cutting greenhouse gas emissions is only the … greenhouse gas emissions is only the beginning: a...

26
Cutting Greenhouse Gas Emissions Is Only the Beginning: A Literature Review of the Co-Benefits of Reducing Vehicle Miles Traveled March 2017 A White Paper from the National Center for Sustainable Transportation Kevin Fang, University of California, Davis Jamey Volker, University of California, Davis

Upload: doankhuong

Post on 12-Apr-2018

218 views

Category:

Documents


1 download

TRANSCRIPT

CuttingGreenhouse

GasEmissionsIsOnly

theBeginning:A

LiteratureReviewof

theCo-Benefitsof

ReducingVehicleMiles

Traveled

March2017 AWhitePaperfromtheNationalCenterforSustainableTransportation

KevinFang,UniversityofCalifornia,Davis

JameyVolker,UniversityofCalifornia,Davis

AbouttheNationalCenterforSustainableTransportation

TheNationalCenterforSustainableTransportationisaconsortiumofleadinguniversitiescommittedtoadvancinganenvironmentallysustainabletransportationsystemthroughcutting-edgeresearch,directpolicyengagement,andeducationofourfutureleaders.Consortiummembersinclude:UniversityofCalifornia,Davis;UniversityofCalifornia,Riverside;UniversityofSouthernCalifornia;CaliforniaStateUniversity,LongBeach;GeorgiaInstituteofTechnology;andUniversityofVermont.Moreinformationcanbefoundat:ncst.ucdavis.edu.

U.S.DepartmentofTransportation(USDOT)Disclaimer

Thecontentsofthisreportreflecttheviewsoftheauthors,whoareresponsibleforthefactsandtheaccuracyoftheinformationpresentedherein.ThisdocumentisdisseminatedunderthesponsorshipoftheUnitedStatesDepartmentofTransportation’sUniversityTransportationCentersprogram,intheinterestofinformationexchange.TheU.S.Governmentassumesnoliabilityforthecontentsorusethereof.

Acknowledgments

ThisstudywasfundedbyagrantfromtheNationalCenterforSustainableTransportation(NCST),supportedbyUSDOTthroughtheUniversityTransportationCentersprogram.TheauthorswouldliketothanktheNCSTandUSDOTfortheirsupportofuniversity-basedresearchintransportation,andespeciallyforthefundingprovidedinsupportofthisproject.

CuttingGreenhouseGasEmissionsIsOnlytheBeginning:ALiteratureReview

oftheCo-BenefitsofReducingVehicleMilesTraveled

ANationalCenterforSustainableTransportationWhitePaper

March2017

KevinFang,InstituteofTransportationStudies,UniversityofCalifornia,Davis

JameyVolker,InstituteofTransportationStudies,UniversityofCalifornia,Davis

[pageleftintentionallyblank]

i

TABLEOFCONTENTS

Introduction...........................................................................................................................1

AirPollutantEmissions...........................................................................................................2

GHGandCriteriaAirPollutantEmissionsfromVehicularOperation.................................................2

LifeCycleEmissions..........................................................................................................................5

EmissionsfromBuilding-RelatedEnergyUse....................................................................................5

WaterPollution......................................................................................................................6

HealthandSafety...................................................................................................................6

VehicleCollisionsandFatalities........................................................................................................6

PhysicalHealth.................................................................................................................................8

HealthImpactsofAirPollution.........................................................................................................9

MentalHealth..................................................................................................................................9

WildlifeImpacts....................................................................................................................10

CongestionandAccessibility..................................................................................................11

FiscalMatters........................................................................................................................12

HouseholdCosts–DirectImpacts...................................................................................................12

HouseholdCosts–IndirectImpacts................................................................................................13

PublicCosts–IndirectImpacts.......................................................................................................13

GovernmentRevenues–DirectImpacts.........................................................................................14

GovernmentRevenues–IndirectImpacts......................................................................................14

Conclusion.............................................................................................................................15

References............................................................................................................................16

1

Introduction

Traditionalevaluationofthetransportationsystemfocusesonautomobiletrafficflowandcongestionreduction.However,thisparadigmisshifting.Inanefforttocombatglobalwarmingandreducegreenhousegas(GHG)emissions,anumberofcities,regions,andstatesacrosstheUnitedStateshavebeguntodeemphasizevehicledelaymetricssuchasautomobileLevelofService(LOS).Intheirplace,policymakersareconsideringalternativetransportationimpactmetricsthatmorecloselyapproximatethetrueenvironmentalimpactsofdriving.OnemetricincreasinglycomingintouseisthetotalamountofdrivingorVehicleMilesTraveled(VMT).SincepassingtheseminalGlobalWarmingSolutionsAct(AB32)in2006,CaliforniahasenactedtwomajorlawsoverthepastdecadethatarespurringeffortstoreduceVMT:SenateBill375(2008)andSB743(2013).SB375addressesregionalGHGemissionsreductionsfrompassengertravel.ForeachregionintheStatewithametropolitanplanningorganization(MPO),thelawrequirestheCaliforniaAirResourcesBoard(ARB)tosetandregularlyupdatepercapitaGHGemissionsreductiontargetsfor2020and2035.Toachievethosetargets,SB375requireseachMPOtoadopta“sustainablecommunitiesstrategy”(SCS)aspartofitsregionaltransportationplan.VMTreductionsareakeystrategyinSCSs.SenateBill743(2013)directstheGovernor’sOfficeofPlanningandResearch(OPR)torevisetheguidelinesfordeterminingthesignificanceoftransportationimpactsduringanalysesconductedundertheCaliforniaEnvironmentalQualityAct(CEQA).SB743requiresareplacementmetricthatwill“promotethereductionofgreenhousegasemissions,thedevelopmentofmultimodaltransportationnetworks,andadiversityoflanduses.”Itmandatesthat“automobiledelay,asdescribedsolelyby[LOS]shallnotbeconsideredasignificantimpactontheenvironment”underCEQA,exceptin“locationsspecificallyidentifiedintheguidelines,ifany.”VMTisOPR’scurrentlyrecommendedreplacementmetric(OPR,2016).WhilestategoalsforreducingGHGemissionshavebeenonemotivationfortheshifttoVMTmeasures,reductionsinVMTproducemanyotherpotentialbenefits,referredtoas“co-benefits,”suchasreductionsinotherairpollutantemissions,waterpollution,wildlifemortality,andtrafficcongestion,aswellasimprovementsinsafetyandhealth,andsavingsinpublicandprivatecosts.SuchbenefitsmayprovideadditionaljustificationforreducingVMT.Inthispaper,wereviewtheliteraturetoexplorethepresenceandmagnitudeofpotentialco-benefitsofreducingVMT,providingCalifornia-specificexampleswhereavailable.Figure1showstheconceptualframeworkguidingourliteraturereview.ItemsshadedingreenindicatecharacteristicsthatcaninfluenceVMT.Itemsshadedinredindicateco-benefitspotentiallysensitivetoVMT.

