coupled supercontinent-mantle plume events evidenced by ... · supplementary material gsa data...

21
SUPPLEMENTARY MATERIAL GSA Data Repository 2020046 Coupled supercontinent-mantle plume events evidenced by oceanic plume record Luc S. Doucet 1* , Zheng-Xiang Li 1 , Richard Ernst 2,3 , Uwe Kirscher 1,4 , Hamed Gamal El Dien 1,5 , Ross N. Mitchell 1,6 1 Earth Geodynamic Research Group, TIGeR, School of Earth and Planetary Sciences, Curtin University, Perth WA 6845, Australia, [email protected] 2 Department of Earth Sciences, Carleton University, Canada 3 Faculty of Geology and Geography, Tomsk State University, Russia 4 Department of Geosciences, Eberhard Karls University Tübingen, Sigwartstr. 10, 72076 Tübingen, Germany 5 Geology Department, Faculty of Science, Tanta University, 31527 Tanta, Egypt 6 State Key Laboratory of Lithospheric Evolution, Institute of Geology and Geophysics, Chinese Academy of Sciences, Beijing 100029, China

Upload: others

Post on 04-Jun-2020

6 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: Coupled supercontinent-mantle plume events evidenced by ... · SUPPLEMENTARY MATERIAL GSA Data Repository 2020046 Coupled supercontinent-mantle plume events evidenced by oceanic plume

SUPPLEMENTARY MATERIAL

GSA Data Repository 2020046

Coupled supercontinent-mantle plume events evidenced by

oceanic plume record

Luc S. Doucet1*, Zheng-Xiang Li1, Richard Ernst2,3, Uwe Kirscher1,4, Hamed Gamal El

Dien1,5, Ross N. Mitchell1,6

1Earth Geodynamic Research Group, TIGeR, School of Earth and Planetary Sciences, Curtin

University, Perth WA 6845, Australia, [email protected]

2 Department of Earth Sciences, Carleton University, Canada

3 Faculty of Geology and Geography, Tomsk State University, Russia

4Department of Geosciences, Eberhard Karls University Tübingen, Sigwartstr. 10, 72076 Tübingen, Germany 5Geology Department, Faculty of Science, Tanta University, 31527 Tanta, Egypt 6State Key Laboratory of Lithospheric Evolution, Institute of Geology and Geophysics, Chinese Academy of Sciences, Beijing 100029, China

Page 2: Coupled supercontinent-mantle plume events evidenced by ... · SUPPLEMENTARY MATERIAL GSA Data Repository 2020046 Coupled supercontinent-mantle plume events evidenced by oceanic plume

SUPPLEMENTARY MATERIAL

Lifespans of the known supercontinents

The names and lifespans of the supercontinents Pangea (ca. 320–170 Ma) and Rodinia (900–700

Ma) are discussed by Evans et al. (2016) and updated by Nordsvan et al. (2018) and Pourteau et

al. (2018) for Nuna (1600-1400 Ma). The supercontinents are defined by Meert (2012) as a

continued continental area that contain over 75% of landmass at a given age. As such,

Gondwana, with 60% of the global continental area, is not considered a true supercontinent but

part of processes that lead to the final assembly of the supercontinent Pangea. While the tenures

of supercontinents are fairly well constrained by paleomagnetic and geological data, the

assembly and breakup are protracted multistage processes marked by gradual shading on Figures

2 and 3.

Geological and geochemical evidence of plume-related material in ophiolite belts

Oceanic plume-related magmas are those of oceanic plateaus and ocean island basalts (OIB),

here we collected called O-LIPs. They are characterized by peculiar geological and geochemical

characteristics distinct from volcanic sequence of other tectonic settings as define by (Bryan and

Ernst, 2008; Dilek and Furnes, 2011; Kerr et al., 2000) (GSA Data Repository Table S1).

Names and ages of O-LIP occurrences in the database

The names of the oceanic mantle plume occurrences are the name of the locality where the

oceanic plateau, ocean island basalt or seamount has been described by the original authors (see

GSA Data Repository Table S2). In Table S2 we list the maximum and minimum ages as well as

the preferred age for magmatic emplacement reported by the authors. The magmatic ages are

Page 3: Coupled supercontinent-mantle plume events evidenced by ... · SUPPLEMENTARY MATERIAL GSA Data Repository 2020046 Coupled supercontinent-mantle plume events evidenced by oceanic plume

used for Figures 2 and 3 and the time series analysis. All the references in are reported in the

GSA Data Repository Table S2 and below.

The continental LIP records

The C-LIP record in this study has been updated from the Large Igneous Provinces Commission

database and are presented in the GSA Data Repository Table S3. According to the Large

Igneous Provinces Commission (Ernst 2014), the C-LIP includes flood basalt provinces, dike

swarm and silicic large igneous province (SLIP). All the references in are reported in the GSA

Data Repository Table S3 and below.

Time series analyses

We conduct time series analysis on both the continental and oceanic LIP records (GSA Data

Repository Table S2 and S3) to test for the presence of any significant cycles or cyclic trends.

We applied a Fast-Fourier transform (FFT) (GSA Data Repository Figure S1 and S2) and a

multi-taper method (MTM) (GSA Data Repository Figure S3 and S4). For the FFT, the spectral

power used is the complex conjugate of the Fourier coefficients, normalized to unit mean power

(Muller and MacDonald, 2000). First, we evaluated the significance of the FFT spectral peaks

using a Monte Carlo routine to simulate white noise (Muller and MacDonald, 2000). FFTs were

performed on each of these 1000 randomly generated time series; a 95% and 90% confidence

level was typically approximated for each frequency by multiplying the mean power by three and

two respectively (Muller and MacDonald, 2000). We interpret spectral peaks rising above 90%

confidence level as statistically significant. Based on the FFT results, we ran bandpass filters

with Gaussian windows to encapsulate the significant peaks identified. Since we are dealing with

Page 4: Coupled supercontinent-mantle plume events evidenced by ... · SUPPLEMENTARY MATERIAL GSA Data Repository 2020046 Coupled supercontinent-mantle plume events evidenced by oceanic plume

unevenly sampled and rather small datasets, the afore mentioned spectral analysis approach

might underestimate the true uncertainty especially for the long wavelength cycles. We

additionally applied a MTM on the datasets using red noise as a null hypothesis (Ghil et al.,

2002). The data were binned using window sizes of 10 Ma (O-LIP) and 29 Ma (C-LIP).

Furthermore, we used a linear interpolation to obtain an equally spaced dataset for usage for the

spectral analysis. To obtain the MTM results we use the SSA-MTM toolkit (Ghil et al., 2002).

We applied bandpass filters manually using as narrow windows as possible without

disappearance of the signal. Based on the SSA-MTM toolkit we selected resulting frequencies to

obtain the ‘reconstruction’ signals.

REFERENCES

Bryan, S. E., and Ernst, R. E., 2008, Revised definition of Large Igneous Provinces (LIPs): Earth-Science Reviews, v. 86, no. 1-4, p. 175-202.

Dilek, Y., and Furnes, H., 2011, Ophiolite genesis and global tectonics: Geochemical and tectonic fingerprinting of ancient oceanic lithosphere: Geol. Soc. Amer. Bull., v. 123, no. 3-4, p. 387-411.

Evans, D. A. D., Li, Z. X., and Murphy, J. B., 2016, Four-dimensional context of Earth's supercontinents: Geological Society, London, Special Publications, v. 424, no. 1, p. 1-14.

Ghil, M., Allen, M., Dettinger, M., Ide, K., Kondrashov, D., Mann, M., Robertson, A. W., Saunders, A., Tian, Y., and Varadi, F., 2002, Advanced spectral methods for climatic time series: Reviews of geophysics, v. 40, no. 1, p. 3-1-3-41.

Kerr, A. C., White, R. V., and Saunders, A. D., 2000, LIP reading: recognizing oceanic plateaux in the geological record: Journal of Petrology, v. 41, no. 7, p. 1041-1056.

Meert, J. G., 2012, What's in a name? The Columbia (Paleopangaea/Nuna) supercontinent: Gondwana Research, v. 21, no. 4, p. 987-993.

