cpt-5 jee mains maths (cbse,g1,g2,gseb) held on 14-june-15

8
COMMON PRACTICE TEST – 5 JEE MAINS BATCH – 12 th All Batch Date : 14/06/2015 MATHEAMTICS SOLUTION 1. Sol. A y = 3 sin x – 4 sin 3 x + sin x = 4(sin x – sin 3 x) now, dy dx = cos x(1 – 3 sin 2 x) = 0 sin x = 1 3 , 1 we get max/minima at 1 3 . 2. Sol. C f (x) = 7 + {8x} + |tan 2x + cot 2x| period is LCM of 1 8 and 1 4 . 3. Sol. C If n(A) = n, n(B) = r then total number of functions = r n . Total number of into function = r C 1 (r – 1) n r C 2 (r – 2) n + … Here r = 3, n = 4 r n = 3 4 = 81 X = 3 C 1 2 4 3 C 2 1 4 = 45 Y = 81 – 45 = 36 |X – Y| = 9. 4. Sol. A Given equation can be written as x 2 – 3 = 3[sin x] Case I: x 2 – 3 = –3 when [sin x] = –1

Upload: bluel1

Post on 12-Sep-2015

218 views

Category:

Documents


1 download

DESCRIPTION

Cpt-5 Jee Mains Maths (Cbse,g1,g2,Gseb) Held on 14-June-15 IIT Ashram

TRANSCRIPT

  • COMMON PRACTICE TEST 5JEE MAINS

    BATCH 12th All Batch Date : 14/06/2015

    MATHEAMTICS SOLUTION1.

    Sol. A

    y = 3 sin x 4 sin3 x + sin x = 4(sin x sin3 x)

    now, dydx

    = cos x(1 3 sin2 x) = 0

    sin x = 13

    , 1 we get max/minima at 13

    .

    2.

    Sol. Cf (x) = 7 + {8x} + |tan 2x + cot 2x|

    period is LCM of 18

    and 14

    .

    3.

    Sol. C

    If n(A) = n, n(B) = r then total number of functions = rn.

    Total number of into function = rC1 (r 1)n rC2 (r 2)n +

    Here r = 3, n = 4

    rn = 34 = 81

    X = 3C1 24 3C2 14 = 45

    Y = 81 45 = 36

    |X Y| = 9.

    4.

    Sol. A

    Given equation can be written as

    x2 3 = 3[sin x]

    Case I: x2 3 = 3 when [sin x] = 1

  • x = 0 but sin x 1Case II: x2 3 = 0 when [sin x] = 0

    x = 3 x = 3 gives [sin x] = 0Case III: x2 3 = 3 when [sin x] = 1

    x = 6 but [sin x] 1.

    Number of solution is one i.e. x = 3 .

    5.

    Sol. A

    The Given function is f (x) = sin3 x sin 3x

    f (x) = 3sinx sin3x4 sin 3x

    f (x) = 38

    (cos 2x cos 4x) 18

    (1 cos 6x)

    period of f (x) is .6.

    Sol. B

    Given that f (x) = x 2 sin x2

    f (x) = 1 cos x2

    0

    f (x) is an increasing function. f (x) is oneone and onto.

    7.

    Sol. C

    We should have [sin 2x] [cos 2x] we can have [sin 2x] = 1, [cos 2x] = 1, 0, 1[sin 2x] = 0, [cos 2x] = 0, 1

    [sin 2x] = 1, [cos 2x] = 1

    but [sin 2x] = 1, [cos 2x] = 1 and [sin 2x] = 1, [cos 2x] = 1 are not possible

    So, range = {0, 1}.

  • 8.

    Sol. A

    1 |sin x| + |cos x| 2 x R

    ln 12 ln 1

    | sinx | | cos x | 0

    domain of f (x) is x = n2 , where n I

    and range of f (x) is {0}

    period is2 .

    9.

    Sol. D

    f (x) 1 + f (1 x) 1 = 0.

    So, g (x) + g (1 x) = 0.

    Putting x = x + 12

    we get, g 1 x2

    + g1 x2

    = 0.

    So it is symmetrical about1, 02

    .

    10.

    Sol. B

    y = |sin1 2x2 1|

    y =1 2

    1 2 2

    sin (2x 1) 4xsin (2x 1) | 2x | 1 x

    x 0 and sin1 (2x2 1) 0 and |2x2 1| 1 |x| 1

    x 0, x 12

    .

    11.

