crystallization methods and screening · 0 5 10 15 20 25 30 35 40 45 50 0 2 4 6 8 10 12 14 16 18 20...

54
Juan Manuel García-Ruiz Laboratorio de Estudios Cristalográficos CSIC-Universidad de Granada, Spain [email protected] Crystallization Methods and Screening

Upload: others

Post on 23-Jul-2020

0 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: Crystallization Methods and Screening · 0 5 10 15 20 25 30 35 40 45 50 0 2 4 6 8 10 12 14 16 18 20 E' 0' Understurated zone Metastable zone Labile zone 0 E b) Vapour diffusion experiment

Juan Manuel García-Ruiz

Laboratorio de Estudios CristalográficosCSIC-Universidad de Granada, Spain

[email protected]

Crystallization Methods and Screening

Page 2: Crystallization Methods and Screening · 0 5 10 15 20 25 30 35 40 45 50 0 2 4 6 8 10 12 14 16 18 20 E' 0' Understurated zone Metastable zone Labile zone 0 E b) Vapour diffusion experiment

Crystallization  methods

water  removal,  either  by:   Evaporation.       Dialysis.    

solubility  change  driven  by:     Temperature   pH     Dielectric  constant     Ionic  strength     Polymers  

Because  of  lack  of  material  protein  crystallization  techniques  are  microscale  or  nanoscale  design

A.  McPherson,  Crystallisation  of  Biological  Macromolecules,  Cold  Spring  Harbor  Laboratory  Press,  1999.A.Ducruix  and  R.Giege  (eds)  Crystallisation  of  Nucleic  Acids  and  Proteins:  A  Practical  Approach,  IRL  Press  at  Oxford  University  1999Methods  in  Enzimology,  volume  368  (2003)Journal  of  Structural  Biology,  volume  142  (2003)Proceedings  of  the  ICCBMs  at  Acta  Crystallographica  (2001  and  2003)  and  Journal  of  Crystal  Growth  (1998)

Solvent  is  water  (plus  detergent  in  membrane  protein  crystallisation)

Low  reproducibilityLack  of  understanding  

Page 3: Crystallization Methods and Screening · 0 5 10 15 20 25 30 35 40 45 50 0 2 4 6 8 10 12 14 16 18 20 E' 0' Understurated zone Metastable zone Labile zone 0 E b) Vapour diffusion experiment

Crystallizability:  the  propensity  of  a  compound  to  crystallize,  i.e.  to  enter  the  a7rac8ve  regime  to  make  ordered  arrays  of  their  molecules,  both  with  orienta8onal  and  transla8onal  symmetry.    

Crystallizability  depends  on  the  proper8es  of  the  macromolecule  itself  and  on  the  chemical  cocktail  used  to  bring  there  into  the  a7rac8ve  regime,  including  ligands  that  are  assumed  to  help  crystallizability.  

However,  the  way  to  mix  the  macromolecules  and  the  molecules  of  the  precipita8ng  cocktail,  the  rate  at  which  they  mix  and  how  fast  supersatura8on  is  achieved,  depends  on  the  crystalliza,on  technique.  

Thus, the output from any crystallization experiment depends, in some extent, on the crystallization technique used. This is particularly true for screening

Page 4: Crystallization Methods and Screening · 0 5 10 15 20 25 30 35 40 45 50 0 2 4 6 8 10 12 14 16 18 20 E' 0' Understurated zone Metastable zone Labile zone 0 E b) Vapour diffusion experiment

Vapour  diffusion  technique

Advantages

Drawbacks

•    Easy  to  understand  by  the  users•    Simple  to  implement•    Inexpensive•    Robo8c  available  for  H-­‐T  structural  genomics•    Crystals  can  be  handled  for  cryoXtallography

•      The  solu8on  moves  from  equilibrium  to  far  from  equilibrium•      Ambiguous  interpreta8on  of  drop’s  crystalliza8on  phenomena  •      Problems  of    reproducibility  and  scale-­‐up•      Each  drop  experiment  screens  a  narrow  crystalliza8on  space  (measured  by  visited  values  of  supersatura8on  and  supersatura8on  rate)

Juan  Ma.  Garcia-­‐Ruiz                                                                                  XII  InternaBonal  Conference  on  the  CrystallizaBon  of  Biological  Macromolecules                                                        Cancun,  6-­‐9  of  May,  2008

Page 5: Crystallization Methods and Screening · 0 5 10 15 20 25 30 35 40 45 50 0 2 4 6 8 10 12 14 16 18 20 E' 0' Understurated zone Metastable zone Labile zone 0 E b) Vapour diffusion experiment

Batch method

Direct  mixing  of  protein  and  precipitant

Protein Precipitant

Trial  is  blind• Super(under)saturation  is  immediately  achieved• Screening  performed  by  repeating  a  number  N  of  experiments  using  different  initial  conditions  • Higher  the  number  N  of  experiments  higher  the  possibility  of  success• Number  of  visited  crystallization  conditions  per  trial:  One  supersaturation  value,  One  (inLinite)  rate  of  

supersaturation

Oil thin layer

Slow evaporation

Page 6: Crystallization Methods and Screening · 0 5 10 15 20 25 30 35 40 45 50 0 2 4 6 8 10 12 14 16 18 20 E' 0' Understurated zone Metastable zone Labile zone 0 E b) Vapour diffusion experiment

0 5 10 15 20 25 30 35 40 45 500

2

4

6

8

10

12

14

16

18

20

E'

0'

Understurated zone

Metastable zone

Labile zone

0

E

b) Vapour diffusion experiment

Mac

rom

olec

ule

conc

entra

tion

Precipitating agent concentration

Evaporation of water increases the concentration of precipitating agent and protein at the same rate.