2

Figure1.ConceptualFramework

AirPollutantEmissions

GHGandCriteriaAirPollutantEmissionsfromVehicularOperation

Motorvehiclesemitpollutantsintotheatmosphereasby-productsofcombustion(tailpipeemissions)andthroughothermechanismssuchasfuelevaporation,tireandbrakewear,andcreationofroaddustfromthewearingofpavement.Emissionsofmajorconcernincludegreenhousegasesandcriteriaairpollutants,eachofwhichisamajorpolicyconcerninCalifornia.ReducingtheState’sGHGemissionshasbeenstatepriorityforoveradecade,asreflectedbytheaforementionedAB32,SB375andSB743.Criteriaairpollutantsaresubstancesforwhichnationalandstatestandardshavebeensetonthebasisofhumanhealth.Californiahaslongstandingairqualityproblems,withlargeareasofthestateunabletoattainnationalambientairqualitystandards(NAAQS)forcriteriapollutants.Of52counties,39areinnon-attainmentforatleastonepollutant.Fourcountiesareinnon-attainmentforfivepollutants,andninecountiesareinnon-attainmentforfourpollutants.Transportationisamajorsourceofemissions.Table1showsemissionsofcriteriaairpollutantsandGHGsfromtheoperationofon-roadvehiclesinCalifornia(notincludinglife-cycleemissions).Forcriteriaairpollutants,operationofon-roadvehiclesarethesourceforamajorityofcarbonmonoxide(CO),anearmajorityofnitrogenoxides(NOx),andadouble-digitpercentshareofparticulatematter(PM)2.5.Forgreenhousegases,approximately33percentofcarbondioxideequivalent(CO2e)emissionscomesfromtheoperationofon-roadvehicles.

3

Estimatesofvehiclesnationwideprojectthattheaveragepassengervehicleemitsapproximately5.5metrictonsofCO2eperyear(USEnvironmentalProtectionAgency,2005).Thisequatestoapproximately1.01poundsofCO2epermile.

Table1.Criteriaairpollutant/greenhousegasemissionsfromon-roadtransportation

operationsinCaliforniaandpotentialemissionsreduction1

Emissions(Tons/yr)

ROG CO NOx SOx PM PM10 PM2.5 CO2e

Total 634,596 2,690,886 768,555 38,354 928,560 532,849 152,574 486,670,304Fromon-roadtransportation* 147,278 1,437,220 373,585 1,964 15,764 28,309 15,721 159,559,517

Shareofemissionsfromroadtransportation* 23.2% 53.4% 48.6% 5.1% 1.7% 5.3% 10.3% 32.8%

Ifon-road

transportationemissions

decreasedby…

Emissions(tons/yr)woulddecreaseby…

ROG CO NOx Sox PM PM10 PM2.5 CO2e

1% 1,473 14,372 3,736 20 158 283 157 1,595,5955% 7,364 71,861 18,679 98 788 1,415 786 7,977,97610% 14,728 143,722 37,358 196 1,576 2,831 1,572 15,955,95215% 22,092 215,583 56,038 295 2,365 4,246 2,358 23,933,927

Ifon-road

transportationemissions

decreasedby…

Totalstatewideemissionswoulddropby…

ROG CO Nox Sox PM PM10 PM2.5 CO2e

1% 0.2% 0.5% 0.5% 0.1% 0.0% 0.1% 0.1% 0.3%5% 1.2% 2.7% 2.4% 0.3% 0.1% 0.3% 0.5% 1.6%10% 2.3% 5.3% 4.9% 0.5% 0.2% 0.5% 1.0% 3.3%15% 3.5% 8.0% 7.3% 0.8% 0.3% 0.8% 1.5% 4.9%

*Includestailpipeandotheroperationalemissions(e.g.evaporation,brakedust,tirewear)frommobiletransportationsources.Doesnotincludeothertransportation-relatedlifecycleemissions(e.g.vehiclemanufacturing,fuelrefining)Table1alsoshowspotentialmassreductionsofpollutantsifon-roadtransportationemissionsdecreasedbymodestpercentages.TherecouldbereductionsofuptomillionsoftonsofreducedCO2eemissionsanduptohundredsofthousandsoftonsofcriteriaairpollutantemissions.Statetargetsforsomeemissions(e.g.CO2)requireasteepreductionoverthecomingyearsanddecades.Inordertoreachthosetargets,improvementsinvehicleefficiency,fuels,andVMTwilleachneedtocontributesubstantially.Ifper-capitaVMTdoesnotdecline,VMTincreases(throughpopulationgrowth)wouldlikelyprecludeachievingGHGreductiongoalsbyoutweighingimprovementsinvehicleefficiencyandfuelcarboncontent(CaliforniaAirResourcesBoard,2016).Thus,whileimprovementsinvehicleefficiencyandfuelpollutantcontentwillmeaneachreducedmileofvehicletraveleliminateslesspollutioninanabsolute

1 CriteriaairpollutantemissionsfromCaliforniaAirResourcesBoard(2013)–CaliforniaAlmanacofEmissionsandAirQuality[2012data]CO2eemissionsfromCaliforniaAirResourcesBoard(2016)–CaliforniaGreenhouseGasInventory[2014data]

4

sense,steeplyreducingtargetsmeanthat,fortheforeseeablefuture,VMTreductionwillcontinuetoprovideasubstantialshareoftheneededemissionsreductiontohittargets.Vehicleswhichhavenotailpipeemissions(e.g.plug-inhybridandfullyelectricvehicles)stillleadtosomeairpollutantemissions,throughtheelectricitygenerationrequiredforcharging.Emissionscanbesubstantiallylessdependingonthecarboncontentoftheenergygrid(McLaren,etal.2016).Californiahasarelativelyhighproportionofenergygeneratedfromrenewables;however,asubstantial(thoughshrinking)shareofelectricityusedinCaliforniaisgeneratedfromsourcesthatemitGHGsorcriteriaairpollutants(CaliforniaEnergyCommission,2016).Thus,reducingeventheVMTdrivenbyzerotailpipeemissionsvehicleswouldreduceGHGandlocalairpollutantemissions.ApotentialconfoundingfactorwhendiscussingpotentialemissionsbenefitsofreducedVMTistravelspeed,asemissionsofseveralcriteriaairpollutantsandGHGsaresensitivetotravelspeed(TransportationResearchBoard,1995;BarthandBoriboonsomsin,2009).Inconventionalvehicles,poweredbyinternalcombustionengines(ICEs),greaterper-mileemissionstendtotakeplaceathigherspeeds(e.g.60mphorgreater)wheremoreenergyisrequiredtomoveavehicle,aswellasatlowerspeeds(e.g.lessthan30mphaveragetravelspeeds),wherethestop-and-goconditionsofcongestioncauseextraaccelerationcycles,energylosttobraking,longervehicleoperationtime.Theeffectofspeedisdifferentonhybridandbatteryelectricvehicles.Nikowitz,etal.(2016)showthatunlikeICEs,whichhavegreatestenergyuse(andinturnemissions)atlowandhighspeeds,hybridandbatteryelectricvehicleshavegreatestenergyuseunderhighspeedandaggressivedrivingscenarios(seeTable2).Emergingadvancedvehicletechnologiessuchasregenerativebrakingrecoverssomeoftheenergylostinstopandgoconditions.Electricmotorsinbatteryelectricandhybridvehiclesshutoffwhenthevehicleisstopped.Similar“start-stop”technologyisincreasinglycommoninICE-poweredvehicles.IncreaseddeploymentoftechnologypointstoadecreasedsensitivityofemissionsreductionstothespeedofVMTinthefuture.

