064 464 4,187 17,851 17,605 45,667 27,604 1,037 0 46 5,633 154,5062008 4,860 32,400 56,253 48,698 27,324 1,392 1,652 4,863 9,832 5,441 6,976 3,719 203,411

Min 0 0 0 468 0 0 0 0 0 0 0 0 22,845Ave 21,286 23,715 29,352 21,423 21,199 14,321 7,504 2,817 4,415 6,325 11,203 22,572 186,132Max 58,427 58,443 65,298 59,659 72,508 60,920 45,667 39,148 50,813 42,938 74,924 74,021 395,052

Page 156: Cypress SB3 20100826 Main - Texas

DRAFT 

Appendix F 17

100 cfs 

 

 

Little Cypress

0

1000

2000

3000

4000

5000

6000

7000

8000

Jan

-96

Feb

-96

Mar

-96

Ap

r-96

Ma

y-9

6Ju

n-9

6J

ul-

96

Au

g-9

6S

ep

-96

Oct

-96

No

v-9

6D

ec-

96

Jan

-97

Feb

-97

Mar

-97

Ap

r-97

Ma

y-9

7Ju

n-9

7J

ul-

97

Au

g-9

7S

ep

-97

Oct

-97

No

v-9

7D

ec-

97

Jan

-98

Feb

-98

Mar

-98

Ap

r-98

Ma

y-9

8Ju

n-9

8J

ul-

98

Au

g-9

8S

ep

-98

Oct

-98

No

v-9

8D

ec-

98

Date

Flo

w (

cfs

)

0

1

2

Wat

er C

on

dit

ion

LittleRegulatedTargetCondition

Little Cypress

0

200

400

600

800

1000

1200

1400

1600

1800

2000

Jan

-96

Feb

-96

Mar

-96

Ap

r-96

Ma

y-9

6Ju

n-9

6J

ul-

96

Au

g-9

6S

ep

-96

Oct

-96

No

v-9

6D

ec-

96

Jan

-97

Feb

-97

Mar

-97

Ap

r-97

Ma

y-9

7Ju

n-9

7J

ul-

97

Au

g-9

7S

ep

-97

Oct

-97

No

v-9

7D

ec-

97

Jan

-98

Feb

-98

Mar

-98

Ap

r-98

Ma

y-9

8Ju

n-9

8J

ul-

98

Au

g-9

8S

ep

-98

Oct

-98

No

v-9

8D

ec-

98

Date

Flo

w (

cfs

)

0

1

2

Wat

er C

on

dit

ion

LittleRegulatedTargetCondition

Page 157: Cypress SB3 20100826 Main - Texas

DRAFT 

Appendix F 18

 

