cr 137824 available to the public final report (nasa-29 ... · cr 137824 available to the public...

91
CR 137824 AVAILABLE TO THE PUBLIC FINAL REPORT (NASA-29- 137824) EIND FUYEEL TEST BESDLTS N76-28190 3P 25 FOOT TILT ROTOR DCBINPJ AUM~OTBTION Pirial Report (Bel2 Yelicopter Co.) €IC 35.00 CSCL 01A Unclas 91 p - -- G3/32 47835 WIND WNNEL TEST RESULTS OF 25-FOOT TILT ROTOR DURING AUTOROTATION REPORT 301-099-005 NASA CONTRACT NAS2-8580 POST OFFICE DOX 402 - FORT WORTH. TEXAS 76101 A COMPANV https://ntrs.nasa.gov/search.jsp?R=19760021102 2020-05-30T03:12:04+00:00Z

Upload: others

Post on 27-May-2020

2 views

Category:

Documents


0 download

TRANSCRIPT

CR 137824 AVAILABLE TO THE PUBLIC

FINAL REPORT

(NASA-29- 137824) EIND FUYEEL TEST BESDLTS N76-28190 3P 25 FOOT TILT ROTOR DCBINPJ A U M ~ O T B T I O N Pirial Report (Bel2 Yelicopter Co.)

€IC 35.00 CSCL 01A U n c l a s 9 1 p

- -- G3/32 47835

WIND WNNEL TEST RESULTS

OF 25-FOOT TILT ROTOR

DURING AUTOROTATION

REPORT 301-099-005

NASA CONTRACT NAS2-8580

POST OFFICE D O X 402 - FORT WORTH. T E X A S 76101 A C O M P A N V

https://ntrs.nasa.gov/search.jsp?R=19760021102 2020-05-30T03:12:04+00:00Z

WIND TUNNEL TEST RESULTS OF

25-FT. TILT ROTOR DURING

AUTOROTATION

R. L. Marr

B e l l Hel icopter Textron Report N o . 301-099-005

1 February 1976

Prepared Under Contract No . NAS2-8580

By B e l l Hel icopter Textron

F o r t Worth, Texas

For

Nat ional Aeronautics and Space Adminis t ra t ion

Ames Research Center

Mof f e t t F i e l d , C a l i f o r n i a

This d a t a is furn ished i n accordance with t h e provis ions of Contract NAS2-8580.

301-099-005

FOREWARD

This report is prepared by B e l l He l i cop te r Textron, F o r t Worth, Texas, for the Nat iona l Aeronautics and Space Administration, AmeS Research Center, Moffe t t F i e l d , C a l i f o r n i a , under Cont rac t NAS2-8580.

The Adminis t ra t ive Cont rac t ing O f f i c e r was Mr. Dennis Brown. The Technical Monitor w a s Mr. Kip Edenborough, T i l t Rotor Research A i r c r a f t P r o j e c t Off ice . w a s Mr. Robert H. Stroub, Rotor Group-Large S c a l e A e r o - dynamics Branch.

The Tunnel T e s t Engineer

301-099-005 ii

TABLE OF CONTENTS

L I S T OF ILLUSTRATIONS

L I S T OF TABLES

L I S T OF SYMBOLS

I .

11.

111.

TV.

v. V I .

V I I .

SUMMARY

INTRODUCTION

DESCRIPTION OF THE MODEL

DESCRIPTION OF TEST

DATA REDUCTION

RESULTS OF TEST

CCYCLUS IONS

L I S T OF REFERENCES

APPENDIX - TEST DATA

1. R u n Schedule

2. Instrumentation Problems

3. HSDS Data

4 . Scale Data

' Paqe

iv

vi

vii

1-1

11-1

111-1

1v-1

v-1 v1-1

v11-1

V I I I - 1

A-1

A-5

A-10

A-15

301-099-005 iii

Number

11-1

111-1

111-2

v- 1

v- 2

V I - 1

V I - 2

V I - 3

V I - 4

VI-5

V I - 6

V I - 7

VI-8

V I - 9

VI-10

V I - 1 1

V I - 1 2

V I - 13

V I - 1 4

V I - 1 5

LIST OF ILLUSTRATIONS

25-Ft. T i l t Rotor/PTR i n NASA-Ames 40- by 8O-Foot Wind Tunnel

Asymmetric Mode Natura l Frequencies

Symmetric Mode Natura l Frequencies

Spinner L i f t Tare

Spinner Drag Tare

Hover Power vs Thrus t

Hover Power C o e f f i c i e n t v s Thrus t C o e f f i c i e n t

Hover Performance Comparison

Forward F l i g h t - Thrust/Power vs C o l l e c t i v e

Forward F l i g h t Performance Comparison

Forward F l i g h t H-/Y-Force vs Collective

Forward F l i g h t Propuls ive Force

Forward F l i g h t Cyclic/Flapping v s Collective

Forward F l i g h t Blade Loads

Autoro ta t ion Thrust/Power - 60 Knots

Autorotat ion Thrust/Power - 80 Knots

Autoro ta t ion Thrust/Power - 100 Knots

Autorotat ion Thrust/Power - 80 Knots Comparison with C81

Autorotat ion Cyclic/Flapping vs C o l l e c t i v e

Autorotat ion Blade Loads - 80 Knots

Page

11-2

111-4

111-5

v-1 v-2

v1-6

v1-7

VI-a

v1-9

v1-10

v1-11

v1-12

v1-13

v1-14

v1-15

v1-16

v1-17

v1-18

v1-19

v1-20

30 1-099-00 5 i v

LIST OF ILLUSTRATIONS

(Continued)

Number

VI-16

V I - 17

V I - 10

VI-19

VI-20

V I - 2 1

Page

Autorotation Blade Loads, E f f e c t of VI-21 Lateral Cycl ic

Autorotation Minimum Power C o e f f i c i e n t - 60 Knots

VI-22

Autorotation Minimum Power Coef f i c i ent - VI-23 80 Knots

Autorotation Minimum Power C o e f f i c i e n t - VI-24 100 Knots

Maximum L i f t Coef f i c i ent VI-25

Autorotation Rate o f Descent VT-26

301-099-005 V

LIST OF TABLES

Number

111-1

111-2

111-3

A- 1

A- 2

A- 3

A- 4

Page

Rotor Descriptive Data 111-6

Propeller T e s t Stand Natural Frequencies 111-7

Instrumentation 111-8

R u n Schedule A - l

Failure Summary A-0

HSDS - Mean/Peak to Peak Data A-10

Scale Data A-15

301-099-005 vi

#LL Use 01 dirckrure d data on this pg is r u b i d to the restriction on the title m. W E U O O C r e R o o ~ n u u v

LIST OF SYMBOLS

S A l S

A 1

B1

VSND

CHS

CLR

CMXS

CMYS

CMZS

CP

t a t i o n HS DS

LONSP

A1S

LATSP

B 1s

- -

-

-

-

-

-

Descr ip t ion

Fore and a f t f lapping angle wi th r e s p e c t to t h e s h a f t ( p o s i t i v e a f t ) , deg

Lateral c y c l i c angle wi th r e s p e c t to t h e s h a f t (posi- t i v e down @ $ = goo), deg

Lateral f l app ing angle w i t h r e s p e c t t o t h e s h a f t (posi- t i v e down @ $ = 90°) , deg

Fore and a f t c y c l i c angle wit1 r e s p e c t to t h e s h a f t (posi t ivg f w d ) , deg

Speed o f sound, knots

H-force c o e f f i c i e n t / r o t o r s o l i d i t y r a t i o

H/u = H/pnn R u C

L i f t c o e f f i c i e n t / r o t o r s o l i d i t y r a t i o

cL/u = L/pnn R u

Rol l ing moment c o e f f i c i e n t / r o t o r s o l i d i t y r a t i o

Yawing moment c o e f f i c i e n t / rotor s o l i d i t y r a t i o

P i t c h i n g moment c o e f f i c i e n t / r o t o r s o l i d i t y r a t i o

