csc 581 communication networks ii chapter 8a: internetworking and internet protocol(ip) dr....

85
CSC 581 Communication Networks II Chapter 8a: Internetworking and Internet Protocol(IP) Dr. Cheer-Sun Yang

Upload: belinda-sarah-charles

Post on 03-Jan-2016

213 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: CSC 581 Communication Networks II Chapter 8a: Internetworking and Internet Protocol(IP) Dr. Cheer-Sun Yang

CSC 581 Communication Networks II

Chapter 8a: Internetworking and Internet Protocol(IP)

Dr. Cheer-Sun Yang

Page 2: CSC 581 Communication Networks II Chapter 8a: Internetworking and Internet Protocol(IP) Dr. Cheer-Sun Yang

2

Network Layer Tasks

• Switching

• Routing

• Congestion control

• Internetworking on the Network Layer

Page 3: CSC 581 Communication Networks II Chapter 8a: Internetworking and Internet Protocol(IP) Dr. Cheer-Sun Yang

3

Major Topics

• Concept of Networking Layer: tasks

• Internetworking: Repeaters, Bridges, Routers.

• IP and IPv6

• ICMP(Internet Control Message Protocol)

Page 4: CSC 581 Communication Networks II Chapter 8a: Internetworking and Internet Protocol(IP) Dr. Cheer-Sun Yang

4

Overview of TCP/IP

• The Internet connects many networks, each of which run a protocol known as TCP/IP.

• TCP(Transmission Control Protocol) and IP(Internet Protocol) correspond roughly to layers 4 and 3 of the OSI model.

• The TCP/IP pair of protocols is part of the TCP/IP suite which includes many other protocols.

Page 5: CSC 581 Communication Networks II Chapter 8a: Internetworking and Internet Protocol(IP) Dr. Cheer-Sun Yang

Copyright 2000 McGraw-Hill Leon-Garcia and Widjaja Communication Networks

5

Application

TCP UDP

IPICMP ARP RARP

Physicalnetwork

Application

Figure 8.1

Page 6: CSC 581 Communication Networks II Chapter 8a: Internetworking and Internet Protocol(IP) Dr. Cheer-Sun Yang

6

IP Operation

Page 7: CSC 581 Communication Networks II Chapter 8a: Internetworking and Internet Protocol(IP) Dr. Cheer-Sun Yang

Copyright 2000 McGraw-Hill Leon-Garcia and Widjaja Communication Networks

7

HTTP Request

TCP Header

Header contains source and destination port numbers

Header contains: source and destination IP addresses; transport protocol type

IP Header

Header contains: source and destination physical addresses; network protocol type

FCSEthernet Header

Figure 8.2

Page 8: CSC 581 Communication Networks II Chapter 8a: Internetworking and Internet Protocol(IP) Dr. Cheer-Sun Yang

Copyright 2000 McGraw-Hill Leon-Garcia and Widjaja Communication Networks

8

Application

Transport

InternetNetwork Interface

Application

Transport

InternetInternet

Network 1 Network 2

Machine A Machine B

Router/Gateway

Network Interface

Network Interface

Figure 8.3

Page 9: CSC 581 Communication Networks II Chapter 8a: Internetworking and Internet Protocol(IP) Dr. Cheer-Sun Yang

9

Page 10: CSC 581 Communication Networks II Chapter 8a: Internetworking and Internet Protocol(IP) Dr. Cheer-Sun Yang

Copyright 2000 McGraw-Hill Leon-Garcia and Widjaja Communication Networks

10

Version IHL Type of Service Total Length

Identification Flags Fragment Offset

Time to Live Protocol Header Checksum

Source IP Address

Destination IP Address

Options Padding

0 4 8 16 19 24 31

Figure 8.4

Page 11: CSC 581 Communication Networks II Chapter 8a: Internetworking and Internet Protocol(IP) Dr. Cheer-Sun Yang

11

IP Datagram Format

Page 12: CSC 581 Communication Networks II Chapter 8a: Internetworking and Internet Protocol(IP) Dr. Cheer-Sun Yang

12

Header Fields (1)