Max Diversion = 1001 2 3 4 5 6 7 8 9 10 11 12 Annual

1969 8,781 37,722 47,772 65,304 41,500 2,067 0 0 0 0 7,206 13,916 224,2671970 31,287 7,131 52,582 20,709 24,702 1,450 2,071 121 0 1,322 5,641 506 147,5221971 296 1,168 662 561 198 0 0 2,938 231 0 538 16,253 22,8451972 48,978 4,782 4,536 468 2,015 2,515 1,353 0 159 4,282 21,900 42,579 133,5671973 23,913 35,306 39,788 31,672 23,135 40,776 1,767 389 31,980 39,332 41,480 49,299 358,8381974 65,520 27,973 12,651 29,324 17,524 28,175 127 446 50,813 18,268 73,436 78,067 402,3231975 31,099 26,555 37,196 27,598 72,468 24,409 6,175 990 397 137 290 1,470 228,7811976 15,072 9,255 42,200 6,250 17,341 4,552 36,833 1,708 1,801 1,327 369 21,064 157,7731977 19,525 39,596 65,298 49,418 9,287 460 0 7,280 6,359 801 3,249 6,780 208,0531978 14,811 19,380 32,965 6,242 13,819 220 0 26 0 0 169 1,355 88,9871979 62,154 29,131 62,267 37,206 24,772 27,503 7,012 39,148 19,230 12,619 17,314 28,330 366,6841980 37,995 51,903 10,449 57,540 52,667 1,490 0 0 0 260 1,482 403 214,1891981 0 0 879 1,442 39,665 51,300 2,440 54 442 3,898 486 3,146 103,7521982 930 14,009 8,567 4,865 16,516 3,511 2,214 20 0 0 962 53,895 105,4891983 8,303 56,761 37,545 15,384 16,600 6,252 3,368 0 0 0 254 18,609 163,0751984 1,749 24,242 24,462 12,490 549 180 99 0 0 6,231 4,086 3,606 77,6951985 4,457 4,074 29,816 34,897 45,794 7,521 107 14 0 1,633 17,439 55,700 201,4521986 621 36,633 0 15,884 19,577 26,150 2,110 0 0 60 4,885 40,677 146,5961987 2,604 23,038 60,010 2,233 803 13,208 4,407 34 0 104 14,110 56,811 177,3631988 31,575 28,901 35,457 20,777 0 0 811 5 0 276 5,657 2,749 126,2071989 12,986 48,079 15,275 25,101 34,364 33,130 17,593 3,122 63 0 175 141 190,0281990 31,533 58,443 51,578 55,898 32,013 33,295 85 1,595 3,894 6,849 39,927 50,624 365,7341991 55,513 28,681 27,830 44,037 37,983 20,454 4,475 3,150 1,866 432 14,099 61,912 300,4321992 34,723 65,885 46,911 3,455 46 14,214 40,794 2,858 4,415 1,107 25,450 36,732 276,5891993 57,586 27,372 62,543 18,010 19,337 29,193 9,142 3,396 4 14,469 13,803 900 255,7561994 3,132 15,019 37,000 15,667 32,624 4,709 28,780 670 0 37,531 39,457 34,370 248,9591995 55,934 22,108 13,757 43,384 42,115 3,215 1,732 0 379 81 666 613 183,9851996 167 0 0 720 1,139 7,531 861 5,137 19,791 18,805 11,710 38,864 104,7251997 20,007 11,637 67,337 16,673 23,056 21,126 23,673 2,743 0 3,564 3,602 23,841 217,2601998 47,879 46,391 35,937 3,572 95 180 0 56 12,194 42,938 31,650 55,654 276,5471999 26,888 16,750 22,151 24,962 25,716 27,765 13,135 10 0 0 0 1,859 159,2352000 367 1,091 8,533 47,004 66,635 7,718 20,208 0 0 0 22,096 27,812 201,4632001 44,747 29,153 29,697 22,483 8,212 29,290 2,537 303 11,905 31,932 7,133 50,112 267,5032002 9,037 11,881 11,340 35,381 1,898 0 825 1,025 2,227 2,049 1,039 24,831 101,5342003 26,914 20,190 35,459 4,840 7,160 20,928 3,941 2,521 739 74 454 192 123,4122004 4,737 36,298 49,827 7,882 39,164 59,135 23,060 472 0 1,071 14,344 19,597 255,5862005 19,561 25,775 8,910 7,341 0 0 0 0 53 0 0 0 61,6402006 40 226 34,062 4,257 885 0 0 0 0 0 0 766 40,2352007 30,613 5,064 464 4,187 17,851 24,873 51,114 27,604 1,037 0 46 5,633 168,4862008 4,860 32,400 56,253 48,103 24,904 1,392 1,652 4,863 9,832 5,441 6,976 3,719 200,396

Min 0 0 0 468 0 0 0 0 0 0 0 0 22,845Ave 22,422 24,500 30,499 21,831 21,353 14,497 7,862 2,817 4,495 6,422 11,339 23,335 191,374Max 65,520 65,885 67,337 65,304 72,468 59,135 51,114 39,148 50,813 42,938 73,436 78,067 402,323

