cvt thrust area four ( )

22
Detection of Undeclared Activities and Inaccessible Facilities: Monitoring, Situation Awareness, and Forensics Dr. Milton A. Garcés Infrasound Laboratory, University of Hawaii, Manoa CVT Thrust Area Four ( )

Upload: doankhuong

Post on 01-Jan-2017

215 views

Category:

Documents


0 download

TRANSCRIPT

Detection  of  Undeclared  Activities  and  Inaccessible  Facilities:Monitoring,  Situation  Awareness,  

and  Forensics

Dr.  Milton  A.  GarcésInfrasound  Laboratory,  University  of  Hawaii,  Manoa

CVT  Thrust  Area  Four  (        )

2014  NNSA  RoadmapGround-­‐based  Nuclear  Detonation  Detection

DOE/NNSA/NA-­‐22/GNDD-­‐Roadmap-­‐2014

Challenges  and  Gaps

GAPS  &  CHALLENGES

• Detect  and  identify  small-­‐yield  nuclear  explosions  • Uncertainty  management  in  source  identification• Data  collection  under  Additional  Protocol• Improved  tools  for  site  inspections

CVT  Thrust  Area

Undeclared  Activities  and  Facilities

Comprehensive  Nuclear-­‐Test-­‐Ban  Treaty  (CTBT)Treaty  on  the  Non-­‐Proliferation  of  Nuclear  Weapons  (NPT)

Global  NetworkInternational  Monitoring  System  Stations:  All

Global  NetworkInternational  Monitoring  System  Stations:  Seismic

Global  NetworkInternational  Monitoring  System  Stations:  Infrasound

Global  NetworkInternational  Monitoring  System  Stations:  Radionuclide

Detect,  Analyze,  ModelIn  order  of  signal  speed

SeismologyPaul  Richards,  FY2015  T4  Lead:  Thank  you!Columbia  University:  [email protected]  Garces,  FY2016  T4  LeadUniversity  of  Hawaii:  [email protected]:  1.808.327.6206,  Cell:  1.808.960.6393Radionuclide  Atmospheric  TransportJohn  Lee,  University  of  Michigan:  [email protected] Farsoni,  Oregon  State  University:  [email protected]  of  Fuel  Cycle  MonitoringPaul  Wilson  and  Meghan  McGarry,  University  of  Wisconsin  [email protected],  [email protected]

Proposed  FY2016• Identify  possible  gaps  and  challenges  in  CTBT  and  NPT  

monitoring  and  verification• Concentrate  on  Monitoring  and  Forensics,  including  attribution  • Expedite  discrimination  between  natural,  chemical,  and  nuclear  

explosions• T4  integration  with  speed-­‐of-­‐light  technologies,  such  as  particle  

detectors  and  imagers  • Understand  rules  and  boundaries  to  data  sources  and  

monitoring  agencies,  and  repercussions  of  breaches  in  conduct• Establish  trusted  routes  to  access  IMS/other  available  data• Establish  trusted  information  pathways  to/from  responsible  

agencies• Build  technology  and  skills  to  addresses  real-­‐world  national  and  

international  security  challenges

Evaluation  of  seismic  events  in  North  Korea  Paul  Richards,  Columbia  UniversityPerformed  FY2015

• Seismic  reanalysis  of  event  on  12  May  2010  near  North  Korean  test  site  improved  source  identification.

• Initiated  new  approach  to  routinely  locating  large  numbers  of  earthquakes  in  the  oceans

Explosion  population  (12  events,  chemical  and  nuclear),  shown  as  triangles,  earthquake  population  (12  events)  shown  as  circles.  May  12  event  shown  as  a  green  square  near  the  earthquake  population.

Seismic  SignaturesPaul  Richards  and  Mike  Howe,  Columbia  UniversityProjected  FY2016

• Discuss  and  debate  12  May  2010  reanalysis  • Discuss  impact  of  being  able  to  identify  small  events• Continue  data  rescue  efforts• Uncertainty  reduction  in  source  locations  through  surface  

wave  cross-­‐correlations

Infrasonic  SignaturesMilton  Garces,  University  of  HawaiiPerformed  FY2015

• Next-­‐generation  sensor  development,  testing,  and  evaluation.• Enhance  global  detection  capability

Infrasonic  Signatures  M.  Garces,  A.  Christe,  J.  Schnurr,  University  of  HawaiiUbiquitous  Sensors,  Machine  Learning,  Data  Mining

REDVOXInfrasound   recorder  in Apple  App  Store

In  progress!