5

Table2.Relativeenergyconsumptionforinternalcombustion,hybrid,andbatteryelectric

vehiclesunderdifferentdrivecyclescenarios2

Scenario

Citydriving Highwaydriving Aggressivedriving

Testcycle UDDS HWFET US06

Testcycleparameters

19.59mphaveragespeed,frequentstopsandstarts

48.3mphaveragespeed,onestart/stop

48.4mphaveragespeed,somestops,rapidacceleration

Make Vehicletype Energyconsumptionrelativetolowestenergyconsumption

2012FordFocus

InternalCombustion

Engine32%greater Lowest 37%greater

2010ToyotaPrius Hybrid Lowest 4%greater 60%greater2012NissanLeaf Batteryelectric Lowest 19%greater 72%greater

LifeCycleEmissions

Beyondreducingtailpipeemissions,VMTreductionalsoreduceslifecycleemissions,suchasthosefromfuelrefining,vehiclemanufacture,roadwayconstruction,androadwaymaintenance(ChesterandHorvath,2009;ChesterandMadanat,2010,ChehovitzandGalehouse,2010;Hendriks,etal.,2004).TheseadditionalsourcesincreaseestimatesofGHGemissionsfromroadvehiclesbyapproximately63percentovertailpipeemissionsalone,andincreaseestimatesofcriteriaairpollutantemissionsfrom1.1to800timesgreater.TotheextentthatVMTreductions(1)reducefuelpurchases,(2)causeoraretheresultofdecisionsofwould-bedriverstoselltheirvehiclesorforegopurchasinganadditionalvehicle,or(3)reduceroadwayrepairburdens,theyreducelife-cycleemissions.

EmissionsfromBuilding-RelatedEnergyUse

CompactdevelopmentisakeyVMTreductionstrategy,asitleadstobothshortertripdistancesandgreateruseofalternativemodes(EwingandCervero,2010,TransportationResearchBoard2009).Stoneetal.(2007)estimatethatbuildingcompactdevelopmenttoreduceVMTwouldalsoreducecriteriaairpollutantandcarbondioxideemissionsataregionallevelbetweenfiveandsixpercentoveraconventionalgrowthscenario,evenwhenaccountingforchangesintravelspeeds.CompactdevelopmentcanalsopromoteairpollutantandGHGemissionsreductionsthroughdecreasedbuildingenergyuse.Morecompacthousingunitshaveasmallervolumeofairtoheatandcool.Additionally,attachedhousingunitshavelessexposedsurfaceareathroughwhichenergyislost.Overall,EwingandRong(2008),estimatehouseholdslivingincompactcountiesuseapproximately20percentenergythanhouseholdslivinginsprawlingcounties,evenwhiletakingintoaccountotherfactorssuchasincome,andtheurbanheatislandeffect.

2 Drivecycles–USEnvironmentalProtectionAgency(2016)Energyconsumption–AdaptedfromNikowitz,etal.(2016)

6

WaterPollution

Motorvehicletravelcancausedepositionofpollutantsontoroadways,whichcanthenbecarriedbystormwaterrunoffintowaterways.Fuel,oil,andotherliquidsusedinmotorvehiclescanleakfromvehiclesontotheground(Delucchi,2000).Brakedustandtirewearcanfurthercauseparticlestobedepositedontotheground(ThorpeandHarrison,2008).Brakepadsandtirecompoundsaremadeoutofcompoundsthatincludemetal.OnestudyestimatesthatapproximatelyhalfofallcopperinSanFranciscoBaycouldhaveoriginatedfrombrakepads(NixonandSaphores,2003).InCaliforniaasawhole,upto232,000poundsofcopper,13,280poundsoflead,and92,800poundsofzincinstormwaterareattributabletobrakepaddust(NixonandSaphores,2003).Motorvehiclesrequireroadwaysfortravel.Pavedroadwaysaregenerallyimpervioussurfaceswhichpreventinfiltrationofstormwaterintheground.Impervioussurfacescanincreasetherate,volume,speed,andtemperatureofstormwaterrunoff(USEnvironmentalProtectionAgency,2003),andcantransportpollutantsviathatrunoffintowaterways.Wearingdownofroadwayscanfurthercauseparticlestobedepositedontotheground(ThorpeandHarrison,2008).Mostmotorvehiclesalsoconsumeliquidfuel,thestorageandhandlingofwhichcanresultinfueltankleaksandspills(Delucchi,2000).Californiahashadatleast38,000confirmedcasesofleaksfromundergroundstoragetanks(NixonandSaphores,2003).ReducingVMTcutsconsumptionoffuelandcouldreducefuelspillagerisks.Thesereductionswouldbeadditionaltoreductionsgainedthroughgreatervehicleefficiencyandadoptionofalternativefuelvehicles.TheVictoriaTransportationPolicyInstitute(2015)estimatesthatmotorvehicle-relatedwaterpollutionfromroadwayrunoff,oilspills,androadsaltingcostapproximately42billiondollarsperyearor1.4centspermile.

HealthandSafety

VehicleCollisionsandFatalities

Apluralityof“unintentionalinjurydeaths”(deathsnotcausedbyoldage,disease,suicideandhomicide)aretransportationrelated(Savage,2013).AccordingtotheNationalHighwayTrafficSafetyAdministration’sFatalityAnalysisReportingSystem(FARS),32,675individualswerekilledinmotorvehiclecrashesin2014(NHTSA,2015).3,074ofthesefatalitiesoccurredinCalifornia,7.9fatalitiesperevery100,000peopleperyear.Thesefatalitiesarenotjustbornebymotorvehicleoccupants,butbyotherusersaswell.InCalifornia,morethanonequarterofthosekilledinmotorvehiclecollisionsarepedestrians,bicyclists,orusersofothernon-motorizedmodes.

7

Wherethereismoredriving,therearemorevehicle-relatedfatalities.ComparingmotorvehiclefatalitiesbystatefromFARSandVMTdatafromtheBureauofTransportationStatistics(2015)showsastrongpositivecorrelation(r=0.82)betweenVMTpercapitaandfatalitiesfrommotorvehiclecrashespercapita(authorscalculation,seeFigure3).DataalsoindicatesthateachmiledrivenisalsomoredangerousinareaswithhighVMT.AgaincomparingdatafromFARSandtheBTS,thereisamoderatelystrongpositivecorrelation(r=0.50)betweenVMTpercapitaanddeathspermiletraveled(authorscalculation,seeFigure4).Ifthenumberofvehicle-relatedfatalitieswerepurelyamatterofexposure,everymiletraveledshouldhavethesameamountofriskregardlessofwherethatmilewasdriven.TherewouldthusbenocorrelationbetweenVMTpercapitaandfatalitiespermile.However,stateswithhigherVMTtendtohavemoremotorvehiclecrashdeathspermilethanlowerVMTstates.SinceincreasingVMTisassociatedwithmorevehicle-relatedfatalitiespercapitaandpermile,residentsofstateswheretheycanfulfilltheirtravelneedswithfewerorshortervehicletrips(andthuswithlowerVMT)enjoyreducedtransportationsafetyrisks.Usingpublictransitalternativesisassociatedwithlessriskthanmotorvehicletravel.Savage(2013)estimatesthatdriversorpassengersofcarsorlighttrucksexperienced7.28fatalitiesperbillionmilestraveledfrom2000-2009.Comparatively,ridersofAmtrak,commuterrail,urbanmasstransitrailsystems,buses,andcommercialaviationexperience0.43fatalitiesperbillionmilestraveledorfewer.