Page 158: Cypress SB3 20100826 Main - Texas

DRAFT 

Appendix F 19

Conclusions 

The purpose of this exercise has been to demonstrate how the narrative standards developed for Black and Little 

Cypress could be implemented and evaluated.  Refinements to this approach that this exercise might suggest could 

include a move towards more of a percent of maximum approach, for instance the maximum diversion rate could 

be set at one value for mid range flows from 250‐1000 cfs and a higher at higher flows, thus allowing additional 

scalping of flood flows while still preserving much of the natural function. Selecting the appropriate diversion rate 

remains  an  issue  that will  require  additional  discussion  and while  additional  scientific  understanding may  be 

brought  to  bear,  this  decision will  likely  include  a  negotiated  balance  between  the  desire  to maintain  a more 

pristine  state,  particularly  for  Black  Cypress,  and  the  needs  for  out  of  stream  water  supply.  Finally,  for  the 

approach used for Little Cypress, the quantification and ecological value of overbank flows is critical as is the value 

of in channel pulses, to providing a sound basis on which to make these decisions. 

 

Page 159: Cypress SB3 20100826 Main - Texas

DRAFT 

Appendix G 1

APPENDIX G  INDICATORS {The ideas included in this draft document are only intended as a starting point for the development of a workplan 

to begin the process of adaptive a management.} 

As the Cypress‐Flows Project (CFP) proceeds, it will need to evaluate how well implementation of the flow regimes, 

flow standard and set aside accomplish the goal of protecting the ecological health of lakes, rivers and streams of 

the Cypress Basin.  Although a general  objective for such protection was clearly articulated at the beginning of the 

Project, , and research goals set, in part, for base line data for such evaluations, a clear set of specific measures to 

assess ecological health were not defined.  Development of indicators and an analysis of the data available or that 

should be collected for an appropriate set of indicator was begun in 2009. 

The goal of this work is to identify specific quantifiable indicators so that the efficacy of the proposed flow regime 

can  be  evaluated  through  adaptive management.    A  sound  ecological  environment  is  one  that maintains  the 

integrity and function of the natural system.  It has the things that it should have, richness and diversity of plants 

and animals, and it does the things it should do, maintain water quality, move sediments, and connect the riverine 

and riparian area and flood plains. 

Review of historical data suggests  that  the plant and animal communities have changed partially  in response  to 

human  alterations.    The  fish  community  appears  to  have  shifted  from  assemblages  dominated  by  cyprinids, 

percids,  cyprinodontids  in  the  1950's  to  assemblages  dominated  by  centrachids,  other  cyprinids,  clupeids,  and 

artherinids by the 1980's. The plant community of this wetland of international importance has developed a more 

homogeneous  age  structure  likely  due  to  the  stabilization  of  flows  by  upstream  impoundment. Water  quality 

concerns  related  to dissolved oxygen, nutrients, bacteria and mercury have been  identified. Although  sediment 

loadings have not been measured,  it  is  reasonable  to  assume  that major  impoundments have  captured  a high 

proportion of sediment and this may have implications for channel morphology. 

The best available science on environmental flows predicts that maintaining key components of the natural flow 

regime is the safest and surest way to maintain and restore ecological health. Preliminary flow recommendations 

have  identified  the  key  components  of  that  regime.  These will  be  implemented  via  an  adaptive management 

approach. The success of this approach will be evaluated based on the resource response. Specifically the resource 

should  show maintenance  of  species  richness  and  diversity,  support  of  a  heterogeneous  age  class  of wetland 

plants, reduction of human induced water quality concerns and maintenance of in channel habitat conditions. 

Indicators 

There are multiple aspects of the structure and function of a “sound ecological environment” or a river’s ecological 

integrity.   Measurement of  an  ecosystem’s  condition  and monitoring of  restoration or management objectives 

should consider these aspects.    In addition, due to  limited resources and time, monitoring programs must be as 

efficient and focused as possible. 