and the concentration of protein decreases

As a result protein precipitates hopefully as crystals …

Vapour  diffusionHanging/Si1ng  drop

Transport of water molecules

Crystallisationin the drop

Protein solution + precipitant at low concentration

Precipitant at high concentration(usually twice the one in the drop)

Juan  Ma.  Garcia-­‐Ruiz                                                                                  XII  InternaBonal  Conference  on  the  CrystallizaBon  of  Biological  Macromolecules                                                        Cancun,  6-­‐9  of  May,  2008

Note  that  the  soluBon  moves  from  equilibrium  to  out  of  equilibrium:It  means  iniBal  condiBons  and/or  rate  of  evaporaBon  need  to  be  tuned

Page 7: Crystallization Methods and Screening · 0 5 10 15 20 25 30 35 40 45 50 0 2 4 6 8 10 12 14 16 18 20 E' 0' Understurated zone Metastable zone Labile zone 0 E b) Vapour diffusion experiment

Experimental set-up

A  Mach-­‐Zehnder  interferometer  study

mirror  0

mirror  1

mirror  2

sample

633  nm  

Laser

filter

collimator

Beam  spliVer1

Beam  spliV

er2

3 mm

0.4

mm

The  drop  was  sandwiched  between  two  glass  plates  with  a  gap  of  0.4  mm.  

Precipitant  solu7on

T  =  20ºC

Juan  Ma.  Garcia-­‐Ruiz                                                                                  XII  InternaBonal  Conference  on  the  CrystallizaBon  of  Biological  Macromolecules                                                        Cancun,  6-­‐9  of  May,  2008

Page 8: Crystallization Methods and Screening · 0 5 10 15 20 25 30 35 40 45 50 0 2 4 6 8 10 12 14 16 18 20 E' 0' Understurated zone Metastable zone Labile zone 0 E b) Vapour diffusion experiment

Low concentration =Low density solution

Dynamics of a crystallising dropA demonstration of the role of gravity

Vapour  diffusionHanging/Si1ng  drop

Growing crystal

Mach-Zehnder interferometry

Crystals sedimentate

Crystals nucleate at the surface of the drop

Convective flow motion

Juan  Ma.  Garcia-­‐Ruiz                                                                                  XII  InternaBonal  Conference  on  the  CrystallizaBon  of  Biological  Macromolecules                                                        Cancun,  6-­‐9  of  May,  2008

Page 9: Crystallization Methods and Screening · 0 5 10 15 20 25 30 35 40 45 50 0 2 4 6 8 10 12 14 16 18 20 E' 0' Understurated zone Metastable zone Labile zone 0 E b) Vapour diffusion experiment

Nucleation frequency J is defined as the number of stable nuclei forming per unit of time and unit of volumen. It is given by:

Scale-­‐up  problems

Page 10: Crystallization Methods and Screening · 0 5 10 15 20 25 30 35 40 45 50 0 2 4 6 8 10 12 14 16 18 20 E' 0' Understurated zone Metastable zone Labile zone 0 E b) Vapour diffusion experiment

The most common precipitants used in macromolecular crystallization

Salts Volatile organic compounds

Polymers Non-volatile organic solvents

1. Propanol and isopropanol

2. 1,3-propanediol3. Dioxan4. Acetone5. Methanol6. Ethanol

1. Poly(ethylene glycol) 1000, 3350, 6000, 8000, 20000

2. Jeffamine3. Polyamine

1. 2-methyl-2,4-pentanediol2. Ethylene glycol 400

1. Ammonium phosphate and sulfate

2. Lithium sulfate3. Sodium or potassium or

ammonium chloride, phosphate, acetate, tartrate

4. Magnesium or calcium sulfate, chloride

5. Sodium or magnesium formate

The  Yirst  step  of  a  Protein  Crystallization  experiment  is  always  mixing  The  way  to  mix  the  macromolecules  and  the  molecules  of  the  precipitating  cocktail,  the  rate  at  which  they  mix  and  how  fast  supersaturation  is  achieved,  depends  on  the  crystallization  technique.  

The chemical cocktail is in most cases Protein + water +

buffer + precipitant

Problem:  Low  reproducibility;  Same  chemistry  yields  different  results  within  a  single  drop  withing  chemically  identical  drops:  Lack  of  understanding  

Page 11: Crystallization Methods and Screening · 0 5 10 15 20 25 30 35 40 45 50 0 2 4 6 8 10 12 14 16 18 20 E' 0' Understurated zone Metastable zone Labile zone 0 E b) Vapour diffusion experiment

Precipitant

Protein

Density  of  protein  soluBon  =  density  precipitant  soluBon  

Protein  heavier

Protein  lighter

RelaBve  viscosiBes  also  mater  

¿Precipitant  over  protein  or  protein  over  precipitant?

Problems  of  Reproducibility

Page 12: Crystallization Methods and Screening · 0 5 10 15 20 25 30 35 40 45 50 0 2 4 6 8 10 12 14 16 18 20 E' 0' Understurated zone Metastable zone Labile zone 0 E b) Vapour diffusion experiment

Case  1:    An  interferometric  video  corresponding  to  the  experiment  of  pouring  a  lighter  NaCl  solution  (1%)  over  a  denser  Lysozyme  solution  (30  mg/ml).    The  diffusivity  of   the  protein  molecules  towards  the  upper  salt  solution  is  slower  than  the  diffusivity  of  the  salt  molecules  towards  the  lower  protein  solution.  This  triggers  a  convective  mechanism  that  enhances  mixing.  Time  scale,  2  frame  per  second.