Figure2.Motor-vehiclerelateddeathspercapitaincreasesasVMTpercapitaincreases

AL

AK

AZ

AR

CACO

CT

DE

DC

FLGA

HI

ID

IL

INIO

KS

KTLA

ME

MD

MA

MI

MN

MS

MO

MT

NE

NV

NHNJ

NM

NY

NC

ND

OH

OK

ORPA

RI

SCSDTN

TX

UT

VT

VA

WA

WV

WI

WY

2.00

7.00

12.00

17.00

22.00

27.00

5,000 7,000 9,000 11,000 13,000 15,000 17,000

Motorvehciledeathspercapita

VMTpercapita

8

Figure3.Motor-vehiclerelateddeathspermileincreasesasVMTpercapitaincreases

PhysicalHealth

Drivingorridinginmotorvehiclesisasedentarybehavior.SeveralstudiesfindassociationsbetweenVMTandweight.Forexample,obesityandBodyMassIndex(BMI)arepositivelyassociatedwithVMTperlicenseddriver(JacobsonandKing,2009;Behzad,King,andJacobson,2012).GeographicareaswithhighVMTpercapitaarealsoassociatedwithpoorerhealthoutcomesresultingfromreducedphysicalactivity.ResidentsofcountiesintheUnitedStateswithhighVMTpercapitaarelesslikelytowalkforleisure,morelikelytobeobese,havehigherBMIlevels,andhaveagreaterprevalenceofhypertension(Ewing,etal.2003).AmongCaliforniacounties,thosewiththehighestmeanobesityalsotendtohavethehighestmeanVMTpercapita(Lopez-Zetina,Lee,andFriis,2006).Potentiallycontributingtothispatternaremorenightswithinsufficientsleepandhighersmokingratesfoundwithincreaseddrivingtime(Ding,etal.2014).Whiletransitusersalsorideinmotorizedvehicles,transitusersaremorelikelytoengageinsignificantphysicalactivity,walkingtoandfromtransitstops.BesserandDannenberg(2012)foundthatbusandrailuserswalkanaverageof24minutesperdaytoandfromtransit.MorethanaquarteroftransitridersfulfilltheUSSurgeonGeneral’srecommendationof30minutesofphysicalactivityperdayjustfromwalkingto/fromstopsandstations.Ontheotherhand,

AL

AK

AZ

AR

CA

CO

CT

DE

DC

FL

GA

HI

ID

IL

INIO

KS

KT

LA

ME

MD

MA

MI

MN

MS

MO

MT

NENV

NHNJ

NM

NY

NC

ND

OH

OK

OR

PA

RI

SC

SD

TN

TX

UT

VT

VAWA

WV

WI

WY

0.50

0.70

0.90

1.10

1.30

1.50

1.70

5,000 7,000 9,000 11,000 13,000 15,000 17,000

Motorvehciledeathsper100m

illionVMT

VMTpercapita

9

increasedtimedrivingissignificantlyassociatedwithnotmeetingthephysicalactivityrecommendation(Ding,etal.2014).Usersofnon-motorizedmodesbydefinitionengageinphysicalactivitywhiletraveling.TheCaltransStrategicManagementPlan(CSMP)setsagoalofdoubling2010walkingandtransitlevels,andtriplingbicyclinglevelsby2020.AnepidemiologicalanalysisofthatCSMPdescribethatachievingthisgoalwouldreducechronicdiseaseand“wouldconstituteamajorpublichealthachievementonparwithCalifornia’ssuccessfuleffortsattobaccocontrol.”(Maizlish,2016,p.5).

HealthImpactsofAirPollution

Asdiscussedpreviously,roadtransportationandVMTcontributetoairpollutantemissions.Criteriaairpollutantscanleadtoavarietyofhealtheffects.Forexample,nitrogenoxidesandvolatileorganiccompoundsreactwithoxygenintheairtocreateozone,whichcanhaveseveralnegativehealtheffectsincludingchestpain,coughing,throatirritation,airwayinflammation,reducedlungfunction,andaggravationofotherrespiratoryconditions(USEnvironmentalProtectionAgency,2016a).Particulatematterposesparticularlyacutehealthimpactsassmallparticulates(lessthan10μmindiameter)canenterthelungsorbloodstreamandcauseorexacerbateheartandlungissues,andevenleadtoprematuredeath(USEnvironmentalProtectionAgency,2016b).Californiahasespeciallypoorairqualityattainmentforbothozoneandparticulatematter.Table3showspermileestimatesofthecostofmotorvehicle-relatedairpollutionbyMcCubbinandDelucchi(1999).Costsrangefromseveralcentspermileformostozone,carbonmonoxide,nitrogenoxides,andairtoxics,tomorethan12dollarspermileforparticulatematter.Thehigherestimateforparticulatematterreflectsthegreaterhealtheffects,includingmortality,thatcanbetriggeredbyparticulatematter.

Table3.Gasoline-poweredmotorvehicleairpollutioncostpermile3

PM O3 CO NO2Air

Toxics

Cost(2015$) 12.60 0.08 0.08 0.65 0.05

*Originaldatain1991dollars.Dataaboveisaverageoflow/highestimatefromoriginalstudy.Costsincludeemissionsfromtailpipe,upstreamfuelandvehicleproduction,androaddust.

MentalHealth

Inadditiontophysicalhealth,longdrivingcommutescanalsohaveanegativeimpactonmentalhealth.Hennessy(2008)identifiesseveralexamplesfromstudiesassociatinglongdrivingcommuteswithpoormentalhealthoutcomesandrelatedconsequences,includingstress,negativemood,poorconcentration,drivererrorandtrafficcollisions.Hennessyalso3BasedoffMcCubbinandDelucchi(1999)

10

findsthatasstressdriversexperiencewhiledrivingincreases,workplacehostilityandobstructionismriseamongmen.OtherstudiescorroborateHennessy'sfindings.GeeandTakeuchi(2004),forexample,findthattrafficstresscorrelateswithdepressivesymptoms.Ding,etal.(2014)findthemoretotaltimeapersonspendsdrivingperday,themorelikelytheyaretoreportapoor/fairqualityoflife,high/veryhighphysiologicaldistress,beingstressedfortime,andthattheirhealthinterfereswithsocialactivities.Inadditiontonegativementalhealthoutcomesfordrivers,VMTcanalsocauseworsementalhealthforpeopleintheneighborhoodswherethatdrivingoccursororiginates.AreviewofliteraturebyPohankaandFitzgerald(2004)notesthatresidentsofdispersed,andthusgenerallyauto-dependent,suburbanareascanfaceincreasedbloodpressure,headaches,andsocialisolation,whichisdisadvantageousasthepresenceofsocialrelationshipsispositivelycorrelatedwithhealth.Additionally,theaforementioneddepressivesymptomsidentifiedbyGeeandTakeuchiaresignificantlyworseinneighborhoodswithahigh“vehicularburden”,whichincreaseswithmotorizedtransportinanarea.Builtenvironmentsthatreduceautomobiledependenceandpromotewalkingcanresultinlowerratesofdementia(Xiaetal.,2013).

WildlifeImpacts

Manyofthesameroadwayimpactsthataffectthehealthofpeoplecanalsoaffectwildlife.FormanandAlexander(1998)outlineseveralpotentialecologicalimpactsofroads.Forinstance,vehiclescandirectlyharmwildlifein“roadkill”events,withanestimatedonemillionvertebrateskilledperdayonUSroads.ShillingandWaetjen(2016)discussthatinCalifornia,5,950wildlife-relatedincidentswerereportedtotheCaliforniaHighwayPatrolfromaone-yearperiodbetween2015and2016.Additionally,about7,000reportsofanimalcarcassesaremadeannuallytothevolunteerCaliforniaRoadkillObservationSystem.Overall,ShillingandWaetjenestimatethatreportedandunreportedanimal-vehiclecollisionscostCaliforniaapproximately$225millionperyear.Duetovaryingavoidanceofroadways,impactsdifferbyspeciestypes.Amphibiansandreptilesareespeciallyatriskonnarrow,low-trafficroads,largermammalsareatriskonnarrow,high-speedroads,andbirdsandsmallmammalsatriskonwide,high-speedroads,FormanandAlexander(1998).Roadwayavoidanceisitselfanimpact,withlowerpopulationsofspeciesadjacenttoroadwaysFormanandAlexander(1998).Speciescanbeaffectedanddeterredbycharacteristicssuchasroadnoise,airpollution,alteredorpollutedwaterrunoff,andnighttimelighting.Roadwayavoidancetendstobehigheradjacenttohigherspeedandhighertrafficroads.Duetotheimpactsofroadkillandroadavoidance,roadwaysalsoactasbarriersforspeciesmovement.Roadwayscuttingthroughhabitatcanisolatepopulationsofspeciesintosmallergroups.Isolatedpopulationshaveahigherriskforextinctionandcanhavenegativeimpactsongeneticdiversity(Coffin,2007;HoldereggerandDiGiulio,2010).