• Version– Currently 4– IP v6 - see later

• Header length– In 32 bit words– Including options

• Type of service• Total length

– Of datagram, in octets

Page 13: CSC 581 Communication Networks II Chapter 8a: Internetworking and Internet Protocol(IP) Dr. Cheer-Sun Yang

13

Header Fields (2)

• Identification– Sequence number– Used with addresses and user protocol to identify datagram

uniquely

• Flags– More bit– Don’t fragment

• Fragmentation offset• Time to live• Protocol

– Next higher layer to receive data field at destination

Page 14: CSC 581 Communication Networks II Chapter 8a: Internetworking and Internet Protocol(IP) Dr. Cheer-Sun Yang

14

Header Fields (3)

• Header checksum– Reverified and recomputed at each router– 16 bit ones complement sum of all 16 bit words in header– Set to zero during calculation

• Source address• Destination address• Options• Padding

– To fill to multiple of 32 bits long

Page 15: CSC 581 Communication Networks II Chapter 8a: Internetworking and Internet Protocol(IP) Dr. Cheer-Sun Yang

15

Data Field

• Carries user data from next layer up

• Integer multiple of 8 bits long (octet)

• Max length of datagram (header plus data) 65,535 octets

Page 16: CSC 581 Communication Networks II Chapter 8a: Internetworking and Internet Protocol(IP) Dr. Cheer-Sun Yang

16

Internet Addressing

• Domain: A collection of sites of a particular type

• Class A

• Class B

• Class C

• Class D

• Class E

Page 17: CSC 581 Communication Networks II Chapter 8a: Internetworking and Internet Protocol(IP) Dr. Cheer-Sun Yang

17

0 Net ID Host ID

Net ID Host ID1 0

Net ID Host ID1 1 0

1 1 1 0 Multicast address

1 1 1 1 Reserved for experiments

Class A

Class B

Class C

Class D

Class E

0 1 2 3 8 16 31Bit position:

Figure 8.5

Page 18: CSC 581 Communication Networks II Chapter 8a: Internetworking and Internet Protocol(IP) Dr. Cheer-Sun Yang

18

Domain Name System

• Internet Protocol (IP) addresses are divided into classes: class A, B, C, and D.

• Domain name system (DNS) is a database of the cross-reference of domain names versus IP addresses.

• A domain-name server does the searching and translation.

Page 19: CSC 581 Communication Networks II Chapter 8a: Internetworking and Internet Protocol(IP) Dr. Cheer-Sun Yang

19

Page 20: CSC 581 Communication Networks II Chapter 8a: Internetworking and Internet Protocol(IP) Dr. Cheer-Sun Yang

Copyright 2000 McGraw-Hill Leon-Garcia and Widjaja Communication Networks

20

R1

H1 H2

H3 H4

R2 H5

To the rest ofthe Internet

150.100.0.1

150.100.12.128

150.100.12.0

150.100.12.176150.100.12.154

150.100.12.24 150.100.12.55

150.100.12.1

150.100.15.54

150.100.15.0

150.100.15.11

150.100.12.129

150.100.12.4

Figure 8.7

Page 21: CSC 581 Communication Networks II Chapter 8a: Internetworking and Internet Protocol(IP) Dr. Cheer-Sun Yang

21

IP Addresses - Class A

• 32 bit global internet address• Network part and host part• Class A

– Start with binary 0– All 0 reserved– 01111111 (127) reserved for loopback– Range 1.x.x.x to 126.x.x.x– All allocated

Page 22: CSC 581 Communication Networks II Chapter 8a: Internetworking and Internet Protocol(IP) Dr. Cheer-Sun Yang

22

IP Addresses - Class B

• Start 10

• Range 128.x.x.x to 191.x.x.x

• Second Octet also included in network address

• 214 = 16,384 class B addresses

• All allocated

Page 23: CSC 581 Communication Networks II Chapter 8a: Internetworking and Internet Protocol(IP) Dr. Cheer-Sun Yang