The Texas  Instream Flows Program (TIFP) has proposed a system for developing objectives for meeting goals for 

each priority study segment and developing indicators to monitor progress.  The framework is also very similar to 

and  highly  compatible with  the way  that  The  Nature  Conservancy  sets  conservation  objectives  and monitors 

success (TNC 2001).  Thus, CFP can utilize an approach based on the TIFP framework to monitor implementation of 

flow building blocks and to guide adaptive management.  

Page 160: Cypress SB3 20100826 Main - Texas

DRAFT 

Appendix G 2

Flow recommendations were developed based on review of existing data and in some cases model simulations of 

instream  habitat,  water  quality,  sediment  transport,  and  watershed  connectivity.    The  goal  of  the  flow 

recommendations is to protect a sound ecological environment, which is defined as a condition that maintains the 

integrity and function of the riverine system.   Although some site‐specific data and analysis was available to link 

flows to a ecological resource response, via the intermediate steps of analysis of water quality, habitat, sediment 

transport and connectivity, the recommendations were  in good part based on an application of the natural flow 

paradigm which states that a sound ecological environment is maintained by maintaining critical component of the 

natural flow regime. The recommendations are now being evaluated and refined within an adaptive management 

context and the effectiveness of the recommendation on meeting the goal will be evaluated on several levels. 

Relationship to ecological health and timeframe of ecological response 

A critical piece of the process of adaptive management is the monitoring of specific and quantifiable measures of 

the  ecosystem  response.    As  outlined  in  the  TIFP,  useful  ecological  indicators  share  a  number  of  important 

characteristics.  They may have "intrinsic importance (measure a species or process directly)," perhaps serve as an 

early warning  or  sensitive  indicator  or  they may  serve  to  stand  in  for  a  process  (TIFP  2008). Other  important 

considerations  are  cost  and ease of monitoring  and  the availability of historical or baseline data  against which 

comparisons can be made. Each of these issues should be considered when selecting among the many choices of 

available  indicators. Unfortunately,  the most  comprehensive measures  of  ecosystem  health  are  the  ones  that 

typically  take  the  longest  to  see  a  response  to  changes  in  water management  and  are  the most  difficult  to 

measure. Changes in species richness and diversity fall in this category.  Deviation from flow recommendations are 

relatively  easy  to  monitor,  however  the  prediction  of  ecological  response  to  these  deviations  carries  more 

uncertainty. 

A simplistic model of a general approach used to develop an instream flow recommendation is illustrated in Figure 

12. 

ResourcesConditionsManagment/

Implementaiton

Flows

Water Quality

Sediment Transport

WatershedConnectivity

Habitat

SoundEnvironment

(function and integrity)

 

Figure 12  Multilevel indicators of ecological health. 

Page 161: Cypress SB3 20100826 Main - Texas

DRAFT 

Appendix G 3

Resource level measures of ecosystem integrity and function apply to the riverine "resources" including biological 

measures such as species richness and diversity, and riverine functions such as the ability to assimilate wastewater 

and to maintain river channels.  While these measures are desirable, detecting a response in these resources to a 

change in water management is often difficult and it may be years before this response is detected.  These delayed 

responses can be counteracted somewhat by the selection of relatively more sensitive attributes such as early life 

stage responses or recruitment success, but there is no getting around the fact that detection of community level 

effects will require a significant level of time and resources. With the next level of indicator, mid‐term/ conditions, 

rather  than directly evaluate  the "resource"  response,  indicators measure  the  response of  the "conditions"  that 

are necessary  to maintain  those  resources  (i.e. measurement of habitat, water quality,  sediment  transport and 

connectivity).  These indicators might also be viewed as analysis or model verification.  If a habitat model predicts 

that a certain  flow  rate will provide a specific amount of available  riffle habitat  these  indicators can be used  to 

verify  this  prediction  and  if necessary  refine  or  recalibrate  the model  to  improve  these  predictions.    The  final 