Page 13: Crystallization Methods and Screening · 0 5 10 15 20 25 30 35 40 45 50 0 2 4 6 8 10 12 14 16 18 20 E' 0' Understurated zone Metastable zone Labile zone 0 E b) Vapour diffusion experiment

Case  2:  An  interferometric   video   corresponding  to   the  experiment  consisting   of   pouring   a  NaCl   solution  (2%)  over  a  lighter  Lysozyme  solution  (30  mg/ml).  Notice  that  the  system  becomes  turbulent  as  a  result  of  the   development   of   Rayleigh-­‐Taylor   instability   and   the   cocktail   becomes   homogeneous   in   less   than   one  minute.  Time  scale,  2  frame  per  second.  

Page 14: Crystallization Methods and Screening · 0 5 10 15 20 25 30 35 40 45 50 0 2 4 6 8 10 12 14 16 18 20 E' 0' Understurated zone Metastable zone Labile zone 0 E b) Vapour diffusion experiment

Case  3:  An   interferometric   video   recording  an  experiment  consisting   of   pouring   a   lighter  lysozyme  protein  solution  (30  mg/ml)  over  a  NaCl  solution  (3%).  It  is  clearly  observed  the  phenomenon  of   double-­‐diffusive  salt   Ringering  instability.  The  salt  molecules  diffuse   faster  into  the  pockets  of  proteins  than  the  protein  molecules  into  the  pockets  of  salts.  That  simple  mechanism  creates  density  differences  between  the  pockets  and  the  surrounding   solution  that   provokes   the   formation   of   upwards   salt-­‐rich   Ringers   and   downwards   protein-­‐rich  Ringering.  Time  scale,  2  frame  per  second.

Page 15: Crystallization Methods and Screening · 0 5 10 15 20 25 30 35 40 45 50 0 2 4 6 8 10 12 14 16 18 20 E' 0' Understurated zone Metastable zone Labile zone 0 E b) Vapour diffusion experiment

Case   4:   An   interferometric   video   corresponding   to   an   experiment   consisting   of   pouring   a  Lysozyme   protein   solution   (60   mg/ml)   over   a   NaCl   solution   (9%).   The   interferometric   mode  switch  to  normal  optical  illumination  between  27  and  34  seconds.  Then,  it  can  be  clearly  noticed  that   due   to   high   concentration   of   the   solutions,   the   Rluid   is  mixed  by   drag   of   the  precipitated  protein.  Time  scale,  2  frame  per  second.

Page 16: Crystallization Methods and Screening · 0 5 10 15 20 25 30 35 40 45 50 0 2 4 6 8 10 12 14 16 18 20 E' 0' Understurated zone Metastable zone Labile zone 0 E b) Vapour diffusion experiment
Page 17: Crystallization Methods and Screening · 0 5 10 15 20 25 30 35 40 45 50 0 2 4 6 8 10 12 14 16 18 20 E' 0' Understurated zone Metastable zone Labile zone 0 E b) Vapour diffusion experiment
Page 18: Crystallization Methods and Screening · 0 5 10 15 20 25 30 35 40 45 50 0 2 4 6 8 10 12 14 16 18 20 E' 0' Understurated zone Metastable zone Labile zone 0 E b) Vapour diffusion experiment
Page 19: Crystallization Methods and Screening · 0 5 10 15 20 25 30 35 40 45 50 0 2 4 6 8 10 12 14 16 18 20 E' 0' Understurated zone Metastable zone Labile zone 0 E b) Vapour diffusion experiment

   

 

 

 

 

 

 

 

             t  =  25.0  s                                          t  =  34.0  s                                      t  =  64.0  s                            t  =  96.0  s                                                  t  =  153.0  s  

           t  =  0.0  s                                                                  t  =  3.0  s                                        t  =  10.0  s                                  t  =  16.0  s                                                        t  =  20.0  s  

Time  sequence  of   interferograms.  A  solu,on  of  Lysozyme  30  mg/ml  poured  on  top  of  a  solu,on  of  NaCl  2%  m/v.

Protein  lighter          more  viscousNaCl  heavier                  less  viscous  

Page 20: Crystallization Methods and Screening · 0 5 10 15 20 25 30 35 40 45 50 0 2 4 6 8 10 12 14 16 18 20 E' 0' Understurated zone Metastable zone Labile zone 0 E b) Vapour diffusion experiment
Page 21: Crystallization Methods and Screening · 0 5 10 15 20 25 30 35 40 45 50 0 2 4 6 8 10 12 14 16 18 20 E' 0' Understurated zone Metastable zone Labile zone 0 E b) Vapour diffusion experiment

As  a  pracBcal  corollary  of  the  results,  it  is  recommended  to  perform  mixing  when  seeking  for  reproducibility  while  avoid  mixing  when  seeking  for  a  more  complex  and  extensive  screening  of  the  crystallisaBon  space.  

To  Mix  or  not  to  Mix.  Is  that  the  ques7on?

From:  On  the  mixing  of  protein  crystallisa,on  cocktailsEduardo  I.  Howard,  José  Miguel  Fernandez  and  Juan  Manuel  Garcia-­‐RuizSubmi]ed  for  publica,on

Page 22: Crystallization Methods and Screening · 0 5 10 15 20 25 30 35 40 45 50 0 2 4 6 8 10 12 14 16 18 20 E' 0' Understurated zone Metastable zone Labile zone 0 E b) Vapour diffusion experiment

Batch  Method

Batch  Method  no  mixing  =  liquid-­‐liquid  diffusion  

Capillary  counter  diffusion  

Juan  Ma.  Garcia-­‐Ruiz                                                                                  XII  InternaBonal  Conference  on  the  CrystallizaBon  of  Biological  Macromolecules                                                        Cancun,  6-­‐9  of  May,  2008

Page 23: Crystallization Methods and Screening · 0 5 10 15 20 25 30 35 40 45 50 0 2 4 6 8 10 12 14 16 18 20 E' 0' Understurated zone Metastable zone Labile zone 0 E b) Vapour diffusion experiment

Requirements : Convection must be removed One reactant must flow faster than the other one It must be room to display the spatial pattern Initial conditions far from equilibrium

A precipitant chamber A long protein chamber

A physical buffer (optional)

The  counter-­‐diffusion  technique

Based on diffusion–reaction patterns forming when two reactants are allowed to diffuse one against the other under initial conditions very far from equilibrium*

How  do  counter-­‐diffusion  works?