23

IP Addresses - Class C

• Start 110

• Range 192.x.x.x to 223.x.x.x

• Second and third octet also part of network address

• 221 = 2,097,152 addresses

• Nearly all allocated– See IPv6

Page 24: CSC 581 Communication Networks II Chapter 8a: Internetworking and Internet Protocol(IP) Dr. Cheer-Sun Yang

24

Subnets and Subnet Masks• Allow arbitrary complexity of internetworked LANs

within organization• Insulate overall internet from growth of network numbers

and routing complexity• Site looks to rest of internet like single network• Each LAN assigned subnet number• Host portion of address partitioned into subnet number and

host number• Local routers route within subnetted network• Subnet mask indicates which bits are subnet number and

which are host number

Page 25: CSC 581 Communication Networks II Chapter 8a: Internetworking and Internet Protocol(IP) Dr. Cheer-Sun Yang

Copyright 2000 McGraw-Hill Leon-Garcia and Widjaja Communication Networks

25

Originaladdress

Subnettedaddress

Net ID Host ID1 0

Net ID Host ID1 0 Subnet ID

Figure 8.6

Page 26: CSC 581 Communication Networks II Chapter 8a: Internetworking and Internet Protocol(IP) Dr. Cheer-Sun Yang

26

Routing Using Subnets

Page 27: CSC 581 Communication Networks II Chapter 8a: Internetworking and Internet Protocol(IP) Dr. Cheer-Sun Yang

27

Design Issues

• Address Resolution

• Fragmentation and re-assembly

• Routing

• Datagram lifetime

• Error control

• Flow control

Page 28: CSC 581 Communication Networks II Chapter 8a: Internetworking and Internet Protocol(IP) Dr. Cheer-Sun Yang

Copyright 2000 McGraw-Hill Leon-Garcia and Widjaja Communication Networks

28

H1 H2 H3 H4

H1 H2 H3 H4

ARP request (what is the MAC address of 150.100.76.22?)

ARP response (my MAC address is 08-00-5A-C5-3B-94)

150.100.76.20 150.100.76.21 150.100.76.22 150.100.76.23

Figure 8.8

Page 29: CSC 581 Communication Networks II Chapter 8a: Internetworking and Internet Protocol(IP) Dr. Cheer-Sun Yang

29

Fragmentation and Re-assembly

• Different packet sizes• When to re-assemble

– At destination• Results in packets getting smaller as data traverses internet

– Intermediate re-assembly• Need large buffers at routers

• Buffers may fill with fragments

• All fragments must go through same router– Inhibits dynamic routing

Page 30: CSC 581 Communication Networks II Chapter 8a: Internetworking and Internet Protocol(IP) Dr. Cheer-Sun Yang

Copyright 2000 McGraw-Hill Leon-Garcia and Widjaja Communication Networks

30

IP IP

RouterSource Destination

Network Network

Figure 8.9

Page 31: CSC 581 Communication Networks II Chapter 8a: Internetworking and Internet Protocol(IP) Dr. Cheer-Sun Yang

31

IP Fragmentation (1)

• IP re-assembles at destination only• Uses fields in header

– Data Unit Identifier (ID)• Identifies end system originated datagram

– Source and destination address– Protocol layer generating data (e.g. TCP)– Identification supplied by that layer

– Data length• Length of user data in octets

Page 32: CSC 581 Communication Networks II Chapter 8a: Internetworking and Internet Protocol(IP) Dr. Cheer-Sun Yang

32

IP Fragmentation (2)

– Offset• Position of fragment of user data in original

datagram

• In multiples of 64 bits (8 octets)

– More flag• Indicates that this is not the last fragment

Page 33: CSC 581 Communication Networks II Chapter 8a: Internetworking and Internet Protocol(IP) Dr. Cheer-Sun Yang

33

Fragmentation Example

Page 34: CSC 581 Communication Networks II Chapter 8a: Internetworking and Internet Protocol(IP) Dr. Cheer-Sun Yang

34

Fragmentation Example

Page 35: CSC 581 Communication Networks II Chapter 8a: Internetworking and Internet Protocol(IP) Dr. Cheer-Sun Yang