Muller, R. A., and MacDonald, G. J., 2000, Ice ages and astronomical causes: data, spectral analysis and mechanisms, Chichester, United Kingdom, Praxis Publishing.

Nordsvan, A. R., Collins, W. J., Li, Z.-X., Spencer, C. J., Pourteau, A., Withnall, I. W., Betts, P. G., and Volante, S., 2018, Laurentian crust in northeast Australia: Implications for the assembly of the supercontinent Nuna: Geology, v. 46, no. 3, p. 251-254.

Pourteau, A., Smit, M. A., Li, Z.-X., Collins, W. J., Nordsvan, A. R., Volante, S., and Li, J., 2018, 1.6 Ga crustal thickening along the final Nuna suture: Geology, v. 46, no. 11, p. 959-962.

Page 5: Coupled supercontinent-mantle plume events evidenced by ... · SUPPLEMENTARY MATERIAL GSA Data Repository 2020046 Coupled supercontinent-mantle plume events evidenced by oceanic plume

O-LIP DATABASE REFERENCE

Bian, Q.-T., Li, D.-H., Pospelov, I., Yin, L.-M., Li, H.-S., Zhao, D.-S., Chang, C.-F., Luo, X.-Q., Gao, S.-L., Astrakhantsev, O., and Chamov, N., 2004, Age, geochemistry and tectonic setting of Buqingshan ophiolites, North Qinghai-Tibet Plateau, China: Journal of Asian Earth Sciences, v. 23, no. 4, p. 577-596.

Castillo, P., Pringle, M., and Carlson, R., 1994, East Mariana Basin tholeiites: Cretaceous intraplate basalts or rift basalts related to the Ontong Java plume?: Earth and Planetary Science Letters, v. 123, no. 1-3, p. 139-154.

Coffin, M. F., Pringle, M. S., Duncan, R. A., Gladczenko, T. P., Storey, M., Müller, R. D., and Gahagan, L. A., 2002, Kerguelen Hotspot Magma Output since 130 Ma: Journal of Petrology, v. 43, no. 7, p. 1121-1137.

Delaloye, M., and Desmons, J., 1980, Ophiolites and melange terranes in Iran: A geochronological study and its paleotectonic implications: Tectonophysics, v. 68, no. 1, p. 83-111.

Dunning, G. R., and Pedersen, R. B., 1988, U/Pb ages of ophiolites and arc-related plutons of the Norwegian Caledonides: implications for the development of Iapetus: Contributions to Mineralogy and Petrology, v. 98, no. 1, p. 13-23.

Ernst, R. E., 2014, Large igneous provinces, Cambridge University Press. Filippov, A. N., Govorov, G. I., Chashchin, A. A., and Punina, T. A., 2010, Composition and

formation settings of the siliceous-volcanogenic complexes of the Nizhneussuriisk segment, Kiselevka-Manoma terrane, West Sikhote Alin: Russian Journal of Pacific Geology, v. 4, no. 4, p. 289-303.

Galoyan, G., Rolland, Y., Sosson, M., Corsini, M., and Melkonyan, R., 2007, Evidence for superposed MORB, oceanic plateau and volcanic arc series in the Lesser Caucasus (Stepanavan, Armenia): Comptes Rendus Geoscience, v. 339, no. 7, p. 482-492.

Golozubov, V. V., Kasatkin, S. A., Malinovskii, A. I., Nechayuk, A. E., and Grannik, V. M., 2016, Dislocations of the cretaceous and cenozoic complexes of the northern part of the West Sakhalin Terrane: Geotectonics, v. 50, no. 4, p. 439-452.

Göncüoglu, M. C., Sayit, K., and Tekin, U. K., 2010, Oceanization of the northern Neotethys: Geochemical evidence from ophiolitic melange basalts within the İzmir–Ankara suture belt, NW Turkey: Lithos, v. 116, no. 1, p. 175-187.

Greene, A. R., Scoates, J. S., Weis, D., Katvala, E. C., Israel, S., and Nixon, G. T., 2010, The architecture of oceanic plateaus revealed by the volcanic stratigraphy of the accreted Wrangellia oceanic plateau: Geosphere, v. 6, no. 1, p. 47-73.

Hart, S. R., and Staudigel, H., 1986, Ocean crust vein mineral deposition: Rb/Sr ages, U-Th-Pb geochemistry, and duration of circulation at DSDP sites 261, 462 and 516: Geochimica et Cosmochimica Acta, v. 50, no. 12, p. 2751-2761.

Hollis, S., Roberts, S., Cooper, M., Herrington, R., Condon, J., Cooper, M., Archibald, S., and Piercey, S., 2012, Episodic arc-ophiolite emplacement and the growth of continental margins: Late accretion in the Northern Irish sector of the Grampian-Taconic orogeny: GSA Bulletin, v. 124, no. 11-12, p. 1702-1723.

Ichiyama, Y., Ishiwatari, A., and Koizumi, K., 2008, Petrogenesis of greenstones from the Mino–Tamba belt, SW Japan: Evidence for an accreted Permian oceanic plateau: Lithos, v. 100, no. 1, p. 127-146.

Page 6: Coupled supercontinent-mantle plume events evidenced by ... · SUPPLEMENTARY MATERIAL GSA Data Repository 2020046 Coupled supercontinent-mantle plume events evidenced by oceanic plume

Kerr, A. C., 2003, 3.16 - Oceanic Plateaus, in Holland, H. D., and Turekian, K. K., eds., Treatise on Geochemistry: Oxford, Pergamon, p. 537-565.

Khain, E., Fedotova, A., Bibikova, E., Salnikova, E., Kotov, A., Burgat, K.-P., Kovach, V., and Remizov, D., 2005, The Neoproterozoic and Early Paleozoic geological history of the Ural-Kazakhstan margin of the Paleoasian Ocean using new isotopic and geochronological data obtained for the Polar Ural region: Russian Journal of Earth Sciences, v. 7, no. 5.

Koppers, A. A., Staudigel, H., and Duncan, R. A., 2003, High-resolution 40Ar/39Ar dating of the oldest oceanic basement basalts in the western Pacific basin: Geochemistry, Geophysics, Geosystems, v. 4, no. 11.

Krishna, K. S., 2003, Structure and evolution of the Afanasy Nikitin seamount, buried hills and 85°E Ridge in the northeastern Indian Ocean: Earth and Planetary Science Letters, v. 209, no. 3, p. 379-394.

Larson, R., 1991, Latest pulse of Earth: Evidence for a mid-Cretaceous superplume: Geology, v. 19, no. 6, p. 547-550.

Larson, R. L., and Olson, P., 1991, Mantle plumes control magnetic reversal frequency: Earth and Planetary Science Letters, v. 107, no. 3, p. 437-447.

Liu, B., Ma, C. Q., Guo, Y. H., Xiong, F. H., Guo, P., and Zhang, X., 2016, Petrogenesis and tectonic implications of Triassic mafic complexes with MORB/OIB affinities from the western Garzê-Litang ophiolitic mélange, central Tibetan Plateau: Lithos, v. 260, p. 253-267.

Lompo, M., 2010, Paleoproterozoic structural evolution of the Man-Leo Shield (West Africa). Key structures for vertical to transcurrent tectonics: Journal of African Earth Sciences, v. 58, no. 1, p. 19-36.

Mahoney, J. J., Storey, M., Duncan, R. A., Spencer, K. J., and Pringle, M., Geochemistry and geochronology of Leg 130 basement lavas: nature and origin of the Ontong Java Plateau, in Proceedings Proceedings of the Ocean Drilling Program, Scientific Results1993, Volume 130, College Station, p. 3-22.

Meyzen, C., Bellieni, G., Marzoli, A., and Levresse, G., 2016, Magmatic Activity on a Motionless Plate: the Case of East Island, Crozet Archipelago (Indian Ocean): Journal of Petrology, v. 57, no. 7, p. 1409-1436.

Miao, L., Fan, W., Liu, D., Zhang, F., Shi, Y., and Guo, F., 2008, Geochronology and geochemistry of the Hegenshan ophiolitic complex: Implications for late-stage tectonic evolution of the Inner Mongolia-Daxinganling Orogenic Belt, China: Journal of Asian Earth Sciences, v. 32, no. 5, p. 348-370.