*  J.M. Garcia-Ruiz, Counterdiffusion method for protein crystallisation. Methods in Enzimology 368 (2003) 130-154

tDdxerfcccppt

pptppt 221 0 +

= tDxerfcccp

pp 221 0 −

=The diffusion step: with        Dppt    >>  Dp  

The precipitation step is governed by supersaturation with respect to the solubility curve of the protein

Juan  Ma.  Garcia-­‐Ruiz                                                                                  XII  InternaBonal  Conference  on  the  CrystallizaBon  of  Biological  Macromolecules                                                        Cancun,  6-­‐9  of  May,  2008

Page 24: Crystallization Methods and Screening · 0 5 10 15 20 25 30 35 40 45 50 0 2 4 6 8 10 12 14 16 18 20 E' 0' Understurated zone Metastable zone Labile zone 0 E b) Vapour diffusion experiment

Counter-­‐diffusion  technique:How  do  it  works?

Precipitant

Typical counterdiffusion crystallization patterns

Protein concentration

Precipitant concentration

Precipitant

Precipitant

Juan  Ma.  Garcia-­‐Ruiz                                                                                  XII  InternaBonal  Conference  on  the  CrystallizaBon  of  Biological  Macromolecules                                                        Cancun,  6-­‐9  of  May,  2008

Page 25: Crystallization Methods and Screening · 0 5 10 15 20 25 30 35 40 45 50 0 2 4 6 8 10 12 14 16 18 20 E' 0' Understurated zone Metastable zone Labile zone 0 E b) Vapour diffusion experiment

A  supersatura8on  wave  for  protein  crystallisa8on

Numerical  simulaBon  of  the  counter-­‐diffusion  technique

J.M. García-Ruiz, F. Otálora, M.L. Novella, J.A. Gavira, C. Sauter and O. Vidal. J. Crystal Growth 232 (2001) 149-155

F.  Otálora  and  J.M.  García-­‐Ruiz.  Computer  simulaBon  of  the  diffusion/reacBon  interplay  in  the  gel  acupuncture  method.  Journal  of  Crystal  Growth  169  (1996)  361

F.  Otálora  and  J.M.  García-­‐Ruiz.  Computer  simulaBon  of  the  diffusion/reacBon  interplay  in  the  gel  acupuncture  method.  Journal  of  Crystal  Growth  169  (1996)  361  

Page 26: Crystallization Methods and Screening · 0 5 10 15 20 25 30 35 40 45 50 0 2 4 6 8 10 12 14 16 18 20 E' 0' Understurated zone Metastable zone Labile zone 0 E b) Vapour diffusion experiment

Requirements : Convection must be removed One reactant must flow faster than the other one It must be room to display the spatial pattern Initial conditions far from equilibrium

A precipitant chamber A long protein chamber

A physical buffer (optional)

The  counter-­‐diffusion  technique

Based on diffusion–reaction patterns forming when two reactants are allowed to diffuse one against the other under initial conditions very far from equilibrium*

tDdxerfcccppt

pptppt 221 0 +

= tDxerfcccp

pp 221 0 −

=The diffusion step: with        Dppt    >>  Dp  

The precipitation step is governed by supersaturation with respect to the solubility curve of the protein

Juan  Ma.  Garcia-­‐Ruiz                                                                                  XII  InternaBonal  Conference  on  the  CrystallizaBon  of  Biological  Macromolecules                                                        Cancun,  6-­‐9  of  May,  2008

Page 27: Crystallization Methods and Screening · 0 5 10 15 20 25 30 35 40 45 50 0 2 4 6 8 10 12 14 16 18 20 E' 0' Understurated zone Metastable zone Labile zone 0 E b) Vapour diffusion experiment

NaCl

35 m

m

A  demonstra8on  of  the  dynamics  of  pa7ern  forma8on  in  counterdiffusion  technique

5 mm

[NaCl]  20%  p/v[Agarose]  0.5%  p/v[Lysozyme]  100  mg/ml[Agarose]  0.25%  p/v

Advantage of CCD : Diffusive mixing assures reproducibility

Juan  Ma.  Garcia-­‐Ruiz                                                                                  XII  InternaBonal  Conference  on  the  CrystallizaBon  of  Biological  Macromolecules                                                        Cancun,  6-­‐9  of  May,  2008

Page 28: Crystallization Methods and Screening · 0 5 10 15 20 25 30 35 40 45 50 0 2 4 6 8 10 12 14 16 18 20 E' 0' Understurated zone Metastable zone Labile zone 0 E b) Vapour diffusion experiment

Precipitant concentration

Protein concentration

In batch + evaporation and vapor diffusion techniques the system moves towards far from equilibrium

In counter-diffusion technique the system moves from far from equilibrium to equilibrium:

The technique self-search the best crystallization conditions

Juan  Ma.  Garcia-­‐Ruiz                                                                                  XII  InternaBonal  Conference  on  the  CrystallizaBon  of  Biological  Macromolecules                                                        Cancun,  6-­‐9  of  May,  2008

Page 29: Crystallization Methods and Screening · 0 5 10 15 20 25 30 35 40 45 50 0 2 4 6 8 10 12 14 16 18 20 E' 0' Understurated zone Metastable zone Labile zone 0 E b) Vapour diffusion experiment

How to perform counter-diffusion experiments?