Power c o e f f i c i e n t based on thc m a s t torque Cp = Q/p.rrn 2 5 R

301-099-005 vi i

I Us0 or 8irclosun ol drtr on this plpr is I subM b tho ratrlctmm on tho titk mo.

cp O Q I

cT

‘T/u

Cx/a

D

D/a ’

f

FM

H

H / B ’

L I S T OF SYMBOLS (Continued)

CPS

CPOS

CT

CTS

CXR

CYR

D

DRG6

FE

FM

FORH

FRH6

ta t i o n HS DS Descript ion

Power c o e f f i c i e n t / r o t o r 2 5 s o l i d i t y

Cp/u = Q/pnR R u

Minimum power c o e f f i c i e n t / rotor s o l i d i t y r a t io

Thrus t c o e f f i c i e n t 2 4 CT = T/paO R

Thrust c o e f f i c i e n t / r o t o r s o l i d i t y ratio

2 4 CTlU = T & n R u

Drag c o e f f i c i e n t / r o t o r s o l i d i t : r a t i o c . . L 9 = D / , R R U cX/=

Y-force c o e f f i c i e n t / r o t o r s o l i d i t y r a t i o

Cy/,, = Y/prn R 2 4

Drag, l b

Drag referred to sea l e v e l s t anda rd cond i t ions , l b

F l a t p l a t e drag a rea 2 F = D/q, f t

Figure of merit

l C P FM = .707 CT 3/2

H-force, perpendicular t o the s h a f t , l b

H-force r e f e r r e d t o s e a l e v e l s tandard cond i t ions

301-099-005 v i i i

I Use or disclosure d data on this p*lr is I r u b k t to the restriction on the titk prpc.

LIST OF SYMBOLS (Continued)

Symbol

HPMAST

HPMAS T/C '

HPB

HPLC

L

L/u'

MTIP

4

'MAST

QLC R

T

T /u

'KTS

Computer fi Scale Data

MHP

PWR6

HPB

PLC

L

LFT6

MTIP

PT

Q

S FTQ

QLC

R

THS T

TS T6

VKTS

OR

SIDE

SID6

301-099-005

Horsepower based on mast torque HP = QW550

Horsepower based on inast torque r e f e r r e d to sea l e v e l s t anda rd condi t ions .

Horsepower based on wind tunne l balance

Horsepower based on test s t a n d load cel l

L i f t , l b

L i f t r e f e r r e d t o sea l e v e l s t anda rd cond i t ions , l b

Advancing t i p Mach number 9

Data p o i n t number

Dynamic p res su re , l b / f t 2

Mast torque , f t - l b

Load ce l l to rque , f t - l b

Rotor r a d i u s , f t

Thrus t a long t h e s h a f t axis, l b

Thrus t r e f e r r e d t o sea l e v e l s t anda rd cond i t ions , l b

Tunnel speed, knots

Rotor t i p speed, VTIp=RR, ft/se

Y-force, l b

Y-force referred to sea l e v e l s tandax d con d i t u s . lb

i x

Uu w discburr d dr(r on lhir pgr h r u b k l b lha mlriclh on lhr lilk pgr.

symbol

a C

QIS

TTP CY

rl

e TIP P

n U

Wl

LIST OF SYMBOLS (Continued)

ALFC

ALFS

ALTP

EFF

THTA

ADVR

R P M

S 1 G

RHOR

THETA

- N P R

- -

~ ~~

Descr ip t ion

Control ax is angle o f a t t a c k ,

S h a f t angle of a t t a c k r e f e r r e d t o wind a x i s , deg

Tip pa th p lane angle o f a t t a c k , = a - 9 0 + a deg a

S l S TTP

Propuls ive e f f i c i e n c y based on the mast torque power r l = ( T VFps) cos a s / 5 5 0 HPmST

Tip c o l l e c t i v e angle , deg

Advance r a t i o P = V/OR

Rotor rpm, rpm

Rotor s o l i d i t y (. 0891)

A i r dens i ty r a t i o Q'= p / p o

301-099-005 X

I Use or discbsure 01 data on this pap 15 I r u b k t to the r n t r l c t h on the til* OM

I. SUMMARY

A 25-foot diameter tilt rotor was tested in the NASA-Ames 40- by 80-foot Large-Scale Wind Tunnel under NASA Contract NAS2-8580. The test confirmed the predicted autorotation capability of the XV-15 tilt rotor aircraft.

Autorotations were made at 60, 80, and 100 knots. A limited evaluation of lateral cyclic was made. Due to instrumentation, electrical, and mechanical problems, there was not time to expand the 1970 test envelope. Check runs that were made compared with the 1970 wind tunnel test at hover and 80 knots.

Test data indicate a minimum rate of descent of 2200 feet per minute at 60 knots at the XV-15 design gross weight of 13,000 pounds.

301-099-005 1-1

bELL Use or disclosure 01 data on this page is

subpct to the restriction on the title page. HeUOOCTER OWMHY

11. INTRODUCTION

This report presents the results and a brief analysis of a wind tunnel test of a 25-foot-diameter rotor designed for tilt-rotor aircraft operation as shown in Figure 11-1. Testing was accomplished to determine rotor performance and blade loads during forward flight and autorotation. The rotor tested was identical to that used on the XV-15 tilt rotor research aircraft. Testing was accomplished in the NASA-Ames 40- by 8O-foot wind tunnel. Work to prepare t\e model, testhg, and documentation were accomplished under NASA Contract NAS2-8580.

This particular rotor configuration was tested in the ARC 40- by 8O-foot wind tunnel in 1970 to obtain performance, blade loads, and dynamic stability characteristics in forward flight. Since that time, the control system design of the rotor has been changed to incorporate provisions for lateral cyclic control. In addition, the autorotation capabilities of the tilt rotor have been given considerable attention since that testing through analytical work and small scale model tests. The indications were that autorotation would be a critical area of operation and require full scale testing. Since the 1970 test, the tunnel test stand configuration was changed to accommodate autorotation shaft angles allowing the expansion of the test envelope of the tilt rotor.

Several instrumentation problems encovntered during this test, although unrelated to rotor performance, limited the forward flight testing. Limited testing was accomplished to verify the effects of lateral cyclic on the reduction of lateral flapping and blade loads. Most of the test period was spent obtaining autorotation cha-acteristics at several shaft angles and air- speeds. Comparisons made between analytical methods and test show the rotor to require higher shaft angles to autorotate than predicted.

3Q1-099-005 11-1

111. DESCRIPTION OF TEST HARDWARE

A. T i l t Rotcr and Controls

1. Descript ion

The 25-foot three-bladed tilt rotor is a gimbaled, s t i f f - i n s l a n e rotor w i t h an elastomeric hub s p r i n g to p o v i d e increased c o n t r o l power and damping during h e l i c o p t e r mode. The rotor has a swashplate which provides t w o axes of c y c l i c p i t c h and has p o s i t i v e p i t c h f l a p cou; ‘ ing , Blade c o l l e c t i v e p i t c h is provided by a r i s e -and- fa l l c o l l e c t i v e head assembly above t h e r o t o r through three walking beams. Rotat ion of the rotors is such t h a t inboard blade t i p r o t a t i o n is a f t f o r h e l i c o p t e r m a s t angles and up f o r a i r p l a n e m a s t angles , During t h i s test the r i g h t hand rotor w a s tested g iv ing r o t a t i o n clockwise (view looking forward) ,

The b lades have a bonded aluminum honeycomb af te rbody and 17-7PH s t a i n l e s s steel s p a r s and sk ins . The a i r f o i l s e c t i o n s vary from an NACA 64-208 s e c t i o n a t t h e t i p t o a NACA 64-429 a t the root ( r / R = .15). The combination of t w i s t and camber w a s s e l e c t e d to m e e t t h e aerodynamic requirements f o r both h e l i c o p t e r and a i r p l a n e f l i g h t , and t o per - i t the b lade s p a r s t r u c t u r e t o have a uniform t w i s t rate. Total aerodynamic t w i s t from rotor c e n t e r l i n e to b lade t i p is 4 5 degrees.