Moghadam, H. S., and Stern, R. J., 2015, Ophiolites of Iran: Keys to understanding the tectonic evolution of SW Asia: (II) Mesozoic ophiolites: Journal of Asian Earth Sciences, v. 100, p. 31-59.

Pallister, J. S., Budahn, J. R., and Murchey, B. L., 1989, Pillow basalts of the Angayucham terrane: Oceanic plateau and island crust accreted to the Brooks Range: Journal of Geophysical Research: Solid Earth, v. 94, no. B11, p. 15901-15923.

Pedro, J., Araújo, A., Fonseca, P., Tasinari, C., and Ribeiro, A., 2010, Geochemistry and U-Pb zircon age of the internal Ossa-Morena zone ophiolite sequences: a remnant of Rheic ocean in SW Iberia.

Petterson, M. G., Neal, C. R., Mahoney, J. J., Kroenke, L. W., Saunders, A. D., Babbs, T. L., Duncan, R. A., Tolia, D., and McGrail, B., 1997, Structure and deformation of north and

Page 7: Coupled supercontinent-mantle plume events evidenced by ... · SUPPLEMENTARY MATERIAL GSA Data Repository 2020046 Coupled supercontinent-mantle plume events evidenced by oceanic plume

central Malaita, Solomon Islands: tectonic implications for the Ontong Java Plateau-Solomon arc collision, and for the fate of oceanic plateaus: Tectonophysics, v. 283, no. 1, p. 1-33.

Pirajno, F., 2004, Oceanic plateau accretion onto the northwestern margin of the Yilgarn Craton, Western Australia: implications for a mantle plume event at ca. 2.0 Ga: Journal of Geodynamics, v. 37, no. 2, p. 205-231.

Safonova, I., 2017, Juvenile versus recycled crust in the Central Asian Orogenic Belt: Implications from ocean plate stratigraphy, blueschist belts and intra-oceanic arcs: Gondwana Research, v. 47, p. 6-27.

Safonova, I. Y., and Santosh, M., 2014, Accretionary complexes in the Asia-Pacific region: Tracing archives of ocean plate stratigraphy and tracking mantle plumes: Gondwana Research, v. 25, no. 1, p. 126-158.

Safonova, I. Y., Simonov, V. A., Kurganskaya, E. V., Obut, O. T., Romer, R. L., and Seltmann, R., 2012, Late Paleozoic oceanic basalts hosted by the Char suture-shear zone, East Kazakhstan: Geological position, geochemistry, petrogenesis and tectonic setting: Journal of Asian Earth Sciences, v. 49, p. 20-39.

Safonova, I. Y., Utsunomiya, A., Kojima, S., Nakae, S., Tomurtogoo, O., Filippov, A. N., and Koizumi, K., 2009, Pacific superplume-related oceanic basalts hosted by accretionary complexes of Central Asia, Russian Far East and Japan: Gondwana Research, v. 16, no. 3-4, p. 587-608.

Sawada, H., Isozaki, Y., Aoki, S., Sakata, S., Sawaki, Y., Hasegawa, R., and Nakamura, Y., 2019, The Late Jurassic magmatic protoliths of the Mikabu greenstones in SW Japan: A fragment of an oceanic plateau in the Paleo-Pacific Ocean: Journal of Asian Earth Sciences, v. 169, p. 228-236.

Scott, D. J., St-Onge, M., Lucas, S., and Helmstaedt, H., 1991, Geology and chemistry of the early Proterozoic Purtuniq ophiolite, Cape Smith belt, northern Quebec, Canada, Ophiolite genesis and evolution of the oceanic lithosphere, Springer, p. 817-849.

Sinton, C. W., Duncan, R. A., Storey, M., Lewis, J., and Estrada, J. J., 1998, An oceanic flood basalt province within the Caribbean plate: Earth and Planetary Science Letters, v. 155, no. 3, p. 221-235.

Stern, R. A., Syme, E. C., and Lucas, S. B., 1995, Geochemistry of 1.9 Ga MORB- and OIB-like basalts from the Amisk collage, Flin Flon Belt, Canada: Evidence for an intra-oceanic origin: Geochimica et Cosmochimica Acta, v. 59, no. 15, p. 3131-3154.

Storey, M., Mahoney, J. J., Saunders, A. D., Duncan, R. A., Kelley, S. P., and Coffin, M. F., 1995, Timing of Hot Spot—Related Volcanism and the Breakup of Madagascar and India: Science, v. 267, no. 5199, p. 852-855.

Suzuki, N., Kojima, S., Kano, H., Yamakita, S., Misaki, A., Ehiro, M., Otoh, S., Kurihara, T., and Aoyama, M., 2005, Permian radiolarian faunas from chert in the Khabarovsk Complex, Far East Russia, and the age of each lithologic unit of the Khabarovsk Complex: Journal of Paleontology, v. 79, no. 4, p. 687-701.

Tang, L., Santosh, M., Dong, Y., Tsunogae, T., Zhang, S., and Cao, H., 2016, Early Paleozoic tectonic evolution of the North Qinling orogenic belt: Evidence from geochemistry, phase equilibrium modeling and geochronology of metamorphosed mafic rocks from the Songshugou ophiolite: Gondwana Research, v. 30, p. 48-64.

Teklay, M., Kröner, A., and Mezger, K., 2002, Enrichment from plume interaction in the generation of Neoproterozoic arc rocks in northern Eritrea: implications for crustal

Page 8: Coupled supercontinent-mantle plume events evidenced by ... · SUPPLEMENTARY MATERIAL GSA Data Repository 2020046 Coupled supercontinent-mantle plume events evidenced by oceanic plume

accretion in the southern Arabian–Nubian Shield: Chemical Geology, v. 184, no. 1, p. 167-184.

Uenzelmann-Neben, G., Gohl, K., Ehrhardt, A., and Seargent, M., 1999, Agulhas Plateau, SW Indian Ocean: new evidence for excessive volcanism: Geophysical Research Letters, v. 26, no. 13, p. 1941-1944.

Utsunomiya, A., Suzuki, N., and Ota, T., 2008, Preserved paleo-oceanic plateaus in accretionary complexes: Implications for the contributions of the Pacific superplume to global environmental change: Gondwana Research, v. 14, no. 1, p. 115-125.

Wang, Y., He, H., Zhang, Y., Srithai, B., Feng, Q., Cawood, P. A., and Fan, W., 2017, Origin of Permian OIB-like basalts in NW Thailand and implication on the Paleotethyan Ocean: Lithos, v. 274-275, p. 93-105.

Yang, G., Li, Y., Kerr, A. C., and Tong, L., 2018, Accreted seamounts in North Tianshan, NW China: Implications for the evolution of the Central Asian Orogenic Belt: Journal of Asian Earth Sciences, v. 153, p. 223-237.

Yang, G., Li, Y., Xiao, W., and Tong, L., 2015, OIB-type rocks within West Junggar ophiolitic mélanges: Evidence for the accretion of seamounts: Earth-Science Reviews, v. 150, p. 477-496.

Zhang, Y., Song, S., Yang, L., Su, L., Niu, Y., Allen, M. B., and Xu, X., 2017, Basalts and picrites from a plume-type ophiolite in the South Qilian Accretionary Belt, Qilian Orogen: Accretion of a Cambrian Oceanic Plateau?: Lithos, v. 278-281, p. 97-110.

Page 9: Coupled supercontinent-mantle plume events evidenced by ... · SUPPLEMENTARY MATERIAL GSA Data Repository 2020046 Coupled supercontinent-mantle plume events evidenced by oceanic plume

C-LIP REFERENCES

Ali, J. R., Fitton, J. G., and Herzberg, C., 2010, Emeishan large igneous province (SW China) and the mantle-plume up-doming hypothesis: Journal of the Geological Society, v. 167, no. 5, p. 953-959.

Avni, Y., Segev, A., and Ginat, H., 2012, Oligocene regional denudation of the northern Afar dome: Pre-and syn-breakup stages of the Afro-Arabian plate: Bulletin, v. 124, no. 11-12, p. 1871-1897.