indicator  level, short‐term/management might be viewed as an  indicator of  the  implementation success.   These 

indicators  address  the  question  of  whether  the  water  management  plan  produces  the  prescribed  flow 

recommendations.  These include not only the various magnitudes, frequencies, durations and timing prescribed in 

the  building  blocks  but  also  the  desired  attainment  frequencies  at  which  these  recommendations  should  be 

achieved. As such, development of these indicators is integrated with the development of various triggers that will 

be necessary to allow operators to implement these recommendations and a consideration of other factors related 

to water supply, operational constraints and values associated with other water uses.   These  indicators may also 

take different forms when considering real time operations and long term planning or water rights permitting. 

While monitoring of  these various  types of  indicators can  take place concurrently,  there  is a  logical progression 

from the short‐term/management to the mid‐term/conditions and finally the long‐term/resource level measures.  

If  the water management  implementation plan  is not achieving  the desired  flow  conditions,  it  is  impossible  to 

evaluate  the  resource  response  to  the  flow  recommendations. The process of adaptive management addresses 

this issue by providing for evaluation of response to specific flow conditions. However, even these evaluations will 

likely be limited to mid‐tem intermediate indicators.  

Thresholds 

Before  discussing  the  specifics  of  each  indicator,  an  issue  that  requires  some  attention  is  a  discussion  of  how 

achievement of  these  indicators  is  assessed.  This  leads directly  to  a discussion of  thresholds.  The natural  flow 

paradigm suggests that healthy aquatic systems do not require strict adherence to precise flow targets but rather 

that the natural range of variation  in  flow  levels and events will maintain a broad suite of ecosystem resources.  

While it is not necessary to conserve the entire range of variation, it is necessary to conserve the ecosystem so that 

it  remains  within  some  appropriate  limits  to  this  variation.  Identifying  such  thresholds  provides  a  scientific, 

objective basis for saying whether a sound ecological environment is intact.  The minimal conservation goal for an 

ecosystem should be to ensure that all of its ecological indicators are within the bounds of their critical ecological 

thresholds or “minimum integrity thresholds” (TNC 2001; Parrish et al. 2003).  This provides an explicit definition of 

what acceptable conservation means, and hence an explicit basis for rating the ecosystem’s status. 

The Minimum Integrity Threshold for an ecological indicator is the outer limit of its acceptable range of variation.  

Once this threshold has been crossed, the overall  integrity of the river cannot be restored so  long as the altered 

indicator is outside of its range of acceptable variation.  The composition, structure, and function of a river may not 

begin  to  degrade  immediately when  one  of  its  indicators moves  outside  of  its  acceptable  range  of  variation.  

However, we can expect  this shift  to set  in motion chains of events,  that will  (if unchecked)  result  in additional 

alterations to other  indicators and  leave them vulnerable to significant disruptions from additional disturbances, 

Page 162: Cypress SB3 20100826 Main - Texas

DRAFT 

Appendix G 4

that  in  turn will push  them  still  further outside of  their  acceptable  ranges of  variation. Defining  the Minimum 

Integrity Threshold for individual indicators is the mechanism by which scientific knowledge of the river influences 

the Ecological Integrity rating.  This threshold becomes the fixed dividing line between ratings of Good (or better) 

and Fair (or worse) for each indicator.  Therefore, this is the principle threshold that will help define a consistent, 

scientifically defensible means of rating the integrity of the river. 

 

The idea of “minimum integrity thresholds” comes from the concept of “natural range of variation”: 

Each key ecological factor for a target will have a natural range of variation.  Key ecological factors such as species 

population  sizes;  river  flows; water  quality,  sediment  transport,  frequency  and  area  of  riparian  inundation  all 

naturally vary within certain ranges. 

There are recognizable patterns to this variation, which can be described in terms of frequency, timing, duration, 

and limits of variation.  This pattern includes both “normal” variation and extreme disturbances. 