35

Routing on the Network Layer• End systems and routers maintain routing tables

– Indicate next router to which datagram should be sent– Static

• May contain alternative routes

– Dynamic• Flexible response to congestion and errors

• Source routing– Source specifies route as sequential list of routers to be

followed– Security– Priority

• Route recording

Page 36: CSC 581 Communication Networks II Chapter 8a: Internetworking and Internet Protocol(IP) Dr. Cheer-Sun Yang

36

Datagram Lifetime

• Datagrams could loop indefinitely– Consumes resources– Transport protocol may need upper bound on datagram life

• Datagram marked with lifetime – Time To Live field in IP– Once lifetime expires, datagram discarded (not forwarded)– Hop count

• Decrement time to live on passing through a each router

– Time count• Need to know how long since last router

• (Aside: compare with Logan’s Run)

Page 37: CSC 581 Communication Networks II Chapter 8a: Internetworking and Internet Protocol(IP) Dr. Cheer-Sun Yang

37

ICMP

• Internet Control Message Protocol• RFC 792 (get it and study it)• Transfer of (control) messages from routers

and hosts to hosts• Feedback about problems

– e.g. time to live expired

• Encapsulated in IP datagram– Not reliable

Page 38: CSC 581 Communication Networks II Chapter 8a: Internetworking and Internet Protocol(IP) Dr. Cheer-Sun Yang

38

ICMP Message Formats

Page 39: CSC 581 Communication Networks II Chapter 8a: Internetworking and Internet Protocol(IP) Dr. Cheer-Sun Yang

39

Dealing with Failure

• Re-assembly may fail if some fragments get lost• Need to detect failure• Re-assembly time out

– Assigned to first fragment to arrive

– If timeout expires before all fragments arrive, discard partial data

• Use packet lifetime (time to live in IP)– If time to live runs out, kill partial data

Page 40: CSC 581 Communication Networks II Chapter 8a: Internetworking and Internet Protocol(IP) Dr. Cheer-Sun Yang

40

Error Control

• Not guaranteed delivery• Router should attempt to inform source if

packet discarded – e.g. for time to live expiring

• Source may modify transmission strategy• May inform high layer protocol• Datagram identification needed• (Look up ICMP)

Page 41: CSC 581 Communication Networks II Chapter 8a: Internetworking and Internet Protocol(IP) Dr. Cheer-Sun Yang

41

Flow Control

• Allows routers and/or stations to limit rate of incoming data

• Limited in connectionless systems

• Send flow control packets– Requesting reduced flow

• e.g. ICMP

Page 42: CSC 581 Communication Networks II Chapter 8a: Internetworking and Internet Protocol(IP) Dr. Cheer-Sun Yang

42

IP v6 - Version Number

• IP v 1-3 defined and replaced

• IP v4 - current version

• IP v5 - streams protocol

• IP v6 - replacement for IP v4– During development it was called IPng – Next Generation

Page 43: CSC 581 Communication Networks II Chapter 8a: Internetworking and Internet Protocol(IP) Dr. Cheer-Sun Yang

43

Why Change IP?

• Address space exhaustion– Two level addressing (network and host) wastes space

– Network addresses used even if not connected to Internet

– Growth of networks and the Internet

– Extended use of TCP/IP

– Single address per host

• Requirements for new types of service

Page 44: CSC 581 Communication Networks II Chapter 8a: Internetworking and Internet Protocol(IP) Dr. Cheer-Sun Yang

44

IPv6 RFCs

• 1752 - Recommendations for the IP Next Generation Protocol

• 2460 - Overall specification

• 2373 - addressing structure

• others (find them)

Page 45: CSC 581 Communication Networks II Chapter 8a: Internetworking and Internet Protocol(IP) Dr. Cheer-Sun Yang

45

IPv6 Enhancements(1)

• Expanded address space– 128 bit

• Improved option mechanism– Separate optional headers between IPv6 header and

transport layer header– Most are not examined by intermediate routes

• Improved speed and simplified router processing• Easier to extend options

• Address autoconfiguration– Dynamic assignment of addresses

Page 46: CSC 581 Communication Networks II Chapter 8a: Internetworking and Internet Protocol(IP) Dr. Cheer-Sun Yang

46

IPv6 Enhancements (2)