Bangalore, S., Kumar, S., Fusaro, M., Amoroso, N., Attubato, M. J., Feit, F., Bhatt, D. L., and Slater, J., 2012, Short-and long-term outcomes with drug-eluting and bare-metal coronary stents: a mixed-treatment comparison analysis of 117 762 patient-years of follow-up from randomized trials: Circulation, v. 125, no. 23, p. 2873-2891.

Baragar, W., Ernst, R., Hulbert, L., and Peterson, T., 1996, Longitudinal petrochemical variation in the Mackenzie dyke swarm, northwestern Canadian Shield: Journal of Petrology, v. 37, no. 2, p. 317-359.

Baratoux, L., Jessell, M., Söderlund, U., Ernst, R. E., Benoit, M., Naba, S., Cournède, C., Perrouty, S., Metelka, V., and Yatte, D., 2016, Distribution and U-Pb ages of newly recognized regional-scale dyke swarms of the Leo Man Craton: Acta Geologica Sinica (English Edition), v. 90, no. Suppl. 1, p. 29.

Baratoux, L., Söderlund, U., Ernst, R., De Roever, E., Jessell, M., Kamo, S., Naba, S., Perrouty, S., Metelka, V., and Yatte, D., 2019, New U–Pb Baddeleyite Ages of Mafic Dyke Swarms of the West African and Amazonian Cratons: Implication for Their Configuration in Supercontinents Through Time, Dyke Swarms of the World: A Modern Perspective, Springer, p. 263-314.

Bayanova, T., Ludden, J., and Mitrofanov, F., 2009, Timing and duration of Palaeoproterozoic events producing ore-bearing layered intrusions of the Baltic Shield: metallogenic, petrological and geodynamic implications: Geological Society, London, Special Publications, v. 323, no. 1, p. 165-198.

Bekker, A., Kamo, S. L., Albekov, A. Y., Ernst, R. E., Ryborak, M. V., U. , and Söderlund, U., 2013, Precise age of 2072 Ma for the c. 2066-2085 Ma intraplate mafic-ultramafic magmatism in the Voronezh Massif, Volgo-Sarmatia, Baltica: Unpublished Report A193 for Industry Sponsors of the “Reconstruction of Supercontinents Back To 2.7 Ga Using The Large Igneous Province (LIP) Record: With Implications For Mineral Deposit Targeting, Hydrocarbon Resource Exploration, and Earth System Evolution”

Bertrand, H., Fornari, M., Marzoli, A., García-Duarte, R., and Sempere, T., 2014, The Central Atlantic magmatic province extends into Bolivia: Lithos, v. 188, p. 33-43.

Bryan, S. E., and Ferrari, L., 2013, Large igneous provinces and silicic large igneous provinces: Progress in our understanding over the last 25 years: GSA Bulletin, v. 125, no. 7-8, p. 1053-1078.

Buchan, K., and Ernst, R., 2013, Diabase dyke swarms of Nunavut, Northwest Territories and Yukon, Canada: Geological Survey of Canada, Open File, v. 7464, no. 10.4095, p. 293149.

Buchan, K. L., and Ernst, R., 2004, Diabase dyke swarms and related unites in Canada and adjacent regions, Geological Survey of Canada.

Buchan, K. L., Goutier, J., Hamilton, M. A., Ernst, R. E., and Matthews, W. A., 2007, Paleomagnetism, U–Pb geochronology, and geochemistry of Lac Esprit and other dyke swarms, James Bay area, Quebec, and implications for Paleoproterozoic deformation of the Superior Province: Canadian Journal of Earth Sciences, v. 44, no. 5, p. 643-664.

Page 10: Coupled supercontinent-mantle plume events evidenced by ... · SUPPLEMENTARY MATERIAL GSA Data Repository 2020046 Coupled supercontinent-mantle plume events evidenced by oceanic plume

Buchan, K. L., Mitchell, R. N., Bleeker, W., Hamilton, M. A., and LeCheminant, A. N., 2016, Paleomagnetism of ca. 2.13–2.11 Ga Indin and ca. 1.885 Ga Ghost dyke swarms of the Slave craton: Implications for the Slave craton APW path and relative drift of Slave, Superior and Siberian cratons in the Paleoproterozoic: Precambrian Research, v. 275, p. 151-175.

Buchan, K. L., Mortensen, J. K., Card, K. D., and Percival, J. A., 1998, Paleomagnetism and U-Pb geochronology of diabase dyke swarms of Minto block, Superior Province, Quebec, Canada: Canadian Journal of Earth Sciences, v. 35, no. 9, p. 1054-1069.

Burgess, S. D., and Bowring, S. A., 2015, High-precision geochronology confirms voluminous magmatism before, during, and after Earth’s most severe extinction: Science Advances, v. 1, no. 7, p. e1500470.

Ciborowski, T. J. R., Kerr, A. C., Ernst, R. E., McDonald, I., Minifie, M. J., Harlan, S. S., and Millar, I. L., 2015, The Early Proterozoic Matachewan large igneous province: geochemistry, petrogenesis, and implications for Earth evolution: Journal of Petrology, v. 56, no. 8, p. 1459-1494.

Ciborowski, T. J. R., Kerr, A. C., McDonald, I., Ernst, R. E., and Minifie, M. J., 2013, The geochemistry and petrogenesis of the Blue Draw Metagabbro: Lithos, v. 174, p. 271-290.

Ciborowski, T. J. R., Minifie, M. J., Kerr, A. C., Ernst, R. E., Baragar, B., and Millar, I. L., 2017, A mantle plume origin for the Palaeoproterozoic Circum-Superior large Igneous Province: Precambrian Research, v. 294, p. 189-213.

Cox, G. M., Strauss, J. V., Halverson, G. P., Schmitz, M. D., McClelland, W. C., Stevenson, R. S., and Macdonald, F. A., 2015, Kikiktat volcanics of Arctic Alaska—Melting of harzburgitic mantle associated with the Franklin large igneous province: Lithosphere, v. 7, no. 3, p. 275-295.

Davey, S. C., Bleeker, W., Kamo, S. L., Vuollo, J., Ernst, R. E., and Cousens, B. L., in press, Characterizing regional mafic dyke swarm patterns to resolve Svecofennian-caused rotations of Archean blocks in Western Karelia, and for a refined Paleoproterozoic paleogeographic reconstruction of supercraton Superia: Precambrian Research

de Kock, M., Gumsley, A., Klausen, M., Söderlund, U., and Djeutchou, C., 2019, The Precambrian Mafic Magmatic Record, Including Large Igneous Provinces of the Kalahari Craton and Its Constituents: A Paleogeographic Review, Dyke Swarms of the World: A Modern Perspective, Springer, p. 155-214.

De Kock, M. O., Ernst, R., Söderlund, U., Jourdan, F., Hofmann, A., Le Gall, B., Bertrand, H., Chisonga, B. C., Beukes, N., and Rajesh, H., 2014, Dykes of the 1.11 Ga Umkondo LIP, Southern Africa: clues to a complex plumbing system: Precambrian Research, v. 249, p. 129-143.

Ernst, R., and Bleeker, W., 2010, Large igneous provinces (LIPs), giant dyke swarms, and mantle plumes: significance for breakup events within Canada and adjacent regions from 2.5 Ga to the Present: Canadian Journal of Earth Sciences, v. 47, no. 5, p. 695-739.

Ernst, R., Okrugin, A., Veselovskiy, R., Kamo, S., Hamilton, M. A., Pavlov, V., Soderlund, U., Chamberlain, K. R., and Rogers, C., 2016, The 1501 Ma Kuonamka Large Igneous Province of northern Siberia: U-Pb geochronology, geochemistry, and links with coeval magmatism on other crustal blocks: Russian Geology and Geophysics, v. 57, no. 5, p. 653-671.

Ernst, R. E., and Bell, K., 2010, Large igneous provinces (LIPs) and carbonatites: Mineralogy and Petrology, v. 98, no. 1-4, p. 55-76.

Ernst, R. E., and Buchan, K. L., 2001, Mantle plumes: their identification through time, Geological Society of America.

Page 11: Coupled supercontinent-mantle plume events evidenced by ... · SUPPLEMENTARY MATERIAL GSA Data Repository 2020046 Coupled supercontinent-mantle plume events evidenced by oceanic plume

Ernst, R. E., Hamilton, M., Söderlund, U., Hanes, J., Gladkochub, D., Okrugin, A., Kolotilina, T., Mekhonoshin, A., Bleeker, W., and LeCheminant, A., 2016, Long-lived connection between southern Siberia and northern Laurentia in the Proterozoic: Nature Geoscience, v. 9, no. 6, p. 464.