Natural communities and ecological systems recover from extreme disturbances ‐‐ although this may take a  long 

time. 

A naturally  functioning  target  can  generally only be driven beyond  its natural  range of  variation  and  ability  to 

recover (breakdown of resistance and resilience) by disturbances foreign to the system. 

“Minimum integrity thresholds” are those boundaries beyond which the target loses its natural ability to recover. 

Planning teams can use key factors as tools to define a desired future status for each conservation target by setting 

thresholds that define the preferred status for each key factor.  These conservation area‐defined Optimal Integrity 

Thresholds are the means to measure the improvement of a target’s key factors beyond their minimum integrity 

Page 163: Cypress SB3 20100826 Main - Texas

DRAFT 

Appendix G 5

thresholds and toward the more ecologically desirable status at the conservation area. To receive a “Very Good” 

rating, a key factor must: 

Be  less vulnerable to being pushed outside  its acceptable range of variation by chance events or human 

caused disturbances perturbations, and  therefore  is perceived with greater  confidence  to be  “secure”, 

and/or, 

Require little to no human intervention to be maintained within its acceptable range of variation, and/or, 

More closely approximate what is best known as its “natural state” or functions within its “natural range 

of variation.” 

Conservation targets with one or more key ecological factors outside their minimum integrity thresholds cannot be 

considered “conserved”, and should be rated as “Fair” or “Poor” in this framework.  Planning teams again can use 

key factors as tools to distinguish between these two rating levels, by defining Imminent Loss Thresholds for each 

target’s key  factors.   These  conservation area‐defined  thresholds are means  to measure  the  improvement of a 

target’s  key  factors  toward  their minimum  integrity  thresholds, when  they  are  severely  altered.    To  receive  a 

“Poor” rating, a key  factor must be so severely altered  from  its minimum  integrity  threshold, that allowing  it  to 

remain in this condition or trajectory for another 10‐25 years will make restoration of the target or prevention of 

its extirpation practically impossible.  The rating thus takes into account the magnitude of alteration, the possible 

reversibility of this alteration, and the ecological consequences of allowing the alteration to persist. 

Page 164: Cypress SB3 20100826 Main - Texas

DRAFT 

Appendix G 6

 

Figure 13 Key Factor Thresholds and Status Assessment 

Indicators specific to riverine components 

Key  factors  for  indicators  for  the  main  riverine  categories  (hydrology  and  hydraulics,  biology,  water  quality, 

geomorphology and connectivity) will be described,  including the quantifiable metric that will be used, threshold 

targets, and a workplan proposed  to evaluate  their status.   There  is an order  in which  the  indicators should be 

evaluated. Although  it  is necessary to monitor baseline conditions before  implementing a flow recommendation, 

there  is  no  point  in  evaluating  the  species  richness  response  to  a  flow  recommendation  (a  biological  long 

term/resource  level  indicator of  ecosystem health) unless  it has  first been determined  that  the  recommended 

flows  are  actually  being  provided  to  the  river  (a  hydrologic  short‐term/management  indicator).  While  this 

chronological or bottom up  approach  to discussing  indicators has  some  appeal  the overall  goal  is  to protect  a 

sound ecological environment and a long term/resource indicators thus indicators will be discussed from this top 

down  perspective.  Starting  from  the  end  goal  and working  backward  to  the  intermediate  indicators  that  are 

necessary precursors to these goals. 

Page 165: Cypress SB3 20100826 Main - Texas

DRAFT 

Appendix G 7

Long‐term/Resource Indicators 

The overall objective of  the Cypress Caddo  SRP  is  to maintain  a  sound ecological environment, which  includes 

maintaining the plant and animal that comprise the aquatic community.   The success  in restoring or maintaining 

these  resources  is measured  in  terms of native  richness  and diversity of plants  and  animals.  This may  require 

special emphasis on the protection of species of concern (including threatened and endangered). 