Table 111-1 provides a summary of the p e r t i n e n t d a t a concerning t h e r o t o r . References 1 and 2 provide a complete d e s c r i p t i o n of t h e rotor

2 . Uatura l Frequencies

Prior t o t h e wind tunnel t e s t E , the r o t o r n a t u r a l f requencies were c a l c u l a t e d using t h e Myklestad - BHT normal modes program. These r e s u l t s were then compared w i t h t h e f requencies repor ted i n r e fe rence 2 .

Figure 111-1 shows t h e r e s u l t s ob ta ined for the asymmetric ( c y c l i c ) modes, while Figure 111-2 g ives t h e comparison for t h e symmetric ( c o l l e c t i v e ) modes. These f i g u r e s show good agreement between t h e r ecen t ly c a l c u l a t e d f requencies and those previously repor ted , e s p e c i a l l y f o r t h e lower frequencies .

30 1- 09 9- 0 0 5 111-1

The fan plots i n d i c a t e t h a t t h e r e would n o t be any s e r i o u s resonance problems a t o p e r a t i n g RPM. During t h e test, t h e s m a l l resonance a t 350 RPM, dur ing run up t o rpm, w a s q u i t e e v i d e n t confirming t h e c ros s ing of the 2/rev l i n e by t h e first c y c l i c inp lane mode. Other than t h a t , no problems w e r e encountered.

B. T e s t Stand -- 1. Descr ip t ion

T e s t s t a n d used for this test w a s t h e NASA P r o p e l l e r Test Rig (PTit). The power module of t h i s test r i g c o n s i s t s of t w o 1500-HP electric motors mounted i n tandem on a frame, d r i v i n g an R-2800 engine reduct ion gearbox. The power module w a s mounted on t h e t w o 15-Lt. main s t r u t s t o t h e balance frame i n t h e 40- by 8@-foot wind tunnel . With t h e PTR i n t h i s conf igura t ion , rotor s h a f t angle-of-attack w a s changed by yawing the complete tes t r ig . A t ~ o = Oo, t h e rotor w a s i n air- p lane f l i g h t . A t $ = 90 , the rotor w a s i n h e l i c o p t e r f l i g h t . S h a f t angle-of-attack range tested w a s f r o m 3 degrees ( a i r p l a n e ) t o 110 degrees (hel icopter-auto- r o t a t i o n ) . Tunnel test s t a n d has t h e c a p a b i l i t y of varying s h a f t angle from +lo9 t o -191 degrees.

The r o t o r gearbox adap te r and m a s t case to the PTR w a s t h e same as used dur ing t h e 1970 wind tunnel test as descr ibed i n Reference 1.

2. Natural Freauencies

A v i b r a t i o n a n a l y s i s of t h e P r o p e l l e r T e s t Rig, w i t h t he 25-foot tilt rotor i n s t a l l e d , was made p r i o r t o t e s t i n g . The test s t a n d s t r u c t u r e w a s modeled on t h e NASTRAN s t r u c t u r a l a n a l y s i s and t h e n a t u r a l f requencies determined as r epor t ed i n t h e p r e - t e s t r e p o r t , Reference 3.

A v i b r a t i o n survey o f t h e actual P r o p e l l e r T e s t Rig i n s t a l l e d i n t h e tunne l w a s made wi thout a rotor to determine t h e p r i n c i p a l f requencies and damping o f t h e s t r u c t u r e and w i t h dummy weights r e p r e s e n t a t i v e of t h e r o t o r . The ro tor -of f t r a n s f e r func t ion w a s measured i n t h e l o n g i t u d i n a l , l a te ra l , and v e r t i c a l d i r e c t i o n s for yaw angles of & = Oo and 90°. Rotor weights-on r e s u l t s wereoobtained for la teral and v e r t i c a l modes a t $= 0 only. The d i r e c t i o n of shaking ( l a t e r a l o r l o n g i t u d i n a l ) is def ined wi th r e s p e c t t o t h e PTR module, n o t the kalance and wind tunnel . The test procedure and complete r e s u l t s are descr ibed i n d e t a i l i n References 4 through 6.

301-099-005 111-2

Use or diubwn a( (I(r an h i s ruli (0 Ihr ratfirtian an Ihr lit@ m.

is

C.

The measured test s t and n a t u r a l f requencies are compared to t h e c a l c u l a t e d f requencies i n Table 111-2.

Ins t rumenta t ion

Conventional ins t rumenta t ion w a s used to measure loads , control pos i t i onh , d e f l e c t i o n s , and a c c e l e r a t i o n s . Rotat ing system ins t rumenta t ion channels u t i l i z e d a 52-ring s l i p r i n g t o pfpyide 2 e x c i t a t i o n power channels and 24 data channels. Table 111-3 summarizes t h e data channels recorded. A l l channels w e r e recorded on the 40- by 80-foot wind tunne l High Speed D a t a Acquis i t ion System (HSDAS) . The HSDAS w a s used to provide d i g i t a l p r i n t o u t s of analog traces, harmonic a n a l y s i s , and c a l i b r a t i o n information. One oscillo- graph w a s used to monitor c r i t i ca l items dur ing t h e test. T h e 50-channel Peak t o Peak i n d i c a t o r u n i t w a s also used to monitor loads and v i b r a t i o n l e v e l s of a l l channels during the test. Yoke and b lade beam /chord (Sta . 8.4 and 52.5) loads along w i t h p i t c h l i n k o s c i l l a t o r y loads were monitored on an o s c i l l o s c o p e and on the model c o n t r o l console panel.

( "Or ig ina l ly only one e x c i t a t i o n power channel and 25 d a t a channels were a v a i l a b l e . High l i n e vo l t age drop between the model and recording systems and t h e loss of one d a t a channel allowed changing t o two power channels. This change reduced t h e l i n e vol tage drop to a more acceptab le l e v e l .

30 1- 09 9- 00 5 111-3

301- 099-005 7

111-5

TABLE 111-1. ROTOR DESCRIPTIVE DATA

Number o f blades

Diameter

D i s c A r e a

Blade Chord

Blade A r e a (Total 3 b lades)

S o l i d i t y

Blade A i r f o i l Sec t ion R o o t (CL mast) .15R .25R .50R .75R

1. OOR

Blade Twist Aerodynamic Geometric

H u b Precone

6 3 Hub Spring

Flapping Design Clearance

Blade I n e r t i a ( p e r b lade)

Rotor rpm/tip speed Hel icopter Airplane

3

7.62m (25 ft.)

45.6m2 (491 f t . 2 )

.356m (14 in . ) (17 i n . @ .0875R tapering to 14 i n . a t .25R

4.06m2 (43.75 ft.2

.089

NACA 64-935 NACA 64-429 NACA 64-425 NACA 64-218 NACA 64-112 NACA 64-208

45 deg 40.9 deg

2.5 deg

-15.0 deg

2700 in-lb/deg

-12/0 deg + 2 102.5 s l u g - f t

565 rpm/740 f t / s e c 4 5 8 rpm/600 f t / s e c

- ~~

301-099-005 111-6

TABLE 111-2. PROPELLER TEST STAND NATURAL FREQUENCIES

Mode

Lateral Modes Balance L a t e r a l Yaw S t r u t S ide Module Module Mast Module

Longi tudinal Modes Balance Longi tudina l S t r u t Longi tudinal Module Module

Vertical Modes Balance Balance Balance Balance Module Module Mast

Measurl R o t o r - O f f

TT-

1.73 3.14 5.56

12.3 17.2

33.3

1 . 4 4 3.54

16.2 28.6

1.29 2.41 5.55

11.7 15.9

33.1

2 .3 3.9

16.8 28.8

1.56 2.31 5.54 7.64

13.5 16.4

d - HZ Ro tor-On

( eq;;;w t . I

1.65 3.26 4.90

20.4

7.34 11.0 1 4 . 7 2 4 . 0

NASTRAN Model

(equiv. w t . )