Ernst, R. E., Mruma, A., Söderlund, U., and Halls, H. C., 2015, Evidence for the extension of the 180 Ma Karoo LIP of southern Africa northward into Zambia and Tanzania: Abstract VGP34A-0414 Joint Assembly (AGU-GAC-MAC-CGU) meeting Montreal

Ernst, R. E., Pereira, E., Hamilton, M. A., Pisarevsky, S. A., Rodriques, J., Tassinari, C. C., Teixeira, W., and Van-Dunem, V., 2013, Mesoproterozoic intraplate magmatic ‘barcode’record of the Angola portion of the Congo Craton: Newly dated magmatic events at 1505 and 1110 Ma and implications for Nuna (Columbia) supercontinent reconstructions: Precambrian Research, v. 230, p. 103-118.

Gladkochub, D., Pisarevsky, S., Ernst, R., Donskaya, T., Söderlund, U., Mazukabzov, A., and Hanes, J., Large igneous province of about 1750 Ma in the Siberian Craton, in Proceedings Doklady Earth Sciences2010, Volume 430, Springer, p. 168-171.

Goldberg, A. S., 2010, Dyke swarms as indicators of major extensional events in the 1.9–1.2 Ga Columbia supercontinent: Journal of Geodynamics, v. 50, no. 3-4, p. 176-190.

Gower, C. F., and Krogh, T. E., 2002, AU–Pb geochronological review of the Proterozoic history of the eastern Grenville Province: Canadian Journal of Earth Sciences, v. 39, no. 5, p. 795-829.

Gumsley, A., de Kock, M. O., Rajesh, H., Knoper, M., Söderlund, U., and Ernst, R., 2013, The Hlagothi Complex: The identification of fragments from a Mesoarchaean large igneous province on the Kaapvaal Craton: Lithos, v. 174, p. 333-348.

Gumsley, A. P., Chamberlain, K., Bleeker, W., Söderlund, U., Kock, M. O. d., Kampmann, T. C., and Larsson, E., U-Pb TIMS and in-situ SIMS dating of baddeleyite and zircon from sub-volcanic sills of the Ongeluk Formation (Transvaal Supergroup) in the Griqualand West sub-basin, Kaapvaal Craton, with implications for Snowball Earth and the Great Oxygenation Event, in Proceedings AGU-GAC-MAC-CGU Joint Assembly 2015: 03/05/2015-07/05/20152015.

Halls, H., Hamilton, M., and Denyszyn, S., 2011, The Melville Bugt Dyke Swarm of Greenland: A Connection to the 1.5-1.6 Ga Fennoscandian Rapakivi Granite Province?, Dyke Swarms: Keys for Geodynamic Interpretation, Springer, p. 509-535.

Halls, H. C., Davis, D., Stott, G., Ernst, R., and Hamilton, M., 2008, The Paleoproterozoic Marathon Large Igneous Province: New evidence for a 2.1 Ga long-lived mantle plume event along the southern margin of the North American Superior Province: Precambrian Research, v. 162, no. 3-4, p. 327-353.

Hanson, R. E., Puckett Jr, R. E., Keller, G. R., Brueseke, M. E., Bulen, C. L., Mertzman, S. A., Finegan, S. A., and McCleery, D. A., 2013, Intraplate magmatism related to opening of the southern Iapetus Ocean: Cambrian Wichita igneous province in the Southern Oklahoma rift zone: Lithos, v. 174, p. 57-70.

Hastie, W. W., Watkeys, M. K., and Aubourg, C., 2014, Magma flow in dyke swarms of the Karoo LIP: Implications for the mantle plume hypothesis: Gondwana Research, v. 25, no. 2, p. 736-755.

Heaman, L., Easton, R., Hart, T., MacDonald, C., Hollings, P., and Smyk, M., 2007, Further refinement to the timing of Mesoproterozoic magmatism, Lake Nipigon region, Ontario: Canadian Journal of Earth Sciences, v. 44, no. 8, p. 1055-1086.

Hooper, P. R., 1982, The Columbia river basalts: Science, v. 215, no. 4539, p. 1463-1468. Ibanez-Mejia, M., Urbani, F., Söderlund, U., and Ernst, R. E., 2014, The c. 1.98 Ga Yanomami LIP: A

new Large Igneous Province in the Amazon Craton. Unpublished Report A180-182 for Industry

Page 12: Coupled supercontinent-mantle plume events evidenced by ... · SUPPLEMENTARY MATERIAL GSA Data Repository 2020046 Coupled supercontinent-mantle plume events evidenced by oceanic plume

Sponsors of the “Reconstruction of Supercontinents Back To 2.7 Ga Using The Large Igneous Province (LIP) Record: With Implications For Mineral Deposit Targeting: Hydrocarbon Resource Exploration, and Earth System Evolution.

Ivanov, A. V., He, H., Yan, L., Ryabov, V. V., Shevko, A. Y., Palesskii, S. V., and Nikolaeva, I. V., 2013, Siberian Traps large igneous province: Evidence for two flood basalt pulses around the Permo-Triassic boundary and in the Middle Triassic, and contemporaneous granitic magmatism: Earth-Science Reviews, v. 122, p. 58-76.

Jerram, D. A., Single, R. T., Hobbs, R. W., and Nelson, C. E., 2009, Understanding the offshore flood basalt sequence using onshore volcanic facies analogues: an example from the Faroe–Shetland basin: Geological Magazine, v. 146, no. 3, p. 353-367.

Jowitt, S. M., Williamson, M.-C., and Ernst, R. E., 2014, Geochemistry of the 130 to 80 Ma Canadian High Arctic large igneous province (HALIP) event and implications for Ni-Cu-PGE prospectivity: Economic Geology, v. 109, no. 2, p. 281-307.

Kerr, W., Saunders, A., Kempton, P., and Ghose, N., 1997, Rajmahal basalts, eastern India: mantle sources and melt distribution at a volcanic rifted margin: GEOPHYSICAL MONOGRAPH-AMERICAN GEOPHYSICAL UNION, v. 100, p. 145-182.

Kiselev, A., Ernst, R., Yarmolyuk, V., and Egorov, K., 2012, Radiating rifts and dyke swarms of the middle Paleozoic Yakutsk plume of eastern Siberian craton: Journal of Asian Earth Sciences, v. 45, p. 1-16.

Kouyaté, D., Söderlund, U., Youbi, N., Ernst, R., Hafid, A., Ikenne, M., Soulaimani, A., Bertrand, H., and Chaham, K. R. k., 2013, U–Pb baddeleyite and zircon ages of 2040 Ma, 1650 Ma and 885 Ma on dolerites in the West African Craton (Anti-Atlas inliers): Possible links to break-up of Precambrian supercontinents: Lithos, v. 174, p. 71-84.

Krasnobaev, A. A., Puchkov, V. N., Koslov, V. I., Sergeeva, N. D., Busharina, S. V., and Lepekina, Y. N., 2013, Zircon chronology upper volcanics of the Aiskii suite and the problem of the age of the lower boundary of the Riphean in the southern Urals: Dokladi Akamii Nauk, v. 448, p. 437-442.

Kulikov, V., Bychkova, Y. V., Kulikova, V., and Ernst, R., 2010, The Vetreny Poyas (Windy Belt) subprovince of southeastern Fennoscandia: An essential component of the ca. 2.5–2.4 Ga Sumian large igneous provinces: Precambrian Research, v. 183, no. 3, p. 589-601.

Liikane, D., St-Onge, M., Kjarsgaard, B., Rayner, N., Ernst, R., and Kastek, N., 2015, Frobisher suite mafic, ultramafic and layered mafic-ultramafic sills, southern Baffin Island, Nunavut: Summary of Activities, p. 21-32.

Maier, W. D., Rasmussen, B., Fletcher, I. R., Li, C., Barnes, S.-J., and Huhma, H., 2013, The Kunene anorthosite complex, Namibia, and its satellite intrusions: geochemistry, geochronology, and economic potential: Economic Geology, v. 108, no. 5, p. 953-986.