• Increased addressing flexibility– Anycast - delivered to one of a set of nodes– Improved scalability of multicast addresses

• Support for resource allocation– Replaces type of service– Labeling of packets to particular traffic flow– Allows special handling– e.g. real time video

Page 47: CSC 581 Communication Networks II Chapter 8a: Internetworking and Internet Protocol(IP) Dr. Cheer-Sun Yang

47

Structure

Page 48: CSC 581 Communication Networks II Chapter 8a: Internetworking and Internet Protocol(IP) Dr. Cheer-Sun Yang

Copyright 2000 McGraw-Hill Leon-Garcia and Widjaja Communication Networks

48

Version Traffic Class Flow Label

Payload Length Next Header Hop Limit

Source Address

Destination Address

0 4 12 16 24 31

Figure 8.10

Page 49: CSC 581 Communication Networks II Chapter 8a: Internetworking and Internet Protocol(IP) Dr. Cheer-Sun Yang

49

IP v6 Header

Page 50: CSC 581 Communication Networks II Chapter 8a: Internetworking and Internet Protocol(IP) Dr. Cheer-Sun Yang

Copyright 2000 McGraw-Hill Leon-Garcia and Widjaja Communication Networks

50

Version Traffic Class Flow Label

Payload Length Next Header Hop Limit

Source Address

Destination Address

0 4 12 16 24 31

Figure 8.10

Page 51: CSC 581 Communication Networks II Chapter 8a: Internetworking and Internet Protocol(IP) Dr. Cheer-Sun Yang

51

IP v6 Header Fields (1)

• Version– 6

• Traffic Class– Classes or priorities of packet– Still under development– See RFC 2460

• Flow Label– Used by hosts requesting special handling

• Payload length– Includes all extension headers plus user data

Page 52: CSC 581 Communication Networks II Chapter 8a: Internetworking and Internet Protocol(IP) Dr. Cheer-Sun Yang

52

IP v6 Header Fields (2)

• Next Header– Identifies type of header

• Extension or next layer up

• Source Address

• Destination address

Page 53: CSC 581 Communication Networks II Chapter 8a: Internetworking and Internet Protocol(IP) Dr. Cheer-Sun Yang

53

IPv6 Addresses

• 128 bits long

• Assigned to interface

• Single interface may have multiple unicast addresses

• Three types of address

Page 54: CSC 581 Communication Networks II Chapter 8a: Internetworking and Internet Protocol(IP) Dr. Cheer-Sun Yang

Copyright 2000 McGraw-Hill Leon-Garcia and Widjaja Communication Networks

54

010 Registry ID Provider ID Subscriber ID Subnet ID Interface ID

n bits m bits o bits p bits (125-m-n-o-p) bits

Figure 8.11

Page 55: CSC 581 Communication Networks II Chapter 8a: Internetworking and Internet Protocol(IP) Dr. Cheer-Sun Yang

Copyright 2000 McGraw-Hill Leon-Garcia and Widjaja Communication Networks

55

010 Registry ID Provider ID Subscriber ID Subnet ID Interface ID

n bits m bits o bits p bits (125-m-n-o-p) bits

Figure 8.11

Page 56: CSC 581 Communication Networks II Chapter 8a: Internetworking and Internet Protocol(IP) Dr. Cheer-Sun Yang

56

Extension Headers

• Hop-by-Hop Options– Require processing at each router

• Routing– Similar to v4 source routing

• Fragment• Authentication• Encapsulating security payload• Destination options

– For destination node

Page 57: CSC 581 Communication Networks II Chapter 8a: Internetworking and Internet Protocol(IP) Dr. Cheer-Sun Yang

Copyright 2000 McGraw-Hill Leon-Garcia and Widjaja Communication Networks

57

Basic headerNext header =TCP

TCP segment

Basic headerNext header =routing

Routing headerNext header =fragment

Fragment headerNext header =authentication

TCP segmentAuthentication headerNext header =TCP

Figure 8.12

Page 58: CSC 581 Communication Networks II Chapter 8a: Internetworking and Internet Protocol(IP) Dr. Cheer-Sun Yang