11

MorecompactdevelopmentpatternsthatareassociatedwithlowerVMTwouldconsumelesslandandconceivablysubjectlessterritorytoroadavoidanceandpotentialhabitatfragmentation.AcomparisonofvariousdevelopmentscenariosacrosstheSacramentoandSanFranciscoBayAreaspredictedthatthemostcompactgrowthscenariowouldsavenearly50percentofagriculturallysensitivelandacreageandsteep-slopedareas,andcloseto100percentofwetlandareas(Landis,1995).

CongestionandAccessibility

Broadly,congestionoccurswhenthefree-flowcapacityofaroadwayiseitherexceededbydemand(e.g.freewaysenteringcentralbusinessdistrictsduringpeak-hourcommutes)orimpeded(e.g.whenthereareautoaccidents,roadworkorotherroadclosures).Ineithercase,congestionincreasesasmorevehicletravelisloadedontotheroadway(FalcocchioandLevinson,2015;Downs,2004).Conversely,reducingtotalVMTinaregioncanreducecongestionontheregionalroadnetwork,albeitsubjecttotemporalandspatialcaveats.Fromatemporalstandpoint,unlessthereisanexplicitcostimposedonusingcongestedroadways(e.g.acongestioncharge)ordrivingpassengervehiclesingeneral,congestionreductionsonthoseroadwayswillcommonlyincreasethedemandforusingthemandultimatelycausecongestiontoreboundtonear-preexistinglevelsinthelong-term.Thisiscalledthe“PrincipleofTripleConvergence”–sometripmakersintheregionchangetheirtravellocations(routes),timesand/ormodestotakeadvantageofthereducedcongestionontheroadwaysinquestion(Downs,2004).This“tripleconvergence”isthereasonwhyroadwayexpansionsoftendonotreducecongestioninthelong-term(HandyandBoarnet,2014),andwhy,accordingtoDowns(2004,p.22]),“buildinglightrailsystemsorsubwaysrarelyreducespeak-hourtrafficcongestion.”However,recentresearchindicatesthattransitmaycauseamoresizeableandenduringreductioninpeak-hourcongestionthanpreviouslythought.Anderson(2014)usedachoicemodel,calibratedusingdatafromtheLosAngelesmetroarea,thatunlikemostpreviousstudiesaccountedfortheheterogeneityincongestionlevelsonroadwaysintheregion,whichincreasedthepredictedcongestion-reducingeffectsoftransitbysixtimes.AsAnderson(2014,p.2764)explains,since“driversonheavilycongestedroadshaveamuchhighermarginalimpactoncongestionthandriversontheaverageroad,”andsincetransitridersareoftenthosewhowouldhavetodriveon“themostcongestedroadsatthemostcongestedtimes,”transithasa“largeimpactonreducingtrafficcongestion.”Spatially,VMTreductionsalleviatecongestioninthespecificlocationswherenetvehicletraveliscurtailed.Andevenwhereurban(orsuburban)densificationincreasesnetlocalizedvehicletravelandcongestiondespitereducingpercapita(orevennetregional)VMT,itgenerallyincreaseslocalaccessibilitytojobsandotherdesireddestinations,decreasingthetimeandcostofreachingthosedestinations.InastudyofcongestionandaccessibilityintheLosAngeles

12

region,Mondscheinetal.(2015,p.v)foundthat“high-densityareasintheregionprovidebetteraccesstojobsthanthoseareaswheretrafficconditionsarerelativelylesscongested.”Similarly,forLosAngelesfirms,theyfoundthat“physicalproximitytootherfirms,ratherthanareacongestionlevels,istheprimarycomponentoffirms’abilitytoaccessothersimilarfirms”(Mondscheinetal.,2015,p.viii).Insum,increasingregionalVMT,allelseequal,willincreaseregionalcongestion.Andconversely,reducingregionalVMTcanreduceregionalcongestion,thoughcongestionlevelsmayreboundsomewhatinthelong-term.EvenwhereVMT-reducingdensificationincreaseslocalcongestion,ittendstoimprovelocalaccessibility.

FiscalMatters

ReducingVMTalsohasmajorfiscalimpacts.Ithasbothdirectandindirectimpactsonbothhouseholdandpubliccosts.VMTcanalsohavemajorimpactsongovernmentalrevenues.

HouseholdCosts–DirectImpacts

Americanhouseholdspaymorefortransportationthananyothercategoryofhouseholdexpendituresexcepthousing(Haasetal.,2013).AccordingtoBureauofLaborStatisticsdata,householdsspentnearly20percentoftheirincomeontransportationonaverageinboth2000(18%)and2010(16%)(Moeckel,2017;Haasetal.,2013).Amajorreasonforthatisautoownershipanduseareexpensive–“themostexpensivecomponentoftransportationcostisautoownership”–andmanyU.S.householdsliveinsuburbanandexurbanareaswithpooraccessibilityandtransitconnectivity(Haasetal.,2013,20).ReducinghouseholdVMT(andcarownership)canthusreducetotalhouseholdcostsbothdirectlyandindirectly.Thedirectcostreductionsofdrivinglessarewellknown,andincludereducedfueluseandparkingcosts,lowermaintenancecostsaveragedovertime,and,forthosehouseholdsthatreducetheirVMTenoughtoselloneoftheirvehicles,license,registration,insurance,andadditionalmaintenancecostsavings(LevinsonandGillen,1998;CuiandLevinson,2016).Thecostofalternativestodrivingvarygreatlybylocation,alternative,valueoftime,andotherfactorsActivetransportationoptionslikewalkingandbicyclingcanbemuchcheaperforshortertripsthandrivingbecausetheyhavelowercapitalandoperatingcosts(e.g.thecostofwalkingshoesorabicycleversusthecostofavehicleandgasoline).Andtransit(e.g.busesandcommuterrail)canbecheaperthandrivingforlongertrips.Keeleretal.(1975),forexample,estimatedthecomparativecostsofahypotheticalcommuteintheSanFranciscoBayAreabydriving(1.5passengersperauto),ridingBayAreaRapidTransit(BART),andridingabus.Theyconcludedthatbothbusandrailtransitcanbecheaperfortheuseronanaveragebasisthandrivingatsufficientlyhighpassengerdensities.However,thepotentialforagivenhouseholdtoreduceitstransportationcostsbyreducingVMTlargelydependsonavailabilityofsufficientregionaltransitconnectivity,accessibilitytojobsandotheramenities(Haasetal.,2013;Haasetal.,2008;RenneandEwing,2013).