Malehmir, A., Koivisto, E., Manzi, M., Cheraghi, S., Durrheim, R. J., Bellefleur, G., Wijns, C., Hein, K. A., and King, N., 2014, A review of reflection seismic investigations in three major metallogenic regions: the Kevitsa Ni–Cu–PGE district (Finland), Witwatersrand goldfields (South Africa), and the Bathurst Mining Camp (Canada): Ore Geology Reviews, v. 56, p. 423-441.

Martin, D. M., and Morris, P., 2010, Tectonic setting and regional implications of ca 2.2 Ga mafic magmatism in the southern Hamersley Province, Western Australia: Australian Journal of Earth Sciences, v. 57, no. 7, p. 911-931.

Marzoli, A., Jourdan, F., Puffer, J. H., Cuppone, T., Tanner, L. H., Weems, R. E., Bertrand, H., Cirilli, S., Bellieni, G., and De Min, A., 2011, Timing and duration of the Central Atlantic magmatic province in the Newark and Culpeper basins, eastern USA: Lithos, v. 122, no. 3-4, p. 175-188.

Page 13: Coupled supercontinent-mantle plume events evidenced by ... · SUPPLEMENTARY MATERIAL GSA Data Repository 2020046 Coupled supercontinent-mantle plume events evidenced by oceanic plume

McClellan, E., and Gazel, E., 2014, The Cryogenian intra-continental rifting of Rodinia: Evidence from the Laurentian margin in eastern North America: Lithos, v. 206, p. 321-337.

Minifie, M. J., Kerr, A. C., Ernst, R. E., Hastie, A. R., Ciborowski, T. J. R., Desharnais, G., and Millar, I. L., 2013, The northern and southern sections of the western ca. 1880 Ma circum-Superior large igneous province, North America: The Pickle Crow dyke connection?: Lithos, v. 174, p. 217-235.

Mruma, A., Ernst, R., Soderlund, U., and Halls, H. C., 2014, Evidence for the extension of the 180 Ma Karoo LIP of southern Africa northward into Zambia and Tanzania. report 156 for Industry Sponsors of the “Reconstruction of Supercontinents Back To 2.7 Ga Using The Large Igneous Province (LIP) Record: With Implications For Mineral Deposit Targeting: Hydrocarbon Resource Exploration, and Earth System Evolution.

Müller, S. G., Krapez, B., Barley, M. E., and Fletcher, I. R., 2005, Giant iron-ore deposits of the Hamersley province related to the breakup of Paleoproterozoic Australia: New insights from in situ SHRIMP dating of baddeleyite from mafic intrusions: Geology, v. 33, no. 7, p. 577-580.

Mungall, J., Harvey, J., Balch, S., Azar, B., Atkinson, J., and Hamilton, M., 2010, Eagle’s nest: A magmatic Ni-sulfide deposit in the James Bay Lowlands, Ontario, Canada: Society of Economic Geologists, v. 15, p. 539-557.

Neumann, E.-R., Svensen, H., Galerne, C. Y., and Planke, S., 2011, Multistage evolution of dolerites in the Karoo large igneous province, Central South Africa: Journal of Petrology, v. 52, no. 5, p. 959-984.

Nilsson, M., Klausen, M., Söderlund, U., and Ernst, R., 2013, Precise U–Pb ages and geochemistry of Palaeoproterozoic mafic dykes from southern West Greenland: linking the North Atlantic and the Dharwar cratons: Lithos, v. 174, p. 255-270.

Olsson, J. R., Klausen, M. B., Hamilton, M. A., März, N., Söderlund, U., and Roberts, R. J., 2016, Baddeleyite U–Pb ages and gechemistry of the 1875–1835 Ma Black Hills Dyke Swarm across north-eastern South Africa: part of a trans-Kalahari Craton back-arc setting?: GFF, v. 138, no. 1, p. 183-202.

Peng, P., 2015, Late Paleoproterozoic–Neoproterozoic (1800–541 Ma) mafic dyke swarms and rifts in North China, Precambrian Geology of China, Springer, p. 171-204.

Peng, P., Liu, F., Zhai, M., and Guo, J., 2012, Age of the Miyun dyke swarm: constraints on the maximum depositional age of the Changcheng System: Chinese Science Bulletin, v. 57, no. 1, p. 105-110.

Pirajno, F., and Hoatson, D. M., 2012, A review of Australia's Large Igneous Provinces and associated mineral systems: implications for mantle dynamics through geological time: Ore Geology Reviews, v. 48, p. 2-54.

Pisarevsky, S. A., Biswal, T. K., Wang, X.-C., De Waele, B., Ernst, R., Söderlund, U., Tait, J. A., Ratre, K., Singh, Y. K., and Cleve, M., 2013, Palaeomagnetic, geochronological and geochemical study of Mesoproterozoic Lakhna Dykes in the Bastar Craton, India: Implications for the Mesoproterozoic supercontinent: Lithos, v. 174, p. 125-143.

Polyakov, G., Tolstykh, N., Mekhonoshin, A., Izokh, A., Podlipskii, M. Y., Orsoev, D., and Kolotilina, T., 2013, Ultramafic–mafic igneous complexes of the Precambrian East Siberian metallogenic province (southern framing of the Siberian craton): age, composition, origin, and ore potential: Russian Geology and Geophysics, v. 54, no. 11, p. 1319-1331.

Pradhan, V. R., Meert, J. G., Pandit, M. K., Kamenov, G., and Mondal, M. E. A., 2012, Paleomagnetic and geochronological studies of the mafic dyke swarms of Bundelkhand craton, central India:

Page 14: Coupled supercontinent-mantle plume events evidenced by ... · SUPPLEMENTARY MATERIAL GSA Data Repository 2020046 Coupled supercontinent-mantle plume events evidenced by oceanic plume

implications for the tectonic evolution and paleogeographic reconstructions: Precambrian Research, v. 198, p. 51-76.

Puchkov, V. N., Bogdanova, S. V., Ernst, R. E., Kozlov, V. I., Krasnobaev, A. A., Söderlund, U., Wingate, M. T., Postnikov, A. V., and Sergeeva, N. D., 2013, The ca. 1380 Ma Mashak igneous event of the Southern Urals: Lithos, v. 174, p. 109-124.

Rainbird, R. H., Stern, R. A., Khudoley, A. K., Kropachev, A. P., Heaman, L. M., and Sukhorukov, V. I., 1998, U–Pb geochronology of Riphean sandstone and gabbro from southeast Siberia and its bearing on the Laurentia–Siberia connection: Earth and Planetary Science Letters, v. 164, no. 3-4, p. 409-420.

Rajesh, H., Chisonga, B., Shindo, K., Beukes, N., and Armstrong, R., 2013, Petrographic, geochemical and SHRIMP U–Pb titanite age characterization of the Thabazimbi mafic sills: Extended time frame and a unifying petrogenetic model for the Bushveld Large Igneous Province: Precambrian Research, v. 230, p. 79-102.

Reidel, S. P., and Hooper, P. R., 1989, Volcanism and tectonism in the Columbia River flood-basalt province, Geological Society of America.

Reis, N. J., Teixeira, W., Hamilton, M. A., Bispo-Santos, F., Almeida, M. E., and D'Agrella-Filho, M. S., 2013, Avanavero mafic magmatism, a late Paleoproterozoic LIP in the Guiana Shield, Amazonian Craton: U–Pb ID-TIMS baddeleyite, geochemical and paleomagnetic evidence: Lithos, v. 174, p. 175-195.

Rioux, M., Bowring, S., Dudás, F., and Hanson, R., 2010, Characterizing the U–Pb systematics of baddeleyite through chemical abrasion: application of multi-step digestion methods to baddeleyite geochronology: Contributions to Mineralogy and Petrology, v. 160, no. 5, p. 777-801.

Rohrman, M., 2013, Intrusive large igneous provinces below sedimentary basins: An example from the Exmouth Plateau (NW Australia): Journal of Geophysical Research: Solid Earth, v. 118, no. 8, p. 4477-4487.