1.43 2.09 6.68/2.52

16.9 21.6

1.80 3.99

20.24

7.90 1 2 . 8 14.45 29.03

301-099-005 111-7

TABLE 111-3. INSTRUMENTATION

Blade beamwise bending moment -Sta. 22.825 (red blade)

Blade beamwise bending moment -Sta. 52.5 (red blade)

Blade beamwise bending moment -Sta. 75.0 (red blade)

Blade beamwise bending moment -Sta. 112.5 (red blade)

Blade chordwise bending moment -Sta. 52.5 (red blade)

Blade chordwise bending moment -Sta. 75.0 (red blade)

Blade chordwise bending moment -Sta. 112.5 (red blade)

Blade torsion - Sta. 52.5 (red blade)

Blade torsion - Sta. 112.5 ( red blade)

Blade stress trailing edge -Sta. 75.0

Blade stress leading edge -Sta. 9.5

Blade stress trailing edge -Sta. 9.5

Yoke chordwise bending moment -Sta. 8.275 (red blade)

Yoke beamwise bending moment -Sta. 8.375 (red blade)

1

2

3

4

5

6

7

8

9

10

11

12

13

14

!1 No. O-Graph

3

8

20

21

23

24

Computer Notation

BB2 3

BB53

BB75

BE113

CH53

CH75

a 1 1 3

TR5 3

TR113

m 7 5

LE9

TE 9

YOKEC

YOKEB

301-099-005 111-8

TABLE 111-3. (Continued)

I t e m - Fork stress ( r e d b lade)

Fork stress (white b l ade )

Mast perpendicular bending

Mast p a r a l l e l bending

Mast torque

P i t ch l i n k a x i a l load ( red b lade )

Blade f e a t h e r i n g ( r e d b lade)

Blade f lapping ( r e d b lade)

Swashplate d r i v e r load

Co l l ec t ive s l i d e r - p a r a l l e l bending

Co l l ec t ive s l i d e r - perpendicu. l a r bending

Lateral f lapping

Fore and aft f l app ing

Co l l ec t ive tube a x i a l load

Lateral c y c l i c tube a x i a l load

Longi tcdinal c y c l i c tube a x i a l load

Co l l ec t ive p o s i t i o n

Lateral c y c l i c p o s i t i o n

Longitudi.na1 c y c l i c p o s i t i o n

Mast case v e r t i c a l acce le ra t io i ( r e fe rence t o h e l i c o p t e r ~ - 0 )

Cham SDAS

15

16

17

1 8

19

20

21

22

23

24

25

26

27

28

29

30

3 1

32

3 3

34

26

5

9

27

32

33

13

1 7

29

Computer Nota t i o n

FORK2

FORK1

MPERP

MPARA

m T Q

PLINK

PITCH

FLAP

SDRIV

CSPAB

CSPEB

LATSP

LONSP

COLAX

LATAX

LONAX

THETA

A 1 S

B 1 S

ACCV

30 1- 0 99-00 5 111-9

Use w discbsurt of data on Ihis iubirct h lha rnlriclion M lh. 11th -.

is

Mast case lateral a c c e l e r a t i o n ( r e fe rence t o h e l i c o p t e r $= 0)

Mast case f o r e / a f t a c c e l e r a t i o n ( r e fe rence t o h e l i c o p t e r $= 0 )

Forward s t r u t l a t e ra l accelera- t i o n

A f t s t r u t l a te ra l a c c e l e r a t i o n

S t r u t l ong i tud ina l a c c e l e r a t i o n

Torque-transmission load cell

Stat ic p res su re

Lateral displacement guaga-fwd

Lateral displacement guage-aft

TABLE 111-3. (Continued)

I t e m Chan is DAS

35

36

37

38

39

40

4 1

42

43

44

e l N o . O-Grap7

Computer Notat ion

ACCLA

ACCLO

SAFLA

SAALA

SAL0

QLC

PSTAT

FLADG

ALADG

LODG

30 1- 09 9- 0 0 5 111-10

mu Use w disclosure of &ta on this p*lc IS subiod to the ralriclion on the title p*)c. H~UCOPT~R-V

I V . DESCRIPTION OF TEST

Tes t ing w a s accomplished i n t h e NASA-Ames 40- by 80-foot wind tunnel dur ing 8 November 1975 through 23 November 1975 and designated T e s t No. 4 7 2 . The test w a s t o eva lua te tilt rotor a u t o r o t a t i o n c h a r a c t e r i s t i c s , t h e e f f e c t of l a te ra l c y c l i c on r o t o r f l app ing and blade loads , and t o expand t h e 1970 wind tunnel tes t envelope. Total occupawy t i m e w a s 165 hours (b lades on ready for t r a c k and ba lance ) . Ins t rumenta t ic? and mechanical problems accounted for most of the occupancy t i m e l eav ing 11.5 hours of r o t o r on t e s t i n g . A t o t a l of 128 p o i n t s was obta ined during t h i s per iod f o r a 6.9 pe rcen t u t i l i z a t i o n of a v a i l a b l e tes t t i m e .

Force and moment d a t a was measured by t h e wind tunnel balance and converted t o r o t o r t h r u s t , H-force, Y-force, and torque. A second method used t o measure torque w a s from a load ce l l on t h e t e s t s tand . The primary torque measurement w a s from a s t ra in-gage ori the r o t o r m a s t . The power c o e f f i c i e n t s and data presented i n t h i s r e p o r t use t h e mast torque s t ra in-gage because it w a s found t o be more accura t e than t h e o t h e r two methods. (The o t h e r t w o measurements were dropped from t h e scale data output . Power measurement by these methods appeared unreasonable and would n o t correlate wi th most torque measure- ments.) I n add i t ion , r o t o r rpm, c o l l e c t i v e p i t c h , c y c l i c p i t c h , and f l app ing angles were measured. For a more de ta i l ed description of d a t a measured, rotor instrument and force/angle r e l a t i o n s h i p s , see L i s t of Symbols, Sec t ion I I I . C , and i n Sec t ion V r e spec t ive ly .

The major test v a r i a b l e s were tunnel speed and s h a f t angle , see Run Schedule i n Appendix. General ly , during the runs c o l l e c t i v e p i t c h was v a r i e d while o t h e r v a r i a b l e s were he ld approximately cons tan t . Fore and a f t c y c l i c p i t c h w a s ad jus t ed t o hold fore and a f t f l app ing cons t an t a t zero. Lateral c y c l i c p i t c h w a s set to zero during most of t h e tes t , b u t w a s changed t o - 4 . 0 degrees t o ob ta in t h e e f f e c t of la teral c y c l i c on blade loads.

Basic procedure f o r t h e s t a r t of eacg run w a s t o set the c o n t r o l s t o zero ( 8 = B = A = 0 1 , br ing the r o t o r t o t h e des i r ed rpm, then b?$Kg th& tunhe1 up t o speed. As tunnel speed increased , f o r e and a f t c y c l i c ? i t c h was changed t o hold f lapping t o zero. Once t h e tunnel was on t h e desired tes t speed, c o l l e c t i v e sweeps were made so as n o t t o exceed b lade endurance l i m i t s . During t h e a u t o r o t a t i o n runs , t h e same i n i t i a l s t a r t - u p procedure was followed w i t h t h e s h a f t angle s e t a t 90 degrees w h i l e tunnel speed w a s i nc reas ing t o t he tes t speed. As s h a f t angle was increased f o r a u t o r o t a t i o n , collec-

30 1- 09 9- 0 0 5 IV-1

Use or di ichurc ol 6ata on this p&Jc is I r u b k t ta the reslrictbn on Ihr title m. -1

t i v c p i t c h was reduced to keep from s t a l l i n g the rotor. A t the s p e c i f i e d shaft a n g l e , c o l l e c t i v e sweeps were made from the lower l i m i t (eTIP = -8O) to a s e t t i n g above the bucket in t h e thrust/power curve (general ly GTIp = 0').

