cs 128/es 228 - lecture 9b1 photogrammetry & image analysis

26
CS 128/ES 228 - Lecture 9 b 1 Photogrammetry & Image Analysis

Post on 20-Dec-2015

234 views

Category:

Documents


11 download

TRANSCRIPT

Page 1: CS 128/ES 228 - Lecture 9b1 Photogrammetry & Image Analysis

CS 128/ES 228 - Lecture 9b 1

Photogrammetry & Image Analysis

Page 2: CS 128/ES 228 - Lecture 9b1 Photogrammetry & Image Analysis

CS 128/ES 228 - Lecture 9b 2

Photogrammetry

Originally, the science (or art?) of interpreting aerial photographs

Stress on quantitative measurements

Now includes analysis of digital images from many sources

Image from Avery. Interpretation of Aerial Photographs.

Page 3: CS 128/ES 228 - Lecture 9b1 Photogrammetry & Image Analysis

CS 128/ES 228 - Lecture 9b 3

A hierarchy of remote sensing

Satellite sensing

Aerial photography

Ground-truthing

Image from Avery. Interpretation of Aerial Photographs.

Page 4: CS 128/ES 228 - Lecture 9b1 Photogrammetry & Image Analysis

CS 128/ES 228 - Lecture 9b 4

Perspectives

Vertical:- orthogonal perspective- planimetric map data

Oblique: - high oblique

(includes horizon) - low oblique (no horizon)

Image from Avery. Interpretation of Aerial Photographs.

Page 5: CS 128/ES 228 - Lecture 9b1 Photogrammetry & Image Analysis

CS 128/ES 228 - Lecture 9b 5

Scale

Determine from: Plane altitude

RF = lens focal length altitude of plane

Known ground features

Top image from Avery. Interpretation of Aerial Photographs.Bottom images from Ben Meadows catalog (L), Olean NW DOQQ ®

Page 6: CS 128/ES 228 - Lecture 9b1 Photogrammetry & Image Analysis

CS 128/ES 228 - Lecture 9b 6

Problems

Plane altitude determining altitude (barometer, radar altimeter) variation among photos uneven terrain

Known ground features: need objects of known size & large enough for accurate

measurement, or pair of points for distance measure

Page 7: CS 128/ES 228 - Lecture 9b1 Photogrammetry & Image Analysis

CS 128/ES 228 - Lecture 9b 7

Planimetric view

Perfectly vertical (orthogonal) perspective

All features in correct horizontal positions

Impossible unless at infinite height

Page 8: CS 128/ES 228 - Lecture 9b1 Photogrammetry & Image Analysis

CS 128/ES 228 - Lecture 9b 8

The principle point

Point directly under camera lens (‘nadir’)

Elevated objects lean away from PP

Depressed objects lean toward PP

Causes image displacement

Images from Avery. Interpretation of Aerial Photographs.

Page 9: CS 128/ES 228 - Lecture 9b1 Photogrammetry & Image Analysis

CS 128/ES 228 - Lecture 9b 9

Vertical relief causes displacement

Transmission line is straight - why does the line appear straight in one photo and jagged in second?

In left stereogram, line is ~ on nadir; in right stereogram, far from nadir

Image from Avery. Interpretation of Aerial Photographs.

Page 10: CS 128/ES 228 - Lecture 9b1 Photogrammetry & Image Analysis

CS 128/ES 228 - Lecture 9b 10

Image displacement:

Source of error in horizontal locations, but

Permits estimation of feature elevations

stereoscopic parallax

Image from Avery. Interpretation of Aerial Photographs.

Page 11: CS 128/ES 228 - Lecture 9b1 Photogrammetry & Image Analysis

CS 128/ES 228 - Lecture 9b 11

Stereoscopic photo pairs

Image from Avery. Interpretation of Aerial Photographs.

Page 12: CS 128/ES 228 - Lecture 9b1 Photogrammetry & Image Analysis

CS 128/ES 228 - Lecture 9b 12

Stereoscopes

need pair of overlapping photos

different principle points results in parallax

used to create topographic contours

Page 13: CS 128/ES 228 - Lecture 9b1 Photogrammetry & Image Analysis

CS 128/ES 228 - Lecture 9b 13

Shadows

Need sun angle

Object must be vertical

Shadow must come from top and fall on level ground

H = L x tan(α)

H = L x tan(α)

Image from Avery. Interpretation of Aerial Photographs.\

Page 14: CS 128/ES 228 - Lecture 9b1 Photogrammetry & Image Analysis

CS 128/ES 228 - Lecture 9b 14

Rectification of aerial photographs

Rectification: process of geometric correction that turns an aerial photograph into a planimetric (map-like) image