23

forces drag viscousforcesbuoyancy −⋅⋅Δ⋅⋅== να gcLGrN

Microgravity981-9.8 x10-4 cm2 s-1

Gels (10-7-10-6 cm) and capillaries (2 x 10-2 cm)

Viscosity 0.015 g cm-1 s-1

Density gradient≈ 10-3 gr cm-3 mol-1

Looking  for  diffusion  mass  transport  scenarios

J.M.  García-­‐Ruiz,  J.  Drenth,  M.  Ries-­‐KauV  and  A.  Tardieu.  A  world  without  gravity  -­‐  Research  in  space  for  health  and  industrial  processes.  Edited  by  G.  Seibert  et  al.,  ESA  SP  1251  June  (2001)

At  high  GrN  convecBon  dominate

At  low  GrN  convecBon  dominate

Juan  Ma.  Garcia-­‐Ruiz                                                                                  XII  InternaBonal  Conference  on  the  CrystallizaBon  of  Biological  Macromolecules                                                        Cancun,  6-­‐9  of  May,  2008

Page 30: Crystallization Methods and Screening · 0 5 10 15 20 25 30 35 40 45 50 0 2 4 6 8 10 12 14 16 18 20 E' 0' Understurated zone Metastable zone Labile zone 0 E b) Vapour diffusion experiment

Volume of protein solution required to fill a capillary as a function of its

For capillaries of 0.1 mm internal diameter the required volume of protein solution is 314 nanoliters for 4 cm long capillaries and 235 nanoliters for 3 cm long capillaries. For a capillary diameter of 0,75 mm (the limit for a good visualization) the volume of protein solution is just 166 and 133 nanoliters respectively.

20 40 60 80 100 120 140 160 180 200

0

200

400

600

800

1000

1200

1400

1600

Volu

men

in n

anol

iters

Capillary diameter (microns)

capillary length = 3 cm capillary length = 4 cm capillary length = 5 cm

20 40 60 80 1000

50

100

150

200

250

300

350

400

Juan  Ma.  Garcia-­‐Ruiz                                                                                  XII  InternaBonal  Conference  on  the  CrystallizaBon  of  Biological  Macromolecules                                                        Cancun,  6-­‐9  of  May,  2008

Page 31: Crystallization Methods and Screening · 0 5 10 15 20 25 30 35 40 45 50 0 2 4 6 8 10 12 14 16 18 20 E' 0' Understurated zone Metastable zone Labile zone 0 E b) Vapour diffusion experiment

Apoferri7n

Page 32: Crystallization Methods and Screening · 0 5 10 15 20 25 30 35 40 45 50 0 2 4 6 8 10 12 14 16 18 20 E' 0' Understurated zone Metastable zone Labile zone 0 E b) Vapour diffusion experiment

A)  Hfq,  B)  AP-­‐Sm1,  C)  AF-­‐Sm1  associated  to  a  14  bases  RNA  target  RNA,  D)  EndoVII,  E)  EndoVII  in  complex  with  a  DNA  cruciform  juncBon,  F)  EndoVII  in  complex  with  a  mismatched  DNA,  G)  lysozyme.  

From: Sauter, Biertümpfel et al., Acta Cryst. (2002). D58, 1657

photosystem II core complex of Pisum sativumIvana Kuta et al., Photosynth Reserach 2007

Or  by  counterdiffusion  techniques,  since  you  hace  already  seen  a  good  collec7on  of  crystal,  here  there  are  some  more  from  other  laboratory.

Page 33: Crystallization Methods and Screening · 0 5 10 15 20 25 30 35 40 45 50 0 2 4 6 8 10 12 14 16 18 20 E' 0' Understurated zone Metastable zone Labile zone 0 E b) Vapour diffusion experiment

Structure of 21 simple mutants of tiorredoxine de E. Coli

native

Residuos cargados superficiales

Residuos hydrofobos enterrados

PDB I.D. 2FCH, 1ZZY, 2FD3, 2H6X, 2H6Y, 2H6Z, 2H70, 2H71, 2H72, 2H73, 2H74, 2H75 y 2H76

D          EE          DI            VV          I

Residue number20 40 60 80 100

ΔΔ

G (kJ/m

ol)

-5

-4

-3

-2

-1

0

1

2

85

60

41

38

23

55

45

91

7572

13

2

4347

9

10

4

5 16

25

3061

44

48

101

10486

A  par7r  de  un  análisis  de  secuencia  se  han  determinado  las  mutaciones  mas  conservadas  evolu7vamente.  Para  entender  el  por  que  de  esta  conservación  se  llevan  a  cabo  estudios  termodinámicos  y  estructurales  que  nos  permitan  en  un  futuro  diseñar  proteínas  funcionales  de  mayor  robustez.

Page 34: Crystallization Methods and Screening · 0 5 10 15 20 25 30 35 40 45 50 0 2 4 6 8 10 12 14 16 18 20 E' 0' Understurated zone Metastable zone Labile zone 0 E b) Vapour diffusion experiment

SER38

Crystal structure of dihydropyrimidinase de S. meliloti...

…and mutants C76A y C181A of the hidantoin racemase of the

C76A C181A C76A-hidantoinaC76A-D,L-IPH C181A-D,L-MTEH

Dpto. Química, Área de Bioquímica y Biología Molecular. UAL. Dr. Felipe Rodríguez-Vico y Dr. Sergio Martínez-Rodríguez

Page 35: Crystallization Methods and Screening · 0 5 10 15 20 25 30 35 40 45 50 0 2 4 6 8 10 12 14 16 18 20 E' 0' Understurated zone Metastable zone Labile zone 0 E b) Vapour diffusion experiment

N114A Abl-SH3 domain mutant complexed with a high affinity peptide ligand

Table  1.-­‐  X-­‐ray  data  collec7on  sta7s7cs

Space group P212121

Unit cell dimensions 48.170 50.093 56.431 90.00 90.00 90.00

Resolution range (Å) 50-1.75

Number of observations 84702

Unique reflections 13236 (1638)

Data completeness (%) 92.2 (75.8)

Rmergeb (%) 0.07 (0.24)

I/σ(I) 16.4 (4.4)

a  The  values  in  parentheses  are  for  the  highest  resolu7on  bin    

Camara-Artigas et al., Acta Cryst. (2007). D63, 646–652

A demonstration of the use of the method to solve structures at room temperature directly from 0.1 mm capillary screening.