301-099-005 IV-2

nu MlLUCOPl-ER -*

V. DATA FtEbUCTION

Force and moment d a t a , measured on t h e wind tunne l balance were reduced using a NASA-Arne3 data reduct ion pcogram for scale data. Cont ro l p o s i t i o n s <:id test cond i t ions were thumb wheeled i n for r e fe rence . T e s t a L t a computer n o t a t i o n f o r t h e scale data i s given fn t h e L i s t of Symbols for comparison wi th the symbol as used i n t h i s report. The f o r c e and moment s i g n convention used dur ing t h i s t e s t i s shown i n Figure A-1. Scale data is given i n t h e Appendix.

Eotor loads, stress, a c c e l e r a t i o n s , and c o n t r o l p o s i t i o n s were recorded on t h e High-Speed-Data-Acquisition System. Computer no ta t ion , channel number r e fe rence , and channel d e s c r i p t i o n i s given i n Table 111-3, Sec t ion 111. Due t o t h e bulk of t h i s in format ion , the HSDAS in format ion is n o t prese'nted. The major t es t parameters recorded from t h i s system t h a t are presented i n t h i s r e p o r t are t a b u l a t e d ( c o l l e c t i v e p i t c h , c y c l i c p i t c h , f l app ing , blade loads) i n t h e Appendix.

Tare runs were made a f t e r t h e test. The on ly i t e m modified on t h e model w a s t h z nonro ta t ing f a i r i n g af PTR. I t w a s i n t e r f e r r i n g wi th t h e swashplate dr iver and had t o be c u t back p a s t t he r o t a t i n g p a r t s (approximately a 6.0 i n c h gap between t h e f a i r i n q and s p i n n e r ) . T h i s d i d n o t seem t o c k n g e t h e tare data s i g n i f i c a n t l y when compared w i t h t h e p r & i m s t a r e from t h e 1970 tes t . F igures V - 1 and V-3 compare t h e sp inne r tare used du r ing the 1 9 7 0 test w i t h t h a t of t h i s test.

301-099-005 v-1

301-099-005

I 301-099-005 v- 3 4-

V I . RESULTS OF TEST

T e s t r e s u l t s are divided i n t o three s e c t i o n s , hover performance, forward f l i g h t , and au to ro ta t ion . The first t w o conf igu ra t ions were tested to establish a c o r r e l a t i o n w i t h t h e 1970 test. Autorotat ion data w a s made available as t h e r e s u l t of t h i s test. Therefore, comparisons are made between this test and t h e 1970 test for hover and forward f i i g h t and between this test and estimates f o r au to ro ta t ion .

A. Hover Performance

Figures V I - 1 and VI -2 p r e s e n t a summary of hover t e s t i n g performed on the 25-foot rotor. Most of the hover t e s t i n g i n the wind tunnel w a s w i t h t h e s h a f t angle a t zero degrees (po in t ing upstream i n t h e tunne l ) . I n this conf igu ra t ion , the r o t o r produces enough c i r c u l a t i o n i n the tunne l t o develop a i r speeds up to 20 knots for a l o w speed axial f l i g h t conf igura t ion . As the s h a f t i s t i l t e d towards h e l i c o p t e r , hover performance w a s shown to improve.

Figure VI-3 compares the tes t hover performance ( w h i r l test) wi th t h e c a l c u l a t e d from tilt rotor s imula t ion (IFHB75), F-35, and C-81 computer programs. The math model r ep resen ta t ion for t h e IFHB75 rotor is a closed s o l u t i o n of t h e r o t o r d i s k whereas, C-81 determines rotor characteristics for twenty blade elements f o r s e v e r a l azimuth p o s i t i o n s and uses two dimensional a i r f o i l s e c t i o n a l data for f i v e radial s t a t i o n s . Induced v e l o c i t y d i s t r i b u t i o n tables w e r e used to g i v e an e l l i p t i c a l d i s t r i b u t i o n as opposed to convent ional t r i a n g u l a r d i s t r i b u t i o n . With this t y p e of d i s t r i b u t i o n , good c o r r e l a t i o n is obta ined between computed and test.

B. Forward F l i g h t

Only one forward f l i g h t condi t ion w a s ob ta ined f o r com- pa r i son w i t h the 1970 test. T h i s case w a s for a s h a f t angle of 75 degrees a t 80 knots . Comparison of rotor characteristics is shown i n Figures V I - 4 through VI-9.

Cor re l a t ion between the two tes t r e s u l t s w a s good. Hiuh c o l l e c t i v e p i t c h t e s t i n g w a s l imi t ed because of i n s t r u - mentation problems i n measuring blade loads and incidences of loos ing r o t o r c o n t r o l a t electrical connections t o t h e c o n t r o l a c t u a t o r s . Data obta ined w a s s u f f i c i e n t t o e s t ab l i sh t h a t t h e r o t o r c h a r a c t e r i s t i c s w e r e s imilar to t h e l a s t test and p r e - t e s t p red ic t ions .

30 1-0 99- 00 5 V I - 1

C. Autoro ta t ion

Autoro ta t ion c a p a b i l i t y of the tilt rotor w a s i n v e s t i g a t e d a t 60, 80, and 100 knots f o r s e v e r a l s h a f t angles . Most of the a u t o r o t a t i o n d a t a w a s t aken a t 458 r p m (600 f p s ) . T h i s is a i r p l a n e mode c r u i s e rpm. Analys is and s imula t ion tests have shown t h i s t o be a m o r e realistic a u t o r o t a t i o n rpm as opposed to t h e p r e - t e s t selected 565 rpm. amount of t e s t i n g w a s a t 535 rpm which shows t h a t autoro- t a t i o n c a p a b i l i t y tends t o decrease wi th increasirfg rpm. S ince p r e - t e s t e s t i m a t e s w e r e f o r 565 rpm, p o s t test ccnparisons are shown using IFHB75 and C81 c a l c u l a t i o n s a t 428 rpm which w e r e made a f t e r t h e test.

A l i m i t e d

F igures VI-10 through VI-12 compare the test d a t a wi th IFHB75 c a l c u l a t i o n s f o r 60, 80, and 100 knots. The computed a u t o r o t a t i o n i s shown to be o p t i m i s t i c , i.e, less s h a f t angle required to a u t o r o t a t e . The d i f f e r e n c e s tecome l a r g e r wi th i n c r e a s i n g airspeed. Maximum t h r u s t c o r r e l a t i o n between c a l c u l a t e d and test is good. These t w o effects l i m i t the a i r s p e e d range for a u t o r o t a t i o n . Wing loading dur ing a u t o r o t a t i o n needs t o be considered t o unload t h e rotor to keep f r o m s t a l l i n g the rotor. Maximum t h r u s t of the rotor a t 458 rpm is between 4900 and 4400 pounds for 60 and 100 knots r e spec t ive ly .

Figure VI-13 compares t h e test d a t a w i t h C-81 c a l c u l a t i o n s a t 80 knots. The computed a u t o r o t a t i o n i n t h i s case is shown to be s l i g h t l y conserva t ive . Shaping of t h e t h r u s t - power v a r i a t i o n is closer than computed by t h e more l i n e a r IFHB75 rotor equat ions , Again the maximum t h r u s t l i m i t comparison is good.

Figure V I - 1 4 is a comparison of f o r e / a f t c y c l i c c o n t r o l p o s i t i o n and lateral f lapping . Fo re / a f t c y c l i c c a l c u l a t e d by IFHB75 is less than t h a t computed by C-81 and the test values . Both methods compute lower la te ra l f l app ing than test. This i n d i c a t e s t h e f o r e and a f t induced v e l o c i t y d i s t r i b u t i o n to be h ighly nonl inear . I n d i c a t i o n s show it to be more so dur ing a u t o r o t a t i o n than forward f l i g h t . This is based on t h a t comparisons made i n forward f l i g h t have shown better agreement for lateral f l app ing toward s u b s t a n t i a t i n g t h e d i s t r i b u t i o n used,

Blade loads w e r e l o w and comparable t o c a l c u l a t e d as shown i n Figure VI-15. The v a r i a t i o n of loads with c o l l e c t i v e p i t c h and s h a f t angle show the test va lues to be r e l a t i v e l y cons t an t . The e f f e c t of lateral c y c l i c on blade beam bending moment is shown i n Figure VI-16 .