13

HouseholdCosts–IndirectImpacts

AsisfrequentlydiscussedinboththeacademicliteratureandCaliforniapolicycircles,onewaytoreduceVMT–andachievetheassociatedhouseholdcostsavings–istoincreaseresidentialandemploymentdensitieswithinexistingurbanareas,andespeciallyneartransitstations(EwingandCervero,2010).Forresidences,abenefitofthistypeof“smartgrowth”isthatitcansubstantiallyreducehouseholdcosts,particularlytransportationcosts.Haasetal.(2008),forexample,developedamodelforestimatingaveragehouseholdtransportationcostsbyCensusblockbasedonannualhouseholdVMT,householdcarownershipandannualhouseholdtransituse.TheytestedtheirmodelintheMinneapolis-St.PaulmetropolitanregionandfoundthatreductionsinaverageannualhouseholdtransportationcostscorrelatedwithdecreasingVMT,decreasingautoownership,increasingtransittripsanddenser,moretransit-andjob-accessibleareas.Fromthatoriginalmodel,theCenterforNeighborhoodTechnology(CNT)developedtheHousing+TransportationIndex.CNThassinceexpandedandrefinedthemodel,butitsresultscontinuetoshowthatresidentialdensityisthesinglelargestpredictorofautoownershipanduse,andthushouseholdtransportationcosts(Haasetal.,2013).Householdsindenserandmoreaccessibleurbanareasoftenalsodemandlessenergyandwaterbecausetheyhavesmallerunitsandlots(Litman,2016;Buschetal.,2015).Whenallthecostsavingsoflivingindenserurbanareasarecombined,theavailableevidenceshowsthatthey“morethanoffset”theincreasedhousingcostsinthoseareas(Litman,2016,p.19;EwingandHamidi,2014).Inotherwords,whenallcostsareconsidered,ratherthanjusthousingcosts,livinginsmartgrowthcommunitiesisgenerallylessexpensivethanlivingelsewhere.WithspecificrespecttoCalifornia,onerecentstudyestimatedthatif85percentofnewhousingandjobsaddedinthestateuntil2030werelocatedwithinexistingurbanboundaries,itwouldreducepercapitaVMTbyabout12percentbelow2014levels(Buschetal.,2015).ThatcombinationofreducedVMTandmorecompactdevelopmentwould,inturn,resultinanestimated$250billioninhouseholdcostsavingscumulativeto2030(withanaverageannualsavingsperhouseholdin2030of$2,000)(Buschetal.,2015).Householdcostsanalyzedinthestudyincludeautofuel,ownershipandmaintenancecosts,aswellasresidentialenergyandwatercosts.

PublicCosts–IndirectImpacts

Inaddition,denserdevelopmentusuallyreducesthepercapitacostsofprovidingmanytypesofpublicinfrastructureandservices.Denserdevelopmentcan,amongotherthings,reduceroadandutilitylinelengths,andinturnreducetraveldistancesneededtoprovidepublicserviceslikepolice,garbagecollection,emergencyresponseandtransportingschoolchildren(Litman,2016;Buschetal.,2015;BurchellandMukherji,2003).Indeed,inhisreviewoftheliterature,Litman(2016)foundthat“[n]ocredible,peer-reviewedstudiesdemonstratethatcomprehensiveSmartGrowthpoliciesfailtosignificantlyreducepublicinfrastructureandservicecosts.”

14

WithspecificrespecttoCalifornia,therecentBuschetal.(2015)studyestimatedthatif85percentofnewhousingandjobsaddedinthestatethrough2030werelocatedwithinexistingurbanboundaries,itwouldresultin$8.2billioninavoidedpublichealthcostsand$18.5billionininfrastructurecostsavingscumulativeto2030(Buschetal.,2015).Publichealthcostsconsideredincludethoserelatedtopassengervehicleairpollutantemissions,suchasrespiratory-relatedERvisits,mortality,etc.Infrastructurecostsestimatedinclude“one-timecapitalcostsforbuildinglocalroads,waterandsewerinfrastructure;andongoingannualoperationsandmaintenancecosts”(Buschetal.,2015).Allcostsavingsestimatesarein2015dollars.

GovernmentRevenues–DirectImpacts

VMTreductioncanreducepublicrevenuesfromvolumetricgastaxesorVMTfees,ifthosefeesareheldconstantpergallonormile.AsVMTdeclines,sodoesthevolumeofgasconsumedormilestolled,and,correspondingly,theamountofrevenuereceived.However,decreasesingastaxorpotentialfutureVMTtaxrevenuecouldbemadeupbyincreasingthetaxrates.AndasbetweenvolumetricgastaxesandVMT-basedtaxes,revenuestabilitywouldlikelybemoreeasilyachievedwithaVMT-basedfee,giventherapidlyadvancingshifttoelectricandmorefuel-efficientvehiclesthatarereducingliquidfuelconsumption(NationalHighwayTrafficSafetyAdministration,2014;CaliforniaEnergyCommission,2016).ThatisonereasonstatesincludingCaliforniahavebeenstudyingVMTfees(CaliforniaDepartmentofTransportation,2016).AVMTfeewouldalsobeoneofthe“mosteffectiveway[s]tochangebehavior”toreduceVMT(Chapple,2015).However,fees,liketaxes,arecommonlypoliticallyunpopular,eventhosewithimmensesocialbenefit(Bedsworthetal.,2011).

GovernmentRevenues–IndirectImpacts

Aswithhouseholdandgovernmentalcosts,VMT-reducing“smartgrowth”landusepatternsalsoimpactgovernmentalrevenues.Litman(2016)surveyedtheliteratureandfoundthat“SmartGrowthtendstoincreaseeconomicdevelopment,includingproductivity,businessactivity,propertyvaluesandtaxrevenue.”Forexample,theChicagoMetropolitanAgencyforPlanning(CMAP)(2014)concluded,basedonacomparisonofChicago-arearesidentialprojectcasestudies,that“denserprojectsdrivehigherrevenues.”Percapitagrossdomesticproduct(GDP)alsotendstodeclinewithrisingVMTandincreasewithpercapitatransitridership,whichinturncanincreasetaxrevenues(KooshianandWinkelman,2011).MoststudieslookprimarilyateitherthecostimpactsortherevenueimpactsofsmartgrowthandreducingVMT,notboth.ButintworecentstudiesofMadison,WisconsinandWestDesMoines,Iowa,respectively,SmartGrowthAmerica(SGA)didamorecomprehensivefiscalimpactanalysis(SGA,2015a,2015b).Inthestudies,SGAcalculatedbothcostsandrevenues–thenetfiscalimpact–tothecitiesandtheirassociatedschooldistrictsacrossarangeofhigh-andlow-developmentdensityscenarios.TheWestDesMoinesstudyassessedthefiscalimpactoftheestimatedresidentialandcommercialgrowthinthecityover20yearsusingfourdifferentdensityscenarios(holdingthe

15

productmixconstant),andestimatedthatthenetfiscalbenefitforthecityandthelocalschooldistrictwouldbe50percentgreaterforthemostcompactdevelopmentscenarioascomparedtothebasedensityscenario(currentWestDesMoinesdensity)(SGA,2015a).TheMadisonstudywasnarrowerinscope.Itanalyzedthefiscalimpactofdevelopinga1,400-acresiteacrossarangeofdevelopmentdensitiesandproductmixes.Comparingthebaselinedensityandproductmixscenariotothemorecompactdevelopmentscenariowiththesameproductmix,thestudyestimatedthatthelatter–compactdevelopment–wouldhaveaslightlygreater(about5percent)netfiscalbenefit.However,theauthorsalsoconcludedthattheirmodellikelyunderestimatedthenetfiscalbenefitofthemorecompactscenario(SGA,2015b).

Conclusion

ReducingVMTcanprovidemanyadditionalbenefitsbeyondreducingGHGemissions.Studiesshowabroadarrayofco-benefitsincludingenvironmental,human,andfiscalhealth.VMTreductionscanprovidetheseco-benefitsdirectly(e.g.loweringairpollutantemissionsandoperatingcostsofvehicleswithreduceduse)andindirectly(e.g.realizingthebenefitsofalternativestodriving).Asnoted,therearesomevariationsinthedepthofthesebenefits(e.g.spatialdifferencesinimpacts,andimpactsdependentonotherfactorsinadditiontoVMT),buttheevidenceisclearthat,overall,VMTreductionscanhelpforwardmultiplegoalsinadditiontoGHGreduction.Additionalresearchmeasuringcostsandbenefitsoftransportationonaperdistancetraveledbasis,whichwasnotyetavailableforallimpactsreviewedinthispaper,wouldbehelpfulinfurtherascertainingthedepthandbreadthofpotentialco-benefitsofVMTreductions.