In situ data collection and structure determination at room temperature

Page 36: Crystallization Methods and Screening · 0 5 10 15 20 25 30 35 40 45 50 0 2 4 6 8 10 12 14 16 18 20 E' 0' Understurated zone Metastable zone Labile zone 0 E b) Vapour diffusion experiment

Protein Lysozyme Thaumatin HLFBPase FerritinMW 14,3 KDa 22 KDa 147 KDa 456 KDaIPtheoretical

9.3 8.5 6.6 5.4Precipitant NaCl Na/K Tart. PEG 4000 CdSO4pH 4.5 7.0 9.0 5.0

Protein and low concentration agarose

Precipitant + glycerol (cryo solution)

Crystal

Gavira,  J.A.  Et  al..    (2002).  Ab  ini4o  crystallographic  structure  determina,on  of  insulin  form  protein  to  electron  density  without  crystal  handling.  Acta  Crystallogr  D58  :1085-­‐1254Ng,  J.D  et  al.  (2003).    Protein  crystalliza,on  by  capillary  counter-­‐diffusion  for  applied  crystallographic  structure  determina,on.    Journal  of  Structural  Biology  142:218-­‐231.

Each  protein  was  concurrently  grown,  deriva7zed  with  a  halide,  treated  with  a  cryogenic  solu7on  in  a  single  capillary  tube  and  used  directly  for  data  collec7on  using  synchrotron  radia7on  source  without  ever  handling  the  crystals.The  structures  were  determined  ab  ini7o  by  Itera7ve  Single  Anomalous  Sca[ering  (ISAS)  yielding  to  de  novo  crystallographic  models.  This  procedure  is  proposed  as  a  direct  applica7on  towards  high  thorough-­‐put  screening  and  structure  determina7on  for  proteins  in  general.

Cryocrystallography with crystals grown by counterdiffusion techniqueKeeping  crystals  in  the  capillary  (Method  1) In situ data collection and structure determination

Page 37: Crystallization Methods and Screening · 0 5 10 15 20 25 30 35 40 45 50 0 2 4 6 8 10 12 14 16 18 20 E' 0' Understurated zone Metastable zone Labile zone 0 E b) Vapour diffusion experiment

XTALVIEW(Duncan E. McRee)

ISAS((Bi-Cheng Wang)

O(Alwyn Jones)

PHASES(W.Furey & S. Swaminathan)

XTALVIEW(Duncan E. McRee)

CCP4 (UK Science and Engineering Research Council)

+

J.A. Gavira, D. Toh, F.J. López-Jaramillo, J.M. García-Ruiz and J.D. Ng. Ab Initio crystallographic structure determination of insulin: from protein to electron density without crystal handling. Acta Cryst. D58 (2002) 1147-1154

Page 38: Crystallization Methods and Screening · 0 5 10 15 20 25 30 35 40 45 50 0 2 4 6 8 10 12 14 16 18 20 E' 0' Understurated zone Metastable zone Labile zone 0 E b) Vapour diffusion experiment

SH3  Alpha-­‐Spectrin  pH  9.0mixPEGs

SH3  Alpha-­‐Spectrin  pH  5.0PEG8K

Example  of  capillary  monted  crystal  for  cryo-­‐cooling

Page 39: Crystallization Methods and Screening · 0 5 10 15 20 25 30 35 40 45 50 0 2 4 6 8 10 12 14 16 18 20 E' 0' Understurated zone Metastable zone Labile zone 0 E b) Vapour diffusion experiment

Spectrin-­‐SH3Spectrin-­‐SH3

RT 100K

Wavelength  (Å) 0.977 0.977

Space  group P212121 P212121

Cell  parameters  (Å) 34.46,  42.47,  50.04 33.66,  42.24,  49.73

Resolu7on  limit  (Å) 1.55 1.55

T  data  collec7on  (K) RT 100

Precipitant mixPEGs mixPEGs

Crystalliza7on  Technique CD  Capillary CD  Capillary

Crystalliza7on  pH 9.0 9.0

Mosaicity 0.3-­‐0.4 0.8-­‐1.0

B  factor 19.7 21.0

Example  of  a  SH3  Alpha-­‐Spectrin   crystal   collected  at  room  temperature  and  then  cryo-­‐cooled  at  100K.

SH3  Alpha-­‐Spectrin  pH  9.0mixPEGs

Page 40: Crystallization Methods and Screening · 0 5 10 15 20 25 30 35 40 45 50 0 2 4 6 8 10 12 14 16 18 20 E' 0' Understurated zone Metastable zone Labile zone 0 E b) Vapour diffusion experiment

Precipitant/buffer  cocktail

Gel  plug

capillaries

cover

Juan  Ma.  Garcia-­‐Ruiz                                                                                  XII  InternaBonal  Conference  on  the  CrystallizaBon  of  Biological  Macromolecules                                                        Cancun,  6-­‐9  of  May,  2008

Page 41: Crystallization Methods and Screening · 0 5 10 15 20 25 30 35 40 45 50 0 2 4 6 8 10 12 14 16 18 20 E' 0' Understurated zone Metastable zone Labile zone 0 E b) Vapour diffusion experiment

Dip one capillary into the protein solution. The protein solution will rise by capillarity and the capillaries will be filled. Seal the upper end with the putty.