301-09 9- 00 5 VL-2

Hotor performance parameters o f power and l i f t c o e f f i c i e n t s dur ing a u t o r o t a t i o n are presented i n F igures VI-17 through VI-19 f o r 6 0 , 8 0 , and 100 knots r e spec t ive ly . The C

The c a l c u l a t e d va lues from IFHB75 and C-81 are compared wi th test i n Figure V I - 1 8 . The C-81 rotor shows better agree- ment than t h e IFHB75 rotor. F igure VI-20 summarizes the p ro jec t ed m a x i m u m CL/U for forward f l i g h t and a u t o r o t a t i o n conf igu ra t ions tested a t &15 degrees s h a f t ang le s from v e r t i c a l .

parameter is used as an i n d i c a t o r of rotor s ta l l . p,

Figure VI-21 summarizes t h e a u t o r o t a t i o n rate of descen t capabilities computed for the XV-15 which inc ludes the c o n t r i b u t i o n of the airframe for a gross weight of 13,000 pounds. The optimum rate of descen t w a s found to be obta ined by t i l t i n g the n a c e l l e s t o 95 degrees and p o s i t i o n i n g the f l a p s a t 4 0 degees. Rate of descen t can be held to around 2 4 0 0 fpm i f proper aircraft a t t i t u d e and collective p i t c h are maintained. These r e s u l t s are d i f f e r e n t than observed during previous tilt rotor s imula t ion tests f o r the XV-15. During the s imula t ion tests, a u t o r o t a t i o n w a s made w i t h the c o l l e c t i v e p i t c h set on t h e lower l i m i t s a t -7.5 degrees. This r e q u i r e s the r o t o r to a u t o r o t a t e on the back side of t h e thrust/power bucket . Thrust provided by the rotor is lower and i n order t o t r i m the aircraft , t h e w i n g is ope ra t ing very n e a r maximum l i f t . This combina- t i o n r e s u l t s i n higher s i n k rates. Autoro ta t ion test r e s u l t s show t h a t t h e optimum c o l l e c t i v e p i t c h s e t t i n g f o r t h e tilt rotor to be about -5 .0 degrees, which allows the rotor to ope ra t e on t h e f r o n t side of t h e thrust/power bucket. This inc reases t h e t h r u s t provided by the rotor and reduces the l i f t r equ i r ed by t h e airframe.

As shown i n t h e previous f i g u r e s , the s h a f t angle r equ i r ed from tes t w a s g r e a t e r than ca l cu la t ed . Autoro ta t ion a t s h a f t angles around 105 degrees and w i t h t h e n a c e l l e s a t 90 degrees would gene ra l ly r e q u i r e f l y i n g beyond wing s t a l l . T i l t i n g t h e nacelles t o 95 degrees reduces t h e wing angle of at tack and rate of descent. Raising the f l a p s would tend to s t a l l o u t t h e rotor a t l o w rpm or r e q u i r e h ighe r rpm f o r a u t o r o t a t i o n r e s u l t i n g i n h ighe r s i n k rates and reduced f l a r e c a p a b i l i t y . Equations used t o estimate t h e a u t o r o t a t i o n rate of descent shown i n Figure V I - 2 1 and a sample c a l c u l a t i o n is given below.

301-099-005 VJ-3

Autoro ta t ion rates of descent w e r e c a l c u l a t e d us ing t h e following simplified method to account f o r t h e a i r f rame.

L i f t = TmmR s i n as + L~~~~

Drag =-TmTOR cos Q S + DAIRFRAME

"S = "F +iN

Thrus t of the rotor is obta ined from Figures VI-10 through VI-12 a t s h a f t ang le s for HP = 0 and HP = -20 (account ing f o r accessory and t ransmission d r i v e ) . L i f t and drag of t h e airframe are obta ined from Reference 7.

For V = 80 k t s , iN = 9S0, 6, = 40°, HP = -20, Qs = 107O

= -50 and %I,

= (3450) (2 ) = 6900 pounds TROTOR

a = 105 - 95 = 10 deg

L i f t = 6900 s i n 107+ 1.32 (21.69) (181) Drag -6900 cos 107 + .45 (21.69) (181)

-*. Y = t a n -' (3934/12780) = 1 7 . 1 degrees

R/D = 101.26(80) s i n 17.1 = 2383 fpm

F + 1000(1)=12780

+ 150(')=3934

@ aF = 10 deg = 1.32 ( U C LWING C @ aF = 10 deg = . 45

D~~~~

1000 pounds approximate l i f t of fu se l age arid empennage. 150 pounds approximate drac, af fu se l age and empennage.

30 1- 09 9- 0 0 5 V I - 4

I Use or Oi%bsuro of W m this page is I subkt b the restriction an tho titlo me.

Rate of descent f o r a u t o r o t a t i o n w a s determined f o r t h e optimum c o l l e c t i v e p i t c h and s h a f t angle to t r i m t h e a i r c r a f t a t 458 rpm (600 fps) and 13000 pounds. A t a s p e c i f i c collectivc- p i t c h angle , rpm and s h a f t angle would change f o r a t r i m condi t ion . The rates of descent f o r t h e collective p i t c h set on t h e lower l i m i t (0, = - 8 . 0 degrees) is also presented. These values may not 6e the same as the a c t u a l a i r c r a f t ope ra t ing a t d i f f e r e n t g ross weight, rpm, or c o l l e c t i v e p i t c h s e t t i n g s . This is l ikewise t h e case f o r t he s imula t ion test r e s u l t s which w a s a t a lower rpm.

301-099-005 VI-5

I

- w

. -

3- . --.

!;

5 301-099-005 V I - 6 -&- d r- c

~. --*. ** .*.4 1' , F i g u r e V I - 2 i : I

--.. ~ . * . ( . . . . . I . . . . l . _ . . I I 1 . .

I

I

t I . .

! ' t ! ! : .; . i... . . -+. ..

I

1 - , .

I L , I

i !

1 4 I

! 4 ,

1:. . * /

i ! I

.. - !

i

! ... I .

-- ._ . .

J

i

4 _ .

i . -

- 1 - i I . ,

- 7 - t . .

--I.- -1..

I. ! .. .e .

. ....... i !

...

. . . I

.... 1 !

_ I / I

' I

; I

1 . . I I

. .

I

i *- I

i i

V I - 9 30 1- 09 9- 00 5 1 .~

L (I n I ,1 ! .

... .

. . I

. . I

.. - .

_.__ ----

301-099-005

i

VI-10

i

ai

I

i 1 301-099-005

I 2 -

! 1

!

I5 7 . .. . .

i . I -

1 i

.. -

1 . I I

!- I . ...

! I.

i

! I

. ~ _ _ -

i - . .!...

! I I

1 .I . i-

!

f

1 :

-

-1 Figure V I - 6 {

VI- 11

i t

1 I-

*: I

L .i

1 .

I

__ ' i , i

....

i. .

. - I - . rt- - t-. , I -

1 -{ :: .

-L

1; -

I

. .

- 1

i - i

.....

. I i . -.. !

- I ._ 1

-* -

... 1 .. !

i i i

_ i

. . I

- . .

!

I

I

,

.~

......

-.. .. i

f

1 I

.... !

._ .

. _ _

. . -

I

i e -

i E /

I - I I

SF . - 1

.- 1 ! __ .. i

f i i - . I-

I I

.........

i . . . . , .

. .- .

I i j

I... ; - . ! i .