16

References

Anderson,M.(2014).Subways,Strikes,andSlowdowns:TheImpactsofPublicTransitonTrafficCongestion.AmericanEconomicReview,104(9),2763-2796.

Barth,M.,&Boriboonsomsin,K.(2009).Real-WorldCarbonDioxideImpacts.TransportationResearchRecord,163-171.

Bedsworth,L.,Hanak,E.,Kolko,J.,Rose,E.,Schiff,E.,Stryjewski,E.,etal.(2011).DrivingChange:ReducingVehicleMilesTraveledinCalifornia.PublicPolicyInstituteofCalifornia.

Behzad,B.,King,D.,&Jacobson,S.(2012).QuantifyingtheAssociationbetweenObesity,AutomobileTravel,andCaloricIntake.PreventativeMedicine,56(2),103-106.

Belden,Russonello,&Steward.The2011CommunityPreferenceSurvey:WhatAmericansAreLookingforWhenDecidingWheretoLive.Washington,DC:ConductedfortheNationalAssociationofRealtors.

Besser,L.,&Dannenberg,A.(2005).WalkingtoPublicTransit:StepstoHelpMeetPhysicalActivityRecommendations.AmericanJournalofPreventiveMedicine,29(4),273-280.

Burchell,R.,&Mukherji,S.(2003).ConventionalDevelopmentVersusManagedGrowth:TheCostsofSprawl.AmericanJournalofPublicHealth,93(9),1534-1540.

Busch,B.,Lew,E.,&Distefano,J.(2015).MovingCaliforiaForward:HowSmartGrowthCanHelpCaliforniaReachIts2030ClimateTargetWhileCreatingEconomicandEnvironmentalCo-Benefits.JointreportbyEnergyInnovationPolicyandTechnologyLLC,andCalthorpeAnalytics.

CaliforniaAirResourcesBoard.(2016).2016MobileSourceStrategy.Sacramento.

CaliforniaAirResourcesBoard.(2016).CaliforniaGreenhouseGasEmissionInventory-2016Edition.Retrieved1023,2016,fromhttps://www.arb.ca.gov/cc/inventory/data/data.htm

CaliforniaAirResourcesBoard.(2013).MethodstoFindtheCost-EffectivenessofFundingAirQualityProjects:EmissionFactorTables.

CaliforniaDepartmentofTransportation.(2016,January).CaliforniaRoadChargePilot:HelpFixCalifornia’sRoadways,OneMileataTime.Retrievedfromhttp://www.dot.ca.gov/road_charge/documents/caltrans_rc_brochure_01142016.pdf

CaliforniaEnergyCommission.(2016).TotalElectricitySystemPower.Retrieved1023,2016,fromCaliforniaEnergyAlmanac:http://www.energy.ca.gov/almanac/electricity_data/total_system_power.html

17

CaliforniaEnergyCommission.(2016,October13).Zero-EmissionVehiclesandInfrastructure.Retrievedfromhttp://www.energy.ca.gov/renewables/tracking_progress/documents/electric_vehicle.pdf

CaliforniaOfficeofPlanningandResearch.(2016,January20).RevisedProposalonUpdatestotheCEQAGuidelinesonEvaluatingTransportationImpactsinCEQA.Retrievedfromhttps://www.opr.ca.gov/docs/Revised_VMT_CEQA_Guidelines_Proposal_January_20_2016.pdf

Chapple,K.(2015).IntegratingCalifornia'sClimateChangeandFiscalGoals:Theknown,theUnknown,andthePossible.CaliforniaJournalofPoliticsandPolicy,8(2),1-32.

Chehovitz,J.,&Galehouse,L.(2010).Energyusageandgreenhousegasemissionsofpavementpreservationprocessationsforasphaltconcretepavements.InternationalConferenceonPavementPreservationChapter.NewportBeach,CA.

Chester,M.,&Horvath,A.(2009).Environmentalassessmentofpassengertransportationshouldincludeinfrastructureandsupplychains.EnvironmentalResearchLetters,4,1-8.

ChicagoMetropolitanAgencyforPlanning.(2014).FiscalandEconomicAnalysisofLocalGovernmentDecisions.Advisoryreport.

Coffin,A.(2007).Fromroadkilltoroadecology:Areviewoftheecologicaleffectsofroads.JournalofTransportGeography,15,396-406.

Cui,M.,&Levinson,D.(2016).Fullcostanalysisofaccessibility.WorkingPaper.

Delucchi,M.(2016).EnvironmentalExternalitiesofMotor-VehicleUseintheUS.JournalofTransportEconomicsandPolicy,34(2),135-168.

Ding,D.,Gebel,K.,Phongsavan,P.,Bauman,A.,&Merom,D.(2014).Driving:ARoadtoUnhealthyLifestylesandPoorHealthOutcomes.PLoSONE,9(6).

Downs,A.(2014).WhyTrafficCongestionisHeretoStay...andWillGetWorse.Access(25),pp.19-25.

Ewing,R.,&Cervero,R.(2010).TransportationandtheBuiltEnvironment:Ameta-analysis.JournaloftheAmericanPlanningAssociation,76(3),265-294.

Ewing,R.,&Hamidi,S.(2014).MeasuringSprawl2014.SmartGrowthAmerica.

Ewing,R.,&Rong,F.(2008).TheimpactofurbanformonU.S.residentialenergyise.HousingPolicyDebate,19(1),1-30.

Ewing,R.,Bartholomew,K.,Winkelman,S.,Walters,J.,Chen,D.,McCann,B.,etal.(2007).GrowingCooler:TheEvidenceonfUrbanDevelopmentandClimateChange.Chicago,IL:UrbanLandInstitute.

18

Ewing,R.,Schmid,T.,Killingsworth,R.,Zlot,A.,&Reudenbush,S.(2003).Relationshipbetweenurbansprawlandphysicalactivity,obesity,andmorbidity.AmericanJournalofHealthPromotion,18(1),47-57.

Falcocchio,J.,&Levinson,H.(2015).RoadTrafficCongestion:AConciseGuide.Switzerland:SpringerInternationalPublishing.

Forman,T.,&Alexander,L.(1998).RoadsandTheirMajorEcologicalEffects.AnnualReviewofEcologyandSystematics,29,207-231.

Gee,G.,&Takeuchi,D.(2004).Trafficstress,vehicularbudenandwell-being:Amultilevelanalysis.SocialScience&Medicine,59,405-414.

Haas,P.,Makarewicz,C.,Benedict,A.,&Bernstein,S.(2008).EstimatingTransportationCostsbyCharacteristicsofNeighborhoodandHousehold.TransportationResearchRecord,2077,62-70.

Haas,P.,Morse,S.,Becker,S.,Young,L.,&Esling,P.(2013).Theinfluenceofspatialandhouseholdcharacteristicsonhouseholdtransportationcosts.ResearchinTransportationBusiness&Management,7,14-26.

Handy,S.,&Boarnet,M.(2014).ImpactofHighwayCapacityandInducedTravelonPassengerVehicleUseandGreenhouseGasEmissions.CaliforniaAirResourcesBoardTechnicalBackgroundDocument.

Hendriks,C.,Worrell,E.,deJager,D.,Blok,K.,&Riemer,P.(2004).EmissionReducionofGreenhouseGasesfromtheCementIndustry.InternationalConferenceonGreenouseGasControlTechnologies,(pp.1-11).Vancouver,BC.

Hennessy,D.(2008).TheImpactofCommuterStressonWorkplaceAggression.JournalofAppliedSocialPsychology,38(9),2315-2335.