Dip the filled capillary into the GCB-Domino. Just punch the unsealed end of the capillary across the gel located on top of the precipitant.

Page 42: Crystallization Methods and Screening · 0 5 10 15 20 25 30 35 40 45 50 0 2 4 6 8 10 12 14 16 18 20 E' 0' Understurated zone Metastable zone Labile zone 0 E b) Vapour diffusion experiment

J.D.  Ng,  R.C.  Stevens  and  P.Kuhn,  submiVed

Juan Ma. Garcia-Ruiz Tokyo 2nd International Symposium on Diffraction Structural Biology 2007

Low-cost plastic constructs fabricated from cyclic olefin polymers shown non-birrefringent and compatible materials for microfluidic crystallization.

Tested with bacteriorhodpsin with lysozyme, bacteriorodopsin and thaumatin

New technologies applied to counterdiffusion

In situ data collection and structure determination

Joseph  D.  Ng,  Peter  J.  Clark,  Raymond  C.  Stevens  and  Peter  Kuhn.  In  situ  X-­‐ray  analysis  of  protein  crystals  in  low-­‐birefringent  and  X-­‐ray  transmissive  plasBc  microchannels.  Acta  Cryst.  (2008).  D64,  189–197

Page 43: Crystallization Methods and Screening · 0 5 10 15 20 25 30 35 40 45 50 0 2 4 6 8 10 12 14 16 18 20 E' 0' Understurated zone Metastable zone Labile zone 0 E b) Vapour diffusion experiment

Joseph  D.  Ng,  Peter  J.  Clark,  Raymond  C.  Stevens  and  Peter  Kuhn.  In  situ  X-­‐ray  analysis  of  protein  crystals  in  low-­‐birefringent  and  X-­‐ray  transmissive  plasBc  microchannels.  Acta  Cryst.  (2008).  D64,  189–197

Page 44: Crystallization Methods and Screening · 0 5 10 15 20 25 30 35 40 45 50 0 2 4 6 8 10 12 14 16 18 20 E' 0' Understurated zone Metastable zone Labile zone 0 E b) Vapour diffusion experiment

Sauter  et  al.,  From  macrofluidics  to  microfluidics  for  the  crystallizaBon  of  biological  macromolecules  CGD  7  2007.  

Song,  H.;  Tice,  J.  D.;  Ismagilov,  R.  F.  Angew.  Chem.,  Int.  Ed.  2003,  42,  768-­‐772.

Using  microfluidics  to  decouple  nucleaBon  and  growth  of  protein  crystals.  J.U.  Shim,  G.  Cristobal  G,  D.R.  Link,  T.  Thorsen,  S.  Fraden,  Crystal  Growth  &  Design  7,  2192-­‐2194  (2007).

Page 45: Crystallization Methods and Screening · 0 5 10 15 20 25 30 35 40 45 50 0 2 4 6 8 10 12 14 16 18 20 E' 0' Understurated zone Metastable zone Labile zone 0 E b) Vapour diffusion experiment

Our  aim  is  to  reduce  the  screening  for  crystallizaBon  condiBons  as  much  as  possible  based  on  understanding

Could  a  mixture  of  PEGs  do  as  well  as  each  PEG  separately?Is  it  the  pH  of  the  crystallizaBon  experiment  important  when  used  salts  as  well  as  PEG  as  precipitaBng  agent?      

Study  base  on  20  proteins  along  one  year:

PEG  400K  (30%)  ;  six  pH  values  PEG  4000    (PEG  30%);  six  pH  values    PEG  8000  (30  %);  six  pH  values  PEG  400K  (20%)  ;  PEG  4000    (PEG  15%);  PEG  8000  (10  %);  six  pH  values  

Ammonium  sulphate  3M  at  six  different  pH  values.

Page 46: Crystallization Methods and Screening · 0 5 10 15 20 25 30 35 40 45 50 0 2 4 6 8 10 12 14 16 18 20 E' 0' Understurated zone Metastable zone Labile zone 0 E b) Vapour diffusion experiment

pH 4 pH 5 pH 6 pH 7 pH 8 pH 9

The precipitant cocktail contains:

a) A buffer that keep the solution within one unit of pHb) A low molecular weight polyethylene glycol c) A high molecular weight polyethylene glycold) An additive that may help to precipitate the protein.

)(TRTD B

ηπκ

≅According to Einstein-Stokes relation the diffusivity depends on the radius of the molecule. Therefore:

Buffer molecules diffuses faster and change the pH of the protein solutionLow MW PEG molecules go later onFinally high MW PEG molecules scan the capillary

Several effects in one single experiment !All concentrations tested in one experiment !

Juan  Ma.  Garcia-­‐Ruiz                                                                                  XII  InternaBonal  Conference  on  the  CrystallizaBon  of  Biological  Macromolecules                                                        Cancun,  6-­‐9  of  May,  2008

Page 47: Crystallization Methods and Screening · 0 5 10 15 20 25 30 35 40 45 50 0 2 4 6 8 10 12 14 16 18 20 E' 0' Understurated zone Metastable zone Labile zone 0 E b) Vapour diffusion experiment

Crystallizability  is  very  sensiBve  to  pH  –as  expected.  The  bad  new  is  that  there  is  not  A  clear  correlaBon  with  pI.  When  crystals  form    at  any  pH,  precipitaBon  occurs  in  any  other  pH  

Page 48: Crystallization Methods and Screening · 0 5 10 15 20 25 30 35 40 45 50 0 2 4 6 8 10 12 14 16 18 20 E' 0' Understurated zone Metastable zone Labile zone 0 E b) Vapour diffusion experiment

Crystallizability  is  sensiBve  to  pH.  There  is  not  a  clear  correlaBon  with  pI.The  3PEG  mixture  does  as  well  as  each  of  them.  However  ,  it  is  required  to  increase  the  concentraBon  of  PEG  8K  

Page 49: Crystallization Methods and Screening · 0 5 10 15 20 25 30 35 40 45 50 0 2 4 6 8 10 12 14 16 18 20 E' 0' Understurated zone Metastable zone Labile zone 0 E b) Vapour diffusion experiment

Some additional results observed :

1. It is confirmed that, for the same screening matrix, counterdiffusion yields at least as many hits as vapor diffusion, within the first three weeks after set-up of the experiments.