    So. D

  • . Period of sin (sin x) is 2 and e{3x} is 13

    period of f (x) is LCM of 2 and 13

    = 6.

    12.

    Sol. A

    Put = tan x = 2 sin 2 y = 2 cos 2 z = x2 + y2 xy = 4 2 sin 4 z [2, 6].

    13.

    Sol. B

    The period of the given function =2

    2 4 = 2.

    14.

    Sol. B

    1024

    1r2 rlog =

    102

    1r2 rlog

    =

    12

    2r2

    2

    rlog +

    12

    2r2

    3

    2

    rlog +

    12

    2r2

    4

    3

    rlog + ... +

    12

    2r2

    10

    9

    rlog + 102 2log .

    = 2.1 + 22 .2 +23 .3 +24.4 + . . . . + 29 .9 + 10

    = 10r.29

    1r

    r

    = 8204.

    15.

    Sol. A

    f(x) = log1/2log4log3[( x-4)2] log4( log3[ x 4)2] ) > 0 log3[ ( x 4)2] > 1

  • [(x 4)2] 4 (x 4)2 4 0 (x - 2)(x 6) 0 x (-, 2] [ 6, ).

    16.

    Sol. C

    F(x) = f(x).g(x).h(x)

    F(x) = f(x).g(x).h(x) + f(x).g(x).h(x) + f(x).g(x).h(x) F(x1) = f( x1).g(x1).h(x1) + f(x1).g( x1).h(x1) + f(x1).g(x1).h( x1) 21F (x1) = 4 f ( x1).g(x1).h(x1) + (-7) f(x1).g ( x1).h(x1) + k f(x1).g(x1).h ( x1) 21 F(x1) = ( 4 - 7 + k) F(x1) k = 24 .

    17.

    Sol. (A)

    Dividing the numerator and denominator by x2, the given integral becomes

    x1xtan1

    x1x

    dxx11

    12

    2

    Let x +x1 = tanv c|v|logvdv

    = log cx

    1xtan2

    1

    . Hence k = 1.

    18. (c) cxdxdxxx xxdxxxx 2)cos(sin cossin2sin1 cossin .

    19. (d)xx

    dxxf sinloglogsinlog)(

    Differentiating both sides, we get.cot)(sinlog

    cotsinlog)( xxfx

    xx

    xf

    20. (c) dxxxx 2/12 )sectan2tan21( dxxxxx 2/122 )sectan2tan(sec

  • cxxxdxxx seclog)tanlog(sec)tan(seccxxx )tan(secseclog .

    21.

    Sol. A

    Put t3x2x

    I = c3x2x

    58dtt

    51 8

    1

    8/7

    22.

    Sol C

    Put x9/2 = t then dtdxx29 2/7 , So given integral reduces to

    c1xxIn92c1ttIn

    92

    1t

    dt92 92/92

    2

    23.

    Sol. I = dx2xtanx)xcos1ln(= dx2xtanxdx1.)xcos1(ln(

    = ln(1+ cosx). x + dx2xtanxdxx.2xcos2

    2xcos

    2xsin2

    2

    = ln(1+ cosx). x + dx2xtanxdx2xtanx + c= ln (1+ cosx). x + c.

    24. (d).

    11tan 21

    abxbaxabx

    baxdxd

    abxbax

    dxd

    222222222

    11xxbxaba

    ba

    .

  • 25.

    Sol. B

    Let I = 2x tanx sec x dx(tanx x) = 22

    2

    x sin x dx(sin x xcos x)cos x

    cos x

    = 2x sinx dx

    (sinx xcos x)Put sin x x cos x = t x sin x dx = dt

    I = 2dt 1 1c c

    t x cos x sin xt .

    26. (a)11 222 yxyyxy

    dxdyxxydx

    dyy 22.2 222

    xyxy

    dxdy

    .

    27.

    Sol. A

    Let 3x = cos 3dx = - sin d

    dcos3131dsinsin3cos

    31 2

    2

    = c91sin

    91 3 = cx3cos

    91x91

    91 312 .

    28.

    Sol. B

    A is an idempotent matrix. Hence A2 = A An = A so thatAB = A(I A) = A A2 = A A = 0.

    29.

    Sol. B

    We have A A = I, B B = I

  • A = A-1, B = B-1

    Now (AB) = B A = B-1 A-1 = (AB)-1

    30.

    Sol. B

    We have 4A A and A A A A A A A A A = 4 4 4A A A A 1 A A Hence (B) is the correct answer.