Problems: lens distortion Earth curvature camera tilt terrain relief

Page 15: CS 128/ES 228 - Lecture 9b1 Photogrammetry & Image Analysis

CS 128/ES 228 - Lecture 9b 15

Rectification process

1. Scan aerial photograph at high resolution

2. Locate ground control points on scanned image: ≥3 for affine transformation ≥5 for rubbersheeting

3. Combine with DEM to correct relief displacement

4. Rectify to a ground coordinate system

Page 16: CS 128/ES 228 - Lecture 9b1 Photogrammetry & Image Analysis

CS 128/ES 228 - Lecture 9b 16

Relief distortion

Objects at different distances form the lens will be distorted

Page 17: CS 128/ES 228 - Lecture 9b1 Photogrammetry & Image Analysis

CS 128/ES 228 - Lecture 9b 17

Result: digital orthophotograph

USGS supplies in DOQ format

NYS GIS site provides freecolored infrared DOQQs

Page 18: CS 128/ES 228 - Lecture 9b1 Photogrammetry & Image Analysis

CS 128/ES 228 - Lecture 9b 18

Urban areas: building tilt

In urban areas, tall buildings seem to lean toward the principal point of the photograph

Corrected by building a DTM of each building

Permits virtual reality “flyovers”

Thorpe, A. Digital orthophotography in New York City. www.sanborn.com/Pdfs/Article_DOI_Thorpe.pdf

Page 19: CS 128/ES 228 - Lecture 9b1 Photogrammetry & Image Analysis

CS 128/ES 228 - Lecture 9b 19

Image Analysis

Identification of objects

Assigning attributes to objects or areas

Assessing the significance of patterns

Can be: Visual interpretation

Computer-assisted image analysis

Page 20: CS 128/ES 228 - Lecture 9b1 Photogrammetry & Image Analysis

CS 128/ES 228 - Lecture 9b 20

Landsat Images

Landsat 1-4 launched 1972 – ’82; expired

Landsat 5 & 7 launched 1985 & 1999; both operational

TM: thematic mapper. - 7 spectral bands- designed primarily for ES themes

http://landsat.gsfc.nasa.gov/project/L7images.html

Page 21: CS 128/ES 228 - Lecture 9b1 Photogrammetry & Image Analysis

CS 128/ES 228 - Lecture 9b 21

TM Applications

Band Spectral range (µm)

“Color” Application

1 0.45 – 0.52 Blue-green Soil/vegetation separation

2 0.52 – 0.60 Green Reflection from vegetation

3 0.63 – 0.69 Red Chlorophyll absorption

4 0.76 – 0.90 Near IR Delineation of water bodies

5 1.55 – 1.75 Mid IR Vegetative moisture

6 10.4 – 12.5 Far IR Hydrothermal mapping

7 2.08 – 2.35 Mid IR Plant heat stress

Page 22: CS 128/ES 228 - Lecture 9b1 Photogrammetry & Image Analysis

CS 128/ES 228 - Lecture 9b 22

Hydrology example

Images from Avery. Interpretation of Aerial Photographs.

Page 23: CS 128/ES 228 - Lecture 9b1 Photogrammetry & Image Analysis

CS 128/ES 228 - Lecture 9b 23

Terra (and EOS)

Terra launched

Carries 5 instruments; the MSS imager is called ASTER (from Japan)

14 spectral bands:- 3 VIS/near IR (15 m)- 6 short IR (30 m)- 5 thermal IR (90 m)

Images from www.nasa.gov

Page 24: CS 128/ES 228 - Lecture 9b1 Photogrammetry & Image Analysis

CS 128/ES 228 - Lecture 9b 24

ASTER spectral signature library

“Welcome to the ASTER spectral library, a compilation of almost 2000 spectra of natural and man made materials.”

http://speclib.jpl.nasa.gov

Page 25: CS 128/ES 228 - Lecture 9b1 Photogrammetry & Image Analysis

CS 128/ES 228 - Lecture 9b 25

Classification schemes

1.a Unsupervised: raw data analyzed for clusters

1.b Supervised: prior categories imposed

2. Classification of new data

3. Ground truthing … Lo & Yeung. Concepts and Techniques of Geographic Information Systems

Page 26: CS 128/ES 228 - Lecture 9b1 Photogrammetry & Image Analysis

CS 128/ES 228 - Lecture 9b 26

And that’s the fun part …