Salminen, J., Hanson, R., Evans, D. A., Gong, Z., Larson, T., Walker, O., Gumsley, A., Söderlund, U., and Ernst, R., 2018, Direct Mesoproterozoic connection of the Congo and Kalahari cratons in proto-Africa: Strange attractors across supercontinental cycles: Geology, v. 46, no. 11, p. 1011-1014.

Samal, A. K., Srivastava, R. K., Ernst, R. E., and Söderlund, U., 2019, Neoarchean-Mesoproterozoic Mafic Dyke Swarms of the Indian Shield Mapped Using Google Earth™ Images and ArcGIS™, and Links with Large Igneous Provinces, Dyke swarms of the world: A modern perspective, Springer, p. 335-390.

Sandeman, H. A., Heaman, L. M., and LeCheminant, A. N., 2013, The Paleoproterozoic Kaminak dykes, Hearne craton, western Churchill Province, Nunavut, Canada: Preliminary constraints on their age and petrogenesis: Precambrian Research, v. 232, p. 119-139.

Shellnutt, J., and MacRae, N., 2012, Petrogenesis of the Mesoproterozoic (1.23 Ga) Sudbury dyke swarm and its questionable relationship to plate separation: International Journal of Earth Sciences, v. 101, no. 1, p. 3-23.

Shellnutt, J. G., 2014, The Emeishan large igneous province: a synthesis: Geoscience Frontiers, v. 5, no. 3, p. 369-394.

Sheth, H. C., and Vanderkluysen, L., 2014, John Joseph Mahoney (1952-2012) Memorial, PERGAMON-ELSEVIER SCIENCE LTD THE BOULEVARD, LANGFORD LANE, KIDLINGTON ….

Page 15: Coupled supercontinent-mantle plume events evidenced by ... · SUPPLEMENTARY MATERIAL GSA Data Repository 2020046 Coupled supercontinent-mantle plume events evidenced by oceanic plume

Shumlyanskyy, L., Ernst, R. E., Billström, K., Wing, B., and Bekker, A., 2016, Age and sulfur isotope composition of the Prutivka intrusion (the 1.78 Ga Prutivka-Novogol large igneous province in Sarmatia): Мінералогічний журнал, v. 38, no. 3, p. 91-101.

Siga Jr, O., Cury, L. F., McReath, I., Ribeiro, L. M. d. A. L., Sato, K., Basei, M. Â. S., and Passarelli, C. R., 2011, Geology and geochronology of the Betara region in south-southeastern Brazil: evidence for possible Statherian (1.80–1.75 Ga) and Calymmian (1.50–1.45 Ga) extension events: Gondwana Research, v. 19, no. 1, p. 260-274.

Silveira, E., Söderlund, U., Oliveira, E., Ernst, R., and Leal, A. M., 2013, First precise U–Pb baddeleyite ages of 1500 Ma mafic dykes from the São Francisco Craton, Brazil, and tectonic implications: Lithos, v. 174, p. 144-156.

Smirnov, A. V., and Evans, D. A., 2015, Geomagnetic paleointensity at∼ 2.41 Ga as recorded by the Widgiemooltha Dike Swarm, Western Australia: Earth and Planetary Science Letters, v. 416, p. 35-45.

Sobolev, S. V., Sobolev, A. V., Kuzmin, D. V., Krivolutskaya, N. A., Petrunin, A. G., Arndt, N. T., Radko, V. A., and Vasiliev, Y. R., 2011, Linking mantle plumes, large igneous provinces and environmental catastrophes: Nature, v. 477, no. 7364, p. 312.

Söderlund, U., Bleeker, W., Demirer, K., Srivastava, R. K., Hamilton, M., Nilsson, M., Pesonen, L. J., Samal, A. K., Jayananda, M., and Ernst, R. E., 2018, Emplacement ages of Paleoproterozoic mafic dyke swarms in eastern Dharwar craton, India: Implications for paleoreconstructions and support for a∼ 30° change in dyke trends from south to north: Precambrian Research.

Söderlund, U., Hofmann, A., Klausen, M. B., Olsson, J. R., Ernst, R. E., and Persson, P.-O., 2010, Towards a complete magmatic barcode for the Zimbabwe craton: Baddeleyite U–Pb dating of regional dolerite dyke swarms and sill complexes: Precambrian Research, v. 183, no. 3, p. 388-398.

Söderlund, U., Ibanez-Mejia, M., El Bahat, A., Ernst, R. E., Ikenne, M., Soulaimani, A., Youbi, N., Cousens, B., and Hafid, A., 2013, Reply to Comment on “U–Pb baddeleyite ages and geochemistry of dolerite dykes in the Bas-Drâa inlier of the Anti-Atlas of Morocco: Newly identified 1380 Ma event in the West African Craton” by André Michard and Dominique Gasquet: Lithos, v. 174, p. 101-108.

Srivastava, R. K., Söderlund, U., Ernst, R. E., Mondal, S. K., and Samal, A. K., 2018, Precambrian mafic dyke swarms in the Singhbhum craton (eastern India) and their links with dyke swarms of the eastern Dharwar craton (southern India): Precambrian Research.

Stepanova, A. V., Salnikova, E. B., Samsonov, A. V., Egorova, S. V., Larionova, Y. O., and Stepanov, V. S., 2015, The 2.31 Ga mafic dykes in the Karelian Craton, eastern Fennoscandian shield: U–Pb age, source characteristics and implications for continental break-up processes: Precambrian Research, v. 259, p. 43-57.

Storey, M., Duncan, R. A., and Tegner, C., 2007, Timing and duration of volcanism in the North Atlantic Igneous Province: Implications for geodynamics and links to the Iceland hotspot: Chemical Geology, v. 241, no. 3-4, p. 264-281.

Symonds, P. A., Planke, S., Frey, O., and Skogseid, J., 1998, Volcanic evolution of the Western Australian continental margin and its implications for basin development.

Tait, J., Straathof, G., Söderlund, U., Ernst, R., Key, R., Jowitt, S., Lo, K., Dahmada, M., and N'Diaye, O., 2013, The ahmeyim great dyke of Mauritania: a newly dated Archaean intrusion: Lithos, v. 174, p. 323-332.

Page 16: Coupled supercontinent-mantle plume events evidenced by ... · SUPPLEMENTARY MATERIAL GSA Data Repository 2020046 Coupled supercontinent-mantle plume events evidenced by oceanic plume

Teixeira, W., Ernst, R. E., Hamilton, M. A., Lima, G., Ruiz, A. S., and Geraldes, M. C., 2016, Widespread ca. 1.4 Ga intraplate magmatism and tectonics in a growing Amazonia: GFF, v. 138, no. 1, p. 241-254.

Teixeira, W., Hamilton, M. A., Lima, G. A., Ruiz, A. S., Matos, R., and Ernst, R. E., 2015, Precise ID-TIMS U–Pb baddeleyite ages (1110–1112 Ma) for the Rincón del Tigre–Huanchaca large igneous province (LIP) of the Amazonian Craton: Implications for the Rodinia supercontinent: Precambrian Research, v. 265, p. 273-285.

Thiede, D. S., and Vasconcelos, P. M., 2010, Paraná flood basalts: rapid extrusion hypothesis confirmed by new 40Ar/39Ar results: Geology, v. 38, no. 8, p. 747-750.

Thorne, 2014, Guide to using the Australian Mafic-Ultramafic Magmatic Events GIS Dataset Archean: Proterozoic and Phanerozoic Magmatic Events. Record 2014/39, GeoCat 78742.

Torsvik, T., Ashwal, L., Tucker, R., and Eide, E., 2001, Neoproterozoic geochronology and palaeogeography of the Seychelles microcontinent: the India link: Precambrian Research, v. 110, no. 1-4, p. 47-59.

Torsvik, T. H., Smethurst, M. A., Burke, K., and Steinberger, B., 2008, Long term stability in deep mantle structure: Evidence from the~ 300 Ma Skagerrak-Centered Large Igneous Province (the SCLIP): Earth and Planetary Science Letters, v. 267, no. 3-4, p. 444-452.

Upton, B., Rämö, O., Heaman, L., Blichert-Toft, J., Kalsbeek, F., Barry, T., and Jepsen, H., 2005, The Mesoproterozoic Zig-Zag Dal basalts and associated intrusions of eastern North Greenland: mantle plume–lithosphere interaction: Contributions to Mineralogy and Petrology, v. 149, no. 1, p. 40-56.