I - .-

i I

-. .

i i : I :

- I I 1 . 1

j j ;

L . L . . e

. . e-

l . I

V I - 1 3 301-099-005 i

f

V I - 1 4

t \

5 I

I-

- - t r

1

* 301-099-005 VI-15

- = . - -- . . ..:~

i

- -

I

!

i

i

i I

301-099-005 -4

L . ,

VI-16

. -.

= -

VI-17 301-099-005

1c! .==. )- . , k ,

301-099-005 VI-18

301-099-005 V I - l O

, , ' Figure V I - 1 5

301- 099- 005 V f - 2 0

. .

301-099-005

301-099-005

ton oar7

301-099-005

1172 M a 1 7

.. ..... . . . . . . . .

. . .... . T ..........

. . . . . . . . ..--A --I- --c . . . . . . . . .- . . .. I . . i . I

-j-- t

VI-23

301-099-005 7 @ 7 2 (10117

I

I yo2

0

301-099-005

I -- I

1 i

I I

1.

I I

; I

I I

i 1. ;.

1 1

i

!

k.

VI-26 3 30 1-09 9- 005

VII. CONCLUSIONS AND RECOI"4ENDATIONS

Although all test objectives were not accomplished, auto- rotation capability of the tilt rotor was confinned. Autorotation capability was shown for variations in airsneed and rpm. Limited analysis indicates that the autorotation rates of descent of the XV-15 will be similar to predicted and that demonstrated during the tilt rotor simulation tests, but the shaft angles required would be approximately 5 degrees greater than pretest predictions. cyclic to reduce lateral rlapping and blade loads was demonstrated. Rotor characteristics were similar to predicted, but indications are refinements need to be made to the drag representation in the rotor math models at low collective pitch settings before additional analysis is made. It is recommended that the rotor math model for the tilt rotor simulation be improved to better represent the tilt rotor autorotation characteristics for analysis of the optircuxn autorotation configuration, i.e. nacelle incidence, flap setting, r p m , collective setting, and airspeed.

Use of lateral

301-099-005 VII-1

- e -- VIII. REFERENCES

1. Advancement of Propro tor Technology Task I1 - Wind-Tunnel Test- Resufts (NASA Contract NAS2-5386) BHC Report 300-099-tO4, NASA Contractor Report CR 114363, 30 Septem- ber 1471.

2. V/STOL T i l t Rotor Research Aircraf t , BHC Report 301-199-003, Volume 3.

3. Marr, R o g e r , " T e s t Plan f o r a 25-Foot T i l t Rotor T e s t i n the ARC 40- by 8O-Foot Wind Tunnel," 6 May 1975.

4. Zohnson, Wayne, "Shake T e s t of a P r o p e l l e r T e s t f i g i n t h e 40- by 8O-~oot Wind Tunnel," November 1975.

5. Johnson, Wayne and Biggers, James C., "Shake T e s t of Rotor T e s t Apparatus i n t h e 40- by 8O-~oot Wind Tunnel," NASA TMX-62,418, February 1975.

6. Johnson, Wayne and Biggers, James C., "Shake T e s t of Rotor T e s t Apparatus wi th Balance D a m p e r s i n t h e 40- by 8O-Foot Wind Tunnel," NASA TMX-62,470, J u l y 1975.

7. Marr, Roger, V/STOL T i l t Rotor Study - Volume V - A Mathematical Model f o r Real Time F l i g h t Simulat ion of t h e B e l l Model 301 T i l t Rotor Research A i r c r a f t , BHC Report 301-099-001, NASA Contractor Report CR 114614, Apr i l 13, 1973, Revision F.

301-099-005 WIT-1

fl I '0:' I

I 0

j l -

..

I I

0

, o

i .

. . . ? .

! , . . .

. ,

, ' a

i

1

i i I

i f t

i I

1 1 I

I

. I

i !

i r I

ii 301-099-005

. .

' . I . . c

-

F

1 : , ' ' j ; " . I .

I

!

i

i I

i i

I

I 1

i

I

1 I

I

I i i

I I

I

i I

I I

I i I -i

I

I

I

! I f

I f

1 1 ! I I I I

I I

i I I !

! I

I !

i I 1

; I / / i i

i ! i 1 I

1 1 i

I

I I

I I

I

I ' !

1

!

i

1 I i

!

i ! ! I

I i

I

!

f

j 1 .

/ I

I

! i i i

/ I ' i l ,

1 I I .

1 1 1

TEST INSTRUMENTATION PROBLEMS

Severa l ins t rumenta t ion problems w e r e encountered dur ing t h e 25-foot powered test a t NASA-Arnes 40- by 80-Foot Wind Tunnel d u r i n g November 1975. I t w a s f e l t t h a t a d i scuss ion of these problems and p o s s i b l e ways that they can be avoided on f u t u r e tests be included i n this repor t . Tab le A-2 summarizes the problems encountered dur ing t h e test. f a l l i n t o s i x ( 6 ) categories as follows:

These problems g e n e r a l l y

I. C e n t r i f u s a l Force on Connectors

Connectors w e r e placed i n t h e r o t a t i n g system to expedite any tes t p a r t replacement, A s the test w a s run, the c e n t r i f u g a l force on t h e i r mass caused s t r a i n on the Are, and even tua l ly caused w i r e f a i l u r e . When t h e cause of these f a i l u r e s became ev iden t , the connectors w e r e removed and the w i r e s w e r e s p l i c e d toge the r , I n the f u t u r e , connectors w i l l be used only a t l o c a t i o n where they can be bonded (rotor blades, hub, etc,) or t i e d secu re ly and taped ( p i t c h links, c y c l i c tubes , etc.) . 11. Cent r i fuga l Force on Wire Loops

Since the s l i p r i n g w i r e s must be routed o u t of the hub assembly to the top of the c o l l e c t i v e head, a loop of w i r e s w a s formed. Th i s loop w a s necessary due t o t h e motion of the c o l l e c t i v e head w i t h r e s p e c t t o t h e hub assembly as blade p i t c h w a s i nc reased and decreased. Cen t r i fuga l force on t h i s loop caused broken w i r e s on s e v e r a l occas ions due t o f a t i g u e . One s o l u t i o n for t h i s problem would be to rou te a s t r a i n relief w i r e a long w i t h the bundle t o t a k e t h i s s t r a i n away from t h e s i g n a l w i r e s . A program t o test t h e e f f e c t s of c e n t r i f u g a l f o r c e might need t o be i n i t i a t e d t o determine proper s t r a i n relief techniques on w i r e s . Another p o s s i b l e s o l u t i o n t o this problem could be a redesign of t h e c o l l e c t i v e head ( l i k e t h e XV-15 f l i g h t hardware). T h i s would al low the use of t h e f l i g h t test s l i p r i n g assembly and would e l imina te t h e loop completely as t h e w i r e s would be routed i n s i d e t h e c o l l e c t i v e tube t o t h e s l i p r ing .

The s l i p r i n a would be mounted on the t o p of t h e collective head, not below t h e swashplate as it w a s dur ing t h i s model test . 111. Motion Between Model and Cowlins

A new d r i v e motor s t and was used f o r this test. Between t h e motor s t a n d and t h e o u t e r cowling e x i s t e d a poss ib l e *2.5 inches

30 1- 0 9 9- 00 5 A- 5

of motion. To provide mechanical c l e a r a n c e s , t h e f r o n t 6 inches were trimed from t h e o u t e r cowling. For ease of access, t h e ins t rumenta t ion J-boxes w e r e mounted on t h e cowling, n o t on t h e m o d e l . The v i b r a t i o n l e v e l s on t h i s outer cowling w e r e very high and t h e wind turbulence i n s i d e t h e cowling (wi th the forward p o r t i o n c u t o f f ) w a s also high. The model-to-cowling motion, t h e cowling v i b r a t i o n and t h e wind turbulence each con t r ibu ted to c a u s e many broken w i r e s due t o f a t i g u e . P o s s i b l e s o l u t i o n s to t h e s e problems are: mounting of t h e J-boxes on t h e model where a more stable mount can be made; making a better nose cowling to reduce wind turbulence i n s i d e the nose cowling; improved cable r o u t i n g and better secu r ing techniques to c o n t r o l cable motion ( e l imina t ing f a t i g u e p o i n t s ) ; l a r g e r gage w i r e f o r better f a t i q u e c h a r a c t e r i s t i c s .