Copyright 2000 McGraw-Hill Leon-Garcia and Widjaja Communication Networks

58

Next Header 0 194 Opt Len = 4

Jumbo Payload Length

0 8 16 24 31

Figure 813

Page 59: CSC 581 Communication Networks II Chapter 8a: Internetworking and Internet Protocol(IP) Dr. Cheer-Sun Yang

Copyright 2000 McGraw-Hill Leon-Garcia and Widjaja Communication Networks

59

Next Header Reserved Fragment Offset Res M

Identification

0 8 16 29 31

Figure 8.14

Page 60: CSC 581 Communication Networks II Chapter 8a: Internetworking and Internet Protocol(IP) Dr. Cheer-Sun Yang

Copyright 2000 McGraw-Hill Leon-Garcia and Widjaja Communication Networks

60

Reserved Strict/Loose Bit Mask

Address 1

Address 2

0 8 16 24 31

Next Header Header Length Routing Type = 0 Segment Left

. . .

Address 24

Figure 8.15

Page 61: CSC 581 Communication Networks II Chapter 8a: Internetworking and Internet Protocol(IP) Dr. Cheer-Sun Yang

61

Types of address

• Unicast– Single interface

• Anycast– Set of interfaces (typically different nodes)– Delivered to any one interface– the “nearest”

• Multicast– Set of interfaces– Delivered to all interfaces identified

Page 62: CSC 581 Communication Networks II Chapter 8a: Internetworking and Internet Protocol(IP) Dr. Cheer-Sun Yang

62

Hop-by-Hop Options

• Next header• Header extension length• Options

– Jumbo payload• Over 216 = 65,535 octets

– Router alert• Tells the router that the contents of this packet is of

interest to the router• Provides support for RSPV (chapter 16)

Page 63: CSC 581 Communication Networks II Chapter 8a: Internetworking and Internet Protocol(IP) Dr. Cheer-Sun Yang

63

Fragmentation Header

• Fragmentation only allowed at source

• No fragmentation at intermediate routers

• Node must perform path discovery to find smallest MTU of intermediate networks

• Source fragments to match MTU

• Otherwise limit to 1280 octets

Page 64: CSC 581 Communication Networks II Chapter 8a: Internetworking and Internet Protocol(IP) Dr. Cheer-Sun Yang

64

Fragmentation Header Fields

• Next Header

• Reserved

• Fragmentation offset

• Reserved

• More flag

• Identification

Page 65: CSC 581 Communication Networks II Chapter 8a: Internetworking and Internet Protocol(IP) Dr. Cheer-Sun Yang

65

Routing Header

• List of one or more intermediate nodes to be visited

• Next Header

• Header extension length

• Routing type

• Segments left– i.e. number of nodes still to be visited

Page 66: CSC 581 Communication Networks II Chapter 8a: Internetworking and Internet Protocol(IP) Dr. Cheer-Sun Yang

66

Destination Options

• Same format as Hop-by-Hop options header

Page 67: CSC 581 Communication Networks II Chapter 8a: Internetworking and Internet Protocol(IP) Dr. Cheer-Sun Yang

67

Page 68: CSC 581 Communication Networks II Chapter 8a: Internetworking and Internet Protocol(IP) Dr. Cheer-Sun Yang

68

Page 69: CSC 581 Communication Networks II Chapter 8a: Internetworking and Internet Protocol(IP) Dr. Cheer-Sun Yang

69

Multicasting

• Addresses that refer to group of hosts on one or more networks

• Uses– Multimedia “broadcast”– Teleconferencing– Database– Distributed computing– Real time workgroups

Page 70: CSC 581 Communication Networks II Chapter 8a: Internetworking and Internet Protocol(IP) Dr. Cheer-Sun Yang

70

Example Config

Page 71: CSC 581 Communication Networks II Chapter 8a: Internetworking and Internet Protocol(IP) Dr. Cheer-Sun Yang

71

Broadcast and Multiple Unicast

• Broadcast a copy of packet to each network– Requires 13 copies of packet

• Multiple Unicast– Send packet only to networks that have hosts in

group– 11 packets

Page 72: CSC 581 Communication Networks II Chapter 8a: Internetworking and Internet Protocol(IP) Dr. Cheer-Sun Yang