Van Kranendonk, M., 2006, Revised lithostratigraphy of Archean supracrustal and intrusive rocks in the northern Pilbara Craton, Western Australia, Geological Survey of Western Australia.

Vuollo, J., and Huhma, H., 2005, Paleoproterozoic mafic dikes in NE Finland, Developments in Precambrian Geology, Volume 14, Elsevier, p. 195-236.

Wall, C. J., and Scoates, J. S., 2016, High-precision U-Pb zircon-baddeleyite dating of the JM Reef platinum group element deposit in the Stillwater Complex, Montana (USA): Economic Geology, v. 111, no. 3, p. 771-782.

White, R., and McKenzie, D., 1989, Magmatism at rift zones: the generation of volcanic continental margins and flood basalts: Journal of Geophysical Research: Solid Earth, v. 94, no. B6, p. 7685-7729.

Xu, Y.-G., Wei, X., Luo, Z.-Y., Liu, H.-Q., and Cao, J., 2014, The Early Permian Tarim Large Igneous Province: main characteristics and a plume incubation model: Lithos, v. 204, p. 20-35.

Youbi, N., Kouyaté, D., Söderlund, U., Ernst, R. E., Soulaimani, A., Hafid, A., Ikenne, M., El Bahat, A., Bertrand, H., and Chaham, K. R., 2013, The 1750 Ma magmatic event of the west African craton (Anti-Atlas, Morocco): Precambrian Research, v. 236, p. 106-123.

Zhai, Q.-g., Jahn, B.-m., Su, L., Ernst, R. E., Wang, K.-l., Zhang, R.-y., Wang, J., and Tang, S., 2013, SHRIMP zircon U–Pb geochronology, geochemistry and Sr–Nd–Hf isotopic compositions of a mafic dyke swarm in the Qiangtang terrane, northern Tibet and geodynamic implications: Lithos, v. 174, p. 28-43.

Zhang, D., Zhang, Z., Santosh, M., Cheng, Z., He, H., and Kang, J., 2013, Perovskite and baddeleyite from kimberlitic intrusions in the Tarim large igneous province signal the onset of an end-Carboniferous mantle plume: Earth and Planetary Science Letters, v. 361, p. 238-248.

Zhong, Y.-T., He, B., Mundil, R., and Xu, Y.-G., 2014, CA-TIMS zircon U–Pb dating of felsic ignimbrite from the Binchuan section: implications for the termination age of Emeishan large igneous province: Lithos, v. 204, p. 14-19.

Page 17: Coupled supercontinent-mantle plume events evidenced by ... · SUPPLEMENTARY MATERIAL GSA Data Repository 2020046 Coupled supercontinent-mantle plume events evidenced by oceanic plume

SUPPLEMENTARY FIGURES

30

25

20

15

15

10

5

0

10

5

0

Spec

tral

pow

er

Frequency (cycles Myr-1)

O-LIPC-LIPs

0 0.002 0.004 0.006 0 0.002 0.004 0.006

95%

90%

90%

Figure S1: Results for the Fast-Fourier transform (FFT) spectral analyses for the C-LIP (orange, left) and O-LIP (blue, right) records. The Monte Carlo 95% (or 90%) confidence intervals for each dataset are shown in grey shades. The black number are the Age peaks and grey fields represent the range for significant peaks.

A B 421

350

226 175

1943 Myr

328 163

979559

600-500 Ma1000-900 Ma

170-150 Ma500-400 Ma

250-200 Ma

FFT method

1000

185-165Ma

350-300 Ma 1450-710Ma

2600-1600 Ma

Page 18: Coupled supercontinent-mantle plume events evidenced by ... · SUPPLEMENTARY MATERIAL GSA Data Repository 2020046 Coupled supercontinent-mantle plume events evidenced by oceanic plume

Figure S2: The 421, 226 and 175 m.y. cycles for O-LIP (blue lines) and The 559, 328 and 163 m.y. cycles for C-LIP (orange lines) are extracted from the FFT using the 500-400, 250-200, 185-165 m.y. bandpasses for O-LIP and the 600-500, 350-300, 170-150 m.y. bandpasses for C-LIP. Also shown is the lifespan of the supercontinent Pangea and Rodinia (Evans et al. 2016).

Rel

ativ

e sc

ale

Age (Ma)

PHANEROZOIC

SUPERCONTINENTS

Pangea Rodinia

FFTBandpasses

range

Related FFT

peaks

PROTEROZOIC

NeoproterozoicMeso

proterozoic

500-400 Ma 421 Ma

600-500 Ma 559 Ma

350-300 Ma 328 Ma

170-150 Ma 163 Ma

226 Ma

175 Ma

250-200 Ma

185-165 Ma

605100

720130

170 500 820

120 460 780

120 290 460 620 780 950

120 290 450 610 770 930 1090

FFT method

0 100 300 500 700 900 1100

SUPPLEMENTARY FIGURES

Page 19: Coupled supercontinent-mantle plume events evidenced by ... · SUPPLEMENTARY MATERIAL GSA Data Repository 2020046 Coupled supercontinent-mantle plume events evidenced by oceanic plume

100

10

1

Spec

tral

pow

er (L

og)

0 0.005 0.010 0.015

2225-725 Ma

1665-870 Ma

MTM methodO-LIPC-LIPs

Figure S3: Results for the multi-taper method (MTM) spectral analyses for the C-LIP (orange, left) and O-LIP (blue, right) records. Also shown are the red noise (red line) and 99%, 95% and 90% of confidence intervals for each dataset. The black number are the Age peaks and grey fields represent the range for significant peaks

0 0.005 0.010 0.015

Frequency (cycles Myr-1)

99%

90%95%

99%

90%95%

SUPPLEMENTARY FIGURES

540-490 Ma 395-360 Ma170-150 Ma 480-520 Ma

420-380 Ma230-190 Ma

1200 Myr495

370165

1000 Myr

400500

210

Page 20: Coupled supercontinent-mantle plume events evidenced by ... · SUPPLEMENTARY MATERIAL GSA Data Repository 2020046 Coupled supercontinent-mantle plume events evidenced by oceanic plume

Figure S4: The 500, 379 and 200 m.y. cycles for O-LIP (blue lines) and the 495, 370 and 165 m.y. cycles for C-LIP (orange lines) are extracted from the MTM. Also shown is the lifespan of the supercontinent Pangea and Rodinia (Evans et al. 2016).. Also shown is the lifespan of the supercontinent Pangea and Rodinia (Evans et al. 2016).

MTMBand-

passes

MTM method

Rel

ativ

e sc

ale

Age (Ma)

PHANEROZOIC

SUPERCONTINENTS

Pangea Rodinia

PROTEROZOIC

NeoproterozoicMeso

proterozoic

0 100 300 500 700 900 1100

95

95

95

525

425

450

475

620

660

775

775

960 1150

1150

1100

275

850

SUPPLEMENTARY FIGURES

500 Ma

379 Ma

200 Ma

500 Ma

400 Ma

210 Ma

495 Ma

370 Ma

165 Ma

495 Ma

370 Ma

165 Ma

Related MTM

peaks

175

120

95 275 450 625 800 975

Page 21: Coupled supercontinent-mantle plume events evidenced by ... · SUPPLEMENTARY MATERIAL GSA Data Repository 2020046 Coupled supercontinent-mantle plume events evidenced by oceanic plume

Table DR1: summary of the main criteria for defining oceanic plume-related basalts in ophiolites

Ophiolite Thicknesshigh-MgO La/Nd TiO2/Yb Nb/Yb Th/Yb REE Pillow lavas Subaerial

meters basalts ppm ppm ppm ppm to PM

Oceanic plateau Lower plate >5000 yes ≤1 >0.6 1 - 10 0.05 - 5 flat may be common occassionaly

Ocean island basal Lower plate <5000 rare ≤1 >0.6 >10 0.9 - 2 LREE ++ few frequently

REE, rare earth elements

Table DR2 of Supplementary Material: Oceanic Large Igneous Provinces Database

2020046_Table DR2.xls

Table DR3 of Supplementary Material: Continental Large Igneous Province record

2020046_Table DR3.xls