Indicators of Biological Integrity (IBI) are used to dictate the level of protection streams receive in accordance with 

surface water quality standards.  They are used in conjunction with water quality, benthic macroinvertebrate and 

habitat data to set aquatic life use in wadeable streams (exceptional, high, intermediate, or limited). Using the IBI's 

as a starting point the CFP will determine if the regional is IBI, or components of that index are well suited to be 

used as  indicators of the ecological health of the aquatic community that  is responsive to  flow alterations.    It  is 

possible  that  the metrics  and  rating  thresholds will  need  to  be modified  to  provide  accurate  and meaningful 

assessment of Cypress basin fish communities. 

Specific Indicators, thresholds and a workplan to assess these criteria will be developed. 

Mid‐term/Conditions Indicators 

These  are  indicators  of  the  conditions  that  are  believed  to  be  necessary  in  order  to  have  a  sound  ecological 

environment.   They  include  flow dependent habitat  suitable  for  the  species or guilds  identified above,  channel 

maintenance  (cleaning  riffles  scouring  pools  etc.),  suitable water  quality  conditions  and  periodic  inundation  of 

identified wetland areas.   These  intermediate  indicators bridge the gap between the flows or hydrology produce 

by the implementation of a water management plan the ecological response of the system.  Predictions of these 

conditions (i.e. available habitat or area of  inundation at a given flow rate) have been made based on models or 

other types of analysis.  These indicators can be used to verify and if necessary modify these predictions.  

Indicators  in this groups will  include those that evaluate Instream Habitat (Biology/Hydraulics), Riparian/Wetland 

Connectivity (Biology/Hydraulics), Water Quality and Channel Maintenance (Geomorphology) 

Short‐term/Management indicators 

Before  any  resource  measures  of  ecosystem  response  to  recommended  flows  can  be  evaluated,  it  will  be 

necessary to implement the flow recommendations and evaluate whether the prescribe flows are indeed observed 

at  their  prescribed magnitudes,  frequencies,  durations,  and  timing.  Although  this  is  in many  ways  the most 

straightforward of all of  the  indicators,  it presents a number of challenges  that need to be addressed,  including 

translating the building blocks recommendations  into target hydrographs, addressing  implementation and water 

supply  constraints,  and  practical  management  issues  like  the  development  of  triggers  to  identify  hydrologic 

conditions and the time frame over which to specify these conditions (e.g.  is the hydraulic condition reevaluated 

every day, month, season, or year?). Finally, there needs to be some discussion the period of time needed to make 

an assessment.    If  the  recommendations call  for base dry conditions 30 percent of  the  time does  that mean 30 

percent of  the  time over  the next year or next  ten years? With hydrologic  indicators, unlike many of  the other 

indicators, models exist to forecast future flow conditions.  In Texas the model that  is used  is call a WAM (Water 

Availability Model) which overlays  current and  future water demand projections on historical  flows  in order  to 

estimate future flows. The WAM is not without its shortcomings an important one being that it runs on a monthly 

time step whereas most analysis of environmental flows requires a finer time step, probably daily. Accepting the 

WAM  limitations and employing  techniques  to address  them, allows  for an assessment of hydrologic  indicators 

over a time frame that is comparable to the time frame of the basic data that was used to develop the preliminary 

Page 166: Cypress SB3 20100826 Main - Texas

DRAFT 

Appendix G 8

recommendations (approximately 40 years).  While this time frame may not be suitable for a real time assessment 

(we  can't wait  40  years  to  know  if  the  flow  recommendations  have  been  adequately  implemented)  they  can 

provide some direction as to what appropriate expectation should be on short timeframes. 

REFERENCES 

Parrish,  J.D., D.P. Braun, and R.S. Unnasch. 2003. Are we conserving what we say we are? Measuring ecological 

integrity within protected areas. BioScience 53: 851‐860. 

The  Nature  Conservancy.  2001.  Assessing  the  ecological  integrity  of  conservation  targets  in  site  conservation 

planning and measures of success.