72

True Multicast

• Determine least cost path to each network that has host in group– Gives spanning tree configuration containing

networks with group members

• Transmit single packet along spanning tree• Routers replicate packets at branch points

of spanning tree• 8 packets required

Page 73: CSC 581 Communication Networks II Chapter 8a: Internetworking and Internet Protocol(IP) Dr. Cheer-Sun Yang

73

Multicast Example

Page 74: CSC 581 Communication Networks II Chapter 8a: Internetworking and Internet Protocol(IP) Dr. Cheer-Sun Yang

74

Requirements for Multicasting (1)

• Router may have to forward more than one copy of packet

• Convention needed to identify multicast addresses– IPv4 - Class D - start 1110– IPv6 - 8 bit prefix, all 1, 4 bit flags field, 4 bit scope field,

112 bit group identifier

• Nodes must translate between IP multicast addresses and list of networks containing group members

• Router must translate between IP multicast address and network multicast address

Page 75: CSC 581 Communication Networks II Chapter 8a: Internetworking and Internet Protocol(IP) Dr. Cheer-Sun Yang

75

Requirements for Multicasting (2)

• Mechanism required for hosts to join and leave multicast group

• Routers must exchange info– Which networks include members of given group

– Sufficient info to work out shortest path to each network

– Routing algorithm to work out shortest path

– Routers must determine routing paths based on source and destination addresses

Page 76: CSC 581 Communication Networks II Chapter 8a: Internetworking and Internet Protocol(IP) Dr. Cheer-Sun Yang

76

IGMP

• Internet Group Management Protocol

• RFC 1112

• Host and router exchange of multicast group info

• Use broadcast LAN to transfer info among multiple hosts and routers

Page 77: CSC 581 Communication Networks II Chapter 8a: Internetworking and Internet Protocol(IP) Dr. Cheer-Sun Yang

77

IGMP Format

Page 78: CSC 581 Communication Networks II Chapter 8a: Internetworking and Internet Protocol(IP) Dr. Cheer-Sun Yang

78

IGMP Fields

• Version– 1

• Type– 1 - query sent by router– O - report sent by host

• Checksum• Group address

– Zero in request message– Valid group address in report message

Page 79: CSC 581 Communication Networks II Chapter 8a: Internetworking and Internet Protocol(IP) Dr. Cheer-Sun Yang

79

IGMP Operation

• To join a group, hosts sends report message– Group address of group to join– In IP datagram to same multicast destination address– All hosts in group receive message– Routers listen to all multicast addresses to hear all

reports

• Routers periodically issue request message– Sent to all-hosts multicast address– Host that want to stay in groups must read all-hosts

messages and respond with report for each group it is in

Page 80: CSC 581 Communication Networks II Chapter 8a: Internetworking and Internet Protocol(IP) Dr. Cheer-Sun Yang

80

Group Membership in IPv6

• Function of IGMP included in ICMP v6

• New group membership termination message to allow host to leave group

Page 81: CSC 581 Communication Networks II Chapter 8a: Internetworking and Internet Protocol(IP) Dr. Cheer-Sun Yang

81

Compatibility with IPv4

• IPv6 address structure allows IPv4 address types.

• IP tunneling: two IPv6 nodes can use IPv4 complied network to pass IPv6 datagrams.

Page 82: CSC 581 Communication Networks II Chapter 8a: Internetworking and Internet Protocol(IP) Dr. Cheer-Sun Yang

82

Page 83: CSC 581 Communication Networks II Chapter 8a: Internetworking and Internet Protocol(IP) Dr. Cheer-Sun Yang

83

Page 84: CSC 581 Communication Networks II Chapter 8a: Internetworking and Internet Protocol(IP) Dr. Cheer-Sun Yang

84

IP Tunnelling

Page 85: CSC 581 Communication Networks II Chapter 8a: Internetworking and Internet Protocol(IP) Dr. Cheer-Sun Yang

85

Required Reading

• Section 8.1, 8.2, 8.3

• RFC 791