Holderegger,R.,&DiGiulio,M.(2010).Geneticeffectsofroads:Areviewofempiricalevidence.BasicandAppliedEcology,11(6),522-531.

Hymel,K.(2014).FactorsinfluencingvehiclemilestraveledinCalifornia:MeasurmentandAnalysis.

Jacobson,S.,&King,D.(2009).MeasuringthepotentialforautomobilefuelsavingsintheUS:Theimpactofobesity.TransportationResearchPartDTransportandEnvironment,14(1),6-13.

Keeler,T.,&Small,K.(1975).TheFullCostsofUrbanTransportPartIII:AutomobileCostsandFinalIntermodalCostComparisons.UniversityofCaliforniaBerkeleyInstituteofUrbanandRegionalDevelopment.

19

Kooshian,C.,&Winkelman,S.(2011).GrowingWealthier:SmartGrowth,ClimateChangeandProsperity.CenterforCleanAirPolicy.

Landis,D.(1995).ImaginingLandUseFutures:ApplyingtheCaliforniaFuturesModel.JournaloftheAmericanPlanningAssociation,61(4),438-457.

Levinson,D.,&Gillen,D.(1998).TheFullCostofIntercityHighwayTransportation.TransportationResearchPartD:TransportandEnvironment,4(3),207-223.

Litman,T.(2016).nderstandingSmartGrowthSavings:EvaluatingEconomicSavingsandBenefitsofCompactDevelopment,andHowTheyAreMisrepresentedByCritics.VictoriaTransportPolicyInstitute.

Lopez-Zetina,J.,Lee,H.,&Friis,R.(2006).Thelinkbetweenobesityandthebuiltenvironment.EvidencefromanecologicalanalysisofobesityandvehiclemilesoftravelinCalifornia.Health&Place,12(4),656-664.

Maizlish,N.(2016,forthcoming).IncreasingWalking,Cycling,andTransit:ImprovingCalifornians'Health,SavingsCostsandReducingGreenhouseGases.Berkeley,CA:FinalTechnicalReporttotheCaliforniaDepartmentofPublicHealth(CPDH).

McCubbin,R.,&Delucchi,M.(1999).TheHealthCostsofMotor-Vehicle-RelatedAirPollution.JournalofTransportEconomicsandPolicy,33(3),253-286.

McLaren,J.,Miller,J.,O'Shaughnessy,E.,Wood,E.,&Shapiro,E.(2016).EmissionsAssociatedwithElectricVehicleCharging:ImpactofElectricityGenerationMix,ChargingInfrastructureAvailability,andVehicleType.NationalRenewableEnergyLaboratory.

Moeckel,R.(2017).Constraintsinhouseholdrelocation:Modelingland-use/transportinteractionsthatrespecttimeandmonetarybudgets.TheJournalofTransportandLandUse,10(1),211-228.

Mondschein,A.,Osman,T.,Taylor,B.,&Thomas,T.(2015).CongestedDevelopment:AStudyofTrafficDelays,Access,andEconomicActivityinMetropolitanLosAngeles.ReporttotheJohnRandolphandDoraHaynesFoundation.

NationalHighwayTrafficSafetyAdministration.(2014).SummaryofFuelEconomyPerformance.U.S.DepartmentofTransportation.

Nikowitz,M.(Ed.).(2016).AdvancedHybridandElectricVehicles:SystemOptimizationandVehicleIntegration.Switzerland:SpringerInternationalPublishing.

Nixon,H.,&Saphores,J.-D.(2003).TheImpactofMotorVehicleOperationonWaterQuality:APremilinaryAssessment.UCIrvineInstituteofTransportationStudies.

20

OakRidgeNationalLaboratory.(2015).TransportationEnergyDataBook.RetrievedOctober23,2016,fromhttp://cta.ornl.gov/data/index.shtml

Pohanka,M.,&Fitzgerald,S.(2004).UrbanSprawlandYou:HowSprawlAdverselyAffectsWorkerHealth.AmericanAssociationofOccupationalHealthNursesJournal,52(6),242-246.

Renalds,A.,Smith,T.,&Hale,P.(2010).Asystematicreviewofbuiltenvironmentandhealth.FamilyandCommunityHealth,33(1),68-78.

Renne,J.,&Ewing,R.(2013).Transit-OrientedDevelopment:AnExaminationofAmerica'sTransitPrecinctsin2000&2010.UNOTIPublications.

Savage,I.(2014).ComparingthefatalityrisksinUnitedStatestransportationacross.ResearchinTransportationEconomics,43,9-22.

Shilling,F.,&Waetjen,D.(2016).ImpactofWildlife-VehicleConflictonDriversandAnimals.UCDavisRoadEcologyCenter.

SmartGrowthAmerica.(2015).TheFiscalImplicationsofDevelopmentPatterns:Madison,WI.

SmartGrowthAmerica.(2015).TheFiscalImplicationsofDevelopmentPatterns:WestDesMoines,IA.

Stone,B.,Mednick,A.,Holloway,T.,&Spak,S.(2007).IsCompactGrowthGoodforAirQuality.JournaloftheAmericanPlanningAssociation,73(4),404-418.

Thorpe,A.,&Harrison,R.(2008).Sourcesandpropertiesofnon-exhaustparticulatematterfromroadtraffic:Areview.ScienceoftheTotalEnvironment,400,270-282.

TransportationResearchBoard.(1995).SpecialReport245:ExpandingMetropolitanHighways:ImplicationsforAirQualityandEnergyUse.Washington,DC:TransportationResearchBoard.

TransportationResearchBoard.(2009).SpecialReport298:DrivingandTheBuiltEnvironment-TheEffectsofCompactDevelopmentonMotorizedTravel,EnergyUse,andCO2emissions.Washington,DC:TransportationResearchBoard.

UnitedStatesBureauofTransportationStatistics.(n.d.).StateTransportationStatistics2015.Retrievedfromhttp://www.rita.dot.gov/bts/sites/rita.dot.gov.bts/files/publications/state_transportation_statistics/state_transportation_statistics_2015/index.html

UnitedStatesEnvironmentalProtectionAgency.(2005).GreenhouseGasEmissionsfromaTypicalPassengerVehicle.Washington,DC:EnvironmentalProtectionAgency.

UnitedStatesNationalHighwayTrafficSafetyAdministration.(2015).FatalityAnalysisReportingSystem.Retrievedfromhttp://www.nhtsa.gov/Data/Fatality-Analysis-Reporting-System-(FARS)

21

USEnvironmentalProtectionAgency.(2016,April27).DynamometerDriveSchedules.RetrievedfromVehicleandFuelEmissionsTesting:https://www.epa.gov/vehicle-and-fuel-emissions-testing/dynamometer-drive-schedules

USEnvironmentalProtectionAgency.(2016).OzonePollution.RetrievedDecember4,2016,fromhttps://www.epa.gov/ozone-pollution

USEnvironmentalProtectionAgency.(2016).ParticulateMatter(PM)Pollution.RetrievedDecember4,2016,fromhttps://www.epa.gov/pm-pollution

USEnvironmentalProtectionAgency.(2003).ProtectingWaterQualityfromUrbanRunoff.RetrievedDecember7,2016,fromhttps://www3.epa.gov/npdes/pubs/nps_urban-facts_final.pdf

VictoriaTransportationPolicyInstitute.(2015).TransportationCostandBenefitAnalysisII-WaterPollution.

Xia,T.,Zhang,Y.,Crabb,S.,&Shah,P.(2013).CobenefitsofReplacingCarTripswithAlternativeTransportation:AReviewofEvidenceandMethodologicalIssues.JournalofEnvironmentalandPublicHealth.