Infrasonic  SignaturesM.  Garces,  A.  Christe,  J.  Schnurr,  University  of  Hawaii  Performed  FY2015

• Source  and  signature  characterizations  (CTBT,  NPT)• Collaborations  with  INL,  SNL,  LLNL,  CTBTO  and  its  signatories• Event  re-­‐evaluation  and  forensics:  US  NDC,  IMS,  and  IRIS  data• Improve  minimum  detectable  yield  and  energy  resolution

Tianjin  Harbor  Explosion,  12  August  2015,  ~15:34  UTC  

Infrasonic  Signatures  M.  Garces,  A.  Christe,  J.  Schnurr,  University  of  HawaiiForensic  Studies:  Supplementary  Networks

Some  infrasound   stations  in  the  Chinese  network  (Yichun Yang  et  al.,  2014)

• Initiated  atmospheric  transport  modeling  (ATM)  with  the  FLEXPART  and  HYSPLIT  codes

• Studied  Bayesian  data  assimilation  methods  with  synthetic  data

• Obtained  access  to  Fukushima  radionuclide  data  for  11  U.S.  IMS  stations

HYSPLIT synthetic  2-­‐source   inverse  problem

Radionuclide  Atmospheric  TransportJohn  Lee, Matthew  Krupcale,  Fariz Abdul  Rahman,University  of    MichiganPaul  Eslinger,  Pacific  Northwest  National  LaboratoryPerformed  FY2015

• Benchmark  the  HYSPLIT  and  FLEXPART  codes• Reconstruct  radiological  source  using  inverse  ATM  with  

radionuclide  data• Characterize  uncertainties  in  ATM  and  source  reconstruction• Develop  systematic  ATM  methods

US  IMS  particulate  radionuclide  stations

Radionuclide  Atmospheric  TransportJohn  Lee,  Matthew  Krupcale,  University  of    MichiganProjected  FY2016

RadioxenonDetection  via  Beta-­‐Gamma  Coincidence  Abi Farsoni,  Oregon  State  UniversityPerformed  FY2015

• Two-­‐element  cadmium  zinc  telluride  (TECZT)  detectors  were  designed,  built,  and  tested  by  injecting  radioactive  135Xe  gas  into  the  gas  cell.

• Preliminary  measurement  agree  with  models  and  show  improved  energy  resolution

• Reduce  noise  level  (trigger  threshold)  below  20  keV• Test  with  other  xenon  radioisotopes  (131mXe,  133mXe,  and  133Xe)• Calculate  minimum  detectable  xenon  concentration  • Test  and  troubleshoot  8-­‐channel  digital  pulse  processor

RadioxenonDetection  via  Beta-­‐Gamma  Coincidence  Abi Farsoni,  Oregon  State  UniversityProjected  FY2016

Preliminary  behavioral  models  of  fissile  material  diversion

Signal  processing  techniques   for  anomaly  detection  (with  T2)

Spatiotemporal  models  for  fuel  cycle  metrics

Fuel  Cycle  Simulation  as  Virtual  CVT  TestbedPaul  Wilson  and  Meghan  McGarry,  U.  of  Wisconsin  Performed  FY2015

T3:  (TBD)  -­‐ Variability  in  radionuclide  source  terms  from  declared  facilities

T2:  Hero-­‐ Anomaly  detection  with  multi-­‐

modal  data  from  fuel  cycle  facilities

• Interdisciplinary  collaborations• Development  of  socio-­‐behavior  models  for  agents  based  on  historical  records• Comparison  of  signatures  and  signals  from  national  and  multinational  facilities

Fuel  Cycle  Simulation  as  Virtual  CVT  TestbedPaul  Wilson  and  Meghan  McGarry,  U.  of  Wisconsin  Projected  FY2016

Proposed  FY2016• Identify  possible  gaps  and  challenges  in  CTBT  and  NPT  

monitoring  and  verification• Concentrate  on  Monitoring  and  Forensics,  including  attribution  • Expedite  discrimination  between  natural,  chemical,  and  nuclear  

explosions• T4  integration  with  speed-­‐of-­‐light  technologies,  such  as  particle  

detectors  and  imagers  • Understand  rules  and  boundaries  to  data  sources  and  

monitoring  agencies,  and  repercussions  of  breaches  in  conduct• Establish  trusted  routes  to  access  IMS/other  available  data• Establish  trusted  information  pathways  to/from  responsible  

agencies• Build  technology  and  skills  to  addresses  real-­‐world  national  and  

international  security  challenges