2. It is confirmed that for similar crystallization conditions, nucleation is retarded in the case of counterdiffusion with respect to drop techniques.

3. It has been also proven that counterdiffusion yields crystals under screening conditions that drop techniques never produced. Noticeably the number of new crystallization conditions increases with time, sometime with waiting periods of month(S)

Page 50: Crystallization Methods and Screening · 0 5 10 15 20 25 30 35 40 45 50 0 2 4 6 8 10 12 14 16 18 20 E' 0' Understurated zone Metastable zone Labile zone 0 E b) Vapour diffusion experiment

crystal form changes with crystallisation technique The way in which supersaturation is achieved has an effect on the crystal form. Protein crystallisation crystal form technique

Cablys3*lysozyme hanging drop PEG P212121 67 69 113 90 90 90 hanging drop formate C2 133 73 39 90 105 90 APCF C2 129 73 38 90 107 90 counterdiffusion formate P212121 68 69 113 90 90 90

TIM hanging drop AS P3221 125 104 counterdiffusion AS P3x12 215 106

Parvalbumin sitting drop P212121 51 50 35 counterdiffusion P21212 59 59 26 counterdiffusion P1 26 32 53 85 83, 79

From I. Zeggers, J.M. García-Ruiz and coworkers, unpublished data

Page 51: Crystallization Methods and Screening · 0 5 10 15 20 25 30 35 40 45 50 0 2 4 6 8 10 12 14 16 18 20 E' 0' Understurated zone Metastable zone Labile zone 0 E b) Vapour diffusion experiment

PDB ID Variant S G Condition Method1KEB P40S. P 1 pH: 3.8

Ethanol: 25% CuAc2:10 mMNaAc:100 mM

Diffusion-Vd

1SRX Forma oxidada C 2 pH: 3.8Ethanol: 25%CuAc2:10 mMNaAc: 100 mM

Diffusion-Vd

2TRX Silvestre C 2 T: 4° CpH: 3.7-4.1Butane 0.001-0MMPD: 48-50%NaAc: 0.01-0MCuAc2:1 mM

Micro-dialysis

2FCH G74S P 21 21 21 T: 4° CpH: 5.4 MPD: 60%NaAc: 15 mMCuAc2: 1 mM

Counter-diffusion

1ZZY L7V P1 pH: 3.8Ethanol: 25%CuAc2: 10 mMNaAc: 100 mM

Counter-diffusion

2FD3 P34H P1 21 1 T: 4° CpH: 8.0 MPD: 60%Hepes: 15 mMCuAc2:1 mM

Counter-diffusion

2H6X2H6Y a Z2H70 a 76

WildE48D, E44DD9E,D47E, E85DD43E, D2E, D13ED10E

P61 pH: 6.9pH:3.5, 7.0 pH: 7.0, 7.0, 5.4pH:7.0, 3.5, 7.0pH:4.1T: 4° CMPD: 60% NaAc/Hepes:15mMCuAc2:1 mM

Counter-diffusion

Counterdiffusion produces new polymorphs

Vrije  Universiteit  Brussel,  Université  de  Liege,  Univesrité  Catolique  de  Louvaine  

Page 52: Crystallization Methods and Screening · 0 5 10 15 20 25 30 35 40 45 50 0 2 4 6 8 10 12 14 16 18 20 E' 0' Understurated zone Metastable zone Labile zone 0 E b) Vapour diffusion experiment

Screening with counter-diffusion technique

Simple and fast preparation of the experiments

No tools required. Just fill the capillary and punch it into the precipitation cocktail

Extensive search of the crystallization space for pH and precipitant concentrations

Actual grid screen can be made possible and are recomended

Requires minimal amount of protein

Even lest than 250 nanoliters per capillary.

No pictures and image analysis required.

The whole growth history is stored in the capillaries.

Unambiguous interpretation of the results

The technique does not yield single results but a trend

The number of conditions for effective screening can be reduced

Mix of PEGs can be used to replace singular MW PEGS.

Page 53: Crystallization Methods and Screening · 0 5 10 15 20 25 30 35 40 45 50 0 2 4 6 8 10 12 14 16 18 20 E' 0' Understurated zone Metastable zone Labile zone 0 E b) Vapour diffusion experiment

Coauthors in the work presented in this talk:

Luis  Antonio  Gonzalez:  CrystallizaBon  experiment  implementaBonJosé  Luis  Gavira:  Handling  of  crystals  and  X-­‐ray  diffracBon  analysisEduardo  Howards:  Work  on  mixing  experimentsJoe  Ng:  First  screening  and  in  situ  X-­‐ray  diffracBon  analysisFermín  Otalora:  Computer  simulaBons

   

Financial support from and help from:

European Community VI Framework ProgramSpanish Government (MEC)Triana Science and TechnologyThis is a product of La Factoría de Cristalización

Page 54: Crystallization Methods and Screening · 0 5 10 15 20 25 30 35 40 45 50 0 2 4 6 8 10 12 14 16 18 20 E' 0' Understurated zone Metastable zone Labile zone 0 E b) Vapour diffusion experiment

Thank you

This is a product of La Factoría de Cristalización