IV. S l i p Ring W i r e Routing

The s l i p r i n g system f o r this model has been a source of trouble dur ing a l l tests on which it has been used. The s l i p r i n g i t s e l f is n o t the problem. The problem is t h e means by which t h e w i r e s must be routed from t h e slip r i n g to the r o t a t i n g system. A l l 52 wires must pas s through t w o &-inch ho le s a f t e r being fanned through t h e teeth of the m a s t s p l i n e s . This is necessary s i n c e t h e wires must pas s under t h e nonro ta t ing s e c t i o n (hub s p r i n g ) of t h e rotor assembly. Due to this des ign , there is no s o l u t i o n to t h i s problem except t hose s o l u t i o n s d iscussed earlier (use of f l i g h t s l i p r i n g wi th redes ign of c o l l e c t i v e head; s t r a i n relief w i r e s ) .

V. Shor t C a l i b r a t i o n S teps

During the checkout of t h e ins t rumenta t ion fol lowing i n s t a l l a t i o n i n t h e t u n n e l , t w o channels w e r e found to have s h o r t c a l i b r a t i o n s t e p s . The short c a l i b r a t i o n s t e p s caused t h e loads d a t a t o be incorrect a t t h e s e two l oca t ions . A f t e r much checking, by both NASA and BHT personnel , t h e problem w a s found t o be t w o p i n s sho r t ed i n one of t h e NASA c-mnectors under t h e tunnel f l o o r . T h i s short had no: shown up i n previous tests because of t h e s i x w i r - system t h a t the NASA tunne l uses. For t h i s tes t a common power supply was used due to t h e l imi t ed amount of r i n g s i n the s l i p r i n g . Once t h e shor t w a s c l e a r e d , a check c a l i b r a t i o n of t h e sys t em, using known we igh t s a t a given s t a t i o n , proved the d a t a t o be c o r r e c t .

301-099-005 A- 6

V I . Random 60 Hz Noise

During t h e e n t i r e tes t , the r o t a t i n g channels were plagued by random 60 Hz noise . Many checks and many a t tempts were made to f i n d the source arid a cu re for the problem, b u t none w a s found. I t is now thought t h a t the i n t e r f a c e of the common bridge vo l t age for the r o t a t i n g channels w i t h t he tunne l s i g n a l condi t ion ing w a s t h e sole or major cause of the problem. For any future tests using this common b r idge vo l t age , a test s e t u p should be made to allow i n s e r t i n g dummy b r idges i n t o the system a t va r ious p o i n t s t o determine where the no i se i s being i n s e r t e d i n t o t h e system. When the l o c a t i o n of e n t r y of t h e n o i s e is found, the cause should be e a s i l y found.

30 1-09 9- 00 5 A- 7

c

.- ..-

I . 1. . -.

301-099-005

i, -

i- i-- I -- I

4 * -

I

._ I

, i / ' i L

. . 1

A- 0

f 301-09P--30S I I

! A-10

4 i Y Z ' ' 3

. A-11 t

.

N4a. N o

? i r4 1

i

I

I

c

*

c-

73% - 7 3 6 5 . - 7182 - 7553 - 76Y'5/ .

7927 3 3 8 3 , -

3571 , - 7832 - 6 9 7 2 . - 797J - 8019 - 5 5 6 2 . - 5873, - 6 / 9 4 - 6a8( --

7 3 1 3 - 62/q .- 7 9 b 6 -

'2 *3z . T 3 . 7 2 . -6*'2,

72 , - / , O b .

.'r"B .-S.&, . - / . 9 B

. -/. 88

-7.87, #V/ .-3,8 ,251 */A . e37 . / . o s , I40 :-/.97,

301-099-005 A-12

L

; No

: /&

301-099-005 t

--- I'

i

:

I

301-099-005 A-14

0 0

O!

i O f

c e!. 52% O H

0 (YCI 09- e901 o m 0 0 E o!

-mi

o o m i"

i +ii

r;l Q

A-15

301-099-005

I-- I

1" I

I f

i'q

"1

A- 16

301-099-005

I . I .I -. I

t l r ) -0 0 on .

0 i I

O O t

301-099-005

I

i

I I I

i

4 I

4

1 . m

1

I

I . 1 .. I

f -,= c * y e'-

! a! c

I

C C f Z t r a m > E >

. I *. -- oL 0 010 9

a 0 0 - o n

n'oa To-

0 0 0 7 - 0'0 r.

0:- 0 O W 0

coo

- 301-099-005

I

A-19

301-09 9-00 S -- -

4

a 4

, a a

1 a a

1 Q I

a

0 4

. 0 I

. 0 I

a 0 I

. 0 0

I a-r I I, 7 - !

iryo c

a 2

1 L

1* -0 c n n m 0 0 0 .

m w m

A-20

301-099-005 r____ .~

0 m

e

d 0 8

W

d :i a

0 0

d 0 8

0 e

2 ' 2

B Z ? O O P a u o o w N w 3, z L

- 0 - n o m

I '

A - 2 1

301-099-005

I nllP

r 21: 0 PI c nla

Use or dirckurc ol $8tl on this p*lr is r u b k t to thr rnlrklion on the tilk ~lpc.

A-22

301-099-005

0 m

0

0 0

0 0 m

. 0 8

. 0 0

0 0

I . 3 0

0 D

. 0 D

0

0 8

I ! i MI n 3 n c t u CI

c' I 1. Y 6 0 V

u Y c * c *)

@

I

I

f

C

I

i a

r c

I

a *

I

I

c

Y

t

. w - - , t 4 r L c

j -

!

c >I a -

0 . .

O J I U - 2 0 o w - sa -

a

r

301-099-005

I I

1 - 1 -

c

t ,zi 301-099-005

0 U . a a P * .

J, e \ CI *r) * Y c

U

c c v)

LI

J - 2 : N J

c I) Y c

c

C

u c c U 3 1

t

I I I I I

Y

1 I

c 4 .I I Y I I I I

.

C 2 *

L O o a

Q - 0 L 4 J W O O c s a

- I c ul- L a c

L

a

c c t I t t a e w a w *i

O Q 4 a \-io 3

C W - 1 a *

@ * Q D e - 3 0 0 3 0 0 0 . .

- c o @.naJ D 0 - n o 0 3 0 . 3

8 8 ...

{ *:; a a

T o '

.. 1: 3

C . D O C ,$-

1:

301-099-005 A-25

* I - IF -1

N '9 0

L O 1-2

3 - N I ;r'

I -I ,&

: Is -09 9-00! A926

*- dd n nim

i

Iz' I I %"I Ih

301-099-005

i-- I

-0 - 0 40

0 0

301-099-005

- e -- I I

a-

I '

!

c Y -1- f * P c

I *I- i

ic- I 301-099-005 4-29

-11 e -- o a m

i --I

.t 0

a-

G I I

I ? I i ! - ! -

* i - 1 " I .N io s i Y

& i J, CI

301-099-00s

Q Si i

i$ L

I ' ,- .' . . 4 U!ln N - If 0

I-

301-099-005

a!- c C W X I

. -e

z nI - nJ .3 h -: J -&e c c. e

4 - . 3 .r

n, * a L

Y c a

- - E

i .

- - L o .)\

301-099-005

! I

I

I b P i c

I- I 4- A-33

301-099-005

- e --

c f

- I

n, c

' 3 o c \ - - \

I

e. c U - -

[ I

0 2 % ...

c z l \ l Y . e - *-.- 6 A. -

3 .. c *! n c 1

A-34

301-099-005