countercurrent multistage extraction ii more applications hetp, htu, capacity chapter 6

63
COUNTERCURRENT MULTISTAGE EXTRACTION II More Applications HETP, HTU, Capacity Chapter 6

Upload: gladys-pitts

Post on 17-Dec-2015

224 views

Category:

Documents


3 download

TRANSCRIPT

Page 1: COUNTERCURRENT MULTISTAGE EXTRACTION II More Applications HETP, HTU, Capacity Chapter 6

COUNTERCURRENT MULTISTAGE EXTRACTION

II

More Applications

HETP, HTU,

Capacity

Chapter 6

Page 2: COUNTERCURRENT MULTISTAGE EXTRACTION II More Applications HETP, HTU, Capacity Chapter 6

Tocopherol - Separation

Page 3: COUNTERCURRENT MULTISTAGE EXTRACTION II More Applications HETP, HTU, Capacity Chapter 6

Structure of Tocochromanols

Page 4: COUNTERCURRENT MULTISTAGE EXTRACTION II More Applications HETP, HTU, Capacity Chapter 6

Solubility of Tocopherols in sc-CO2

Page 5: COUNTERCURRENT MULTISTAGE EXTRACTION II More Applications HETP, HTU, Capacity Chapter 6

Squalene - Tocopherol - Sterol - Separation

Page 6: COUNTERCURRENT MULTISTAGE EXTRACTION II More Applications HETP, HTU, Capacity Chapter 6

Top Product of Tocopherols

Page 7: COUNTERCURRENT MULTISTAGE EXTRACTION II More Applications HETP, HTU, Capacity Chapter 6

Binary Analysis of the Separation Process

Page 8: COUNTERCURRENT MULTISTAGE EXTRACTION II More Applications HETP, HTU, Capacity Chapter 6

Separation Factor Squalene- Tocopherol

Page 9: COUNTERCURRENT MULTISTAGE EXTRACTION II More Applications HETP, HTU, Capacity Chapter 6

5 10 15 20 25 30 355

10

15

20

25

99 Gew.% Squalen

90 Gew.% Squalen

20 MPa/343 K 23 MPa/353 K 26 MPa/363 K

nth [

-]

[-]

Squalene - Tocopherol/Sterol-separation with CO2

Saure 1996

99 wt-% squalene

90 wt-% squalene

Page 10: COUNTERCURRENT MULTISTAGE EXTRACTION II More Applications HETP, HTU, Capacity Chapter 6

6

5

4

3

2

1

0 20 40 60 80 100

0 20 40 60 80 100

Feedzugabe

Gas-, Flüssigphase: , Squalen , Tocopherole , Sterine

xi' [Mol%]

Ko

lon

nen

stu

fen

[-]

SqualeneTocopherolsSterols

Gas, liquid

Saure 1996

Feed

Equ

ilibr

ium

sta

ges

Squalene/Tocopherols From Distillates

Page 11: COUNTERCURRENT MULTISTAGE EXTRACTION II More Applications HETP, HTU, Capacity Chapter 6

2 3 4 5 6 7 810

15

20

25

30

35

40

45

50

point of minimum

99 % of C16 in extract

99 % of C16 in extract

T = 373 K, P = 29 MPa.

System: PFAD/SC-CO2

Nth

Num

ber o

f Sta

ges

Reflux ratio [-]

60

80

100

120

140

160

Solvent-to-Feed ratio S/F [-]

min

= 2,522, Nmin

= 13.

min

= 3,276, Nmin

= 18

Separation of FFA

C16/C18-FFA -CO2

Machado 1998

Page 12: COUNTERCURRENT MULTISTAGE EXTRACTION II More Applications HETP, HTU, Capacity Chapter 6

0.0 0.2 0.4 0.6 0.8 1.00

20

40

60

80

100

120

140

160

180

NE ; N

R [-]

Anteil LFK + TAGas- bzw. Flüssigphase

[-]

Calculation of number of theoretical stages (Jänecke). 333 K, 24 MPa CO2.

U. Fleck. Tocopherolacetate.

Purification of Synthetic Tocopherolacetate

Page 13: COUNTERCURRENT MULTISTAGE EXTRACTION II More Applications HETP, HTU, Capacity Chapter 6

5 10 15 20 25 30 35

5

10

15

20

25

T = 333 K; P = 16 MPa

Anteil "Rest"8 Gew.-% 6 Gew.-%

McCabe Thiele Jänecke

nth

[-]

Rücklaufverhältnis [-]

Determination of nth in dependence on reflux ratio for different purities. (McCabe-Thiele and Jänecke); 333 K, 16 MPa CO2. . U. Fleck.

Purification of Synthetic Tocopherolacetate

Page 14: COUNTERCURRENT MULTISTAGE EXTRACTION II More Applications HETP, HTU, Capacity Chapter 6

1E-3 0.01 0.1 10.6 0.7 0.8 0.9

I. Stufe V18T = 333 Kp = 20 MPa

Feedzugabe

Extrakt

3. OG

2. OG

1. OG

EG

Raffinat

TA.g TA.fl s1.g s1.fl s2.g s2.fl s3.g s3.fl s5.g s5.fl s6.g s6.fl

Massenanteil [-]

Kol

onne

nhöh

e

Concentration profiles along column length; 333 K, 20 MPa CO2. U. Fleck.

Purification of Synthetic Tocopherolacetate

Page 15: COUNTERCURRENT MULTISTAGE EXTRACTION II More Applications HETP, HTU, Capacity Chapter 6

0,0 0,1 0,2 0,3 0,4 0,5 0,6 0,7

1

2

3

4

5

6 Squalene L VFFE L VFFA L VH

eigh

t of

Col

umn

[m]

Concentration, CO2-free [-] Buß 1999

Free fatty acids (FFA) -/- Squalene- FA-esters

Page 16: COUNTERCURRENT MULTISTAGE EXTRACTION II More Applications HETP, HTU, Capacity Chapter 6

0,51,01,52,02,53,03,5

1

2

3

4

5

6

Kolonnenh

öhe [m

]

Ki [-]

0,00,51,01,52,02,53,03,5

1

2

3

4

5

6

Kolonnenh

öhe [m

]

i, Squalen

[-]

Variation of K-factors (left) and separation factors (right) with column length. 370 K; 23 MPa. Left:  = Squalen,  = FAE,  = FFA; Right:  = aFAE, Squalen,  = aFFA, Squalen. D. Buß, 2001

Separation Factor: Influence of Concentration

Page 17: COUNTERCURRENT MULTISTAGE EXTRACTION II More Applications HETP, HTU, Capacity Chapter 6

10 20 30 40 504

8

12

16

20

24

LMV

/ (k

g C

O2

/ kg

Fee

d)

CPO/CO2 für xLFK,F = 4,6 Ma.%, xLFK,E = 95 Ma.%, xLFK,R = 0,1 Ma.%

n th, J

änec

ke /

-

/ (kg Rücklauf / kg Extrakt)

0

100

200

300

400

500

LMV

nth

20 MPa, 340 K 20 MPa, 370 K 25 MPa, " 30 MPa, "

Separation Analysis: FFA, Toco - Triglycerides, Carotene

/ (kg reflux / kg extract

Solvent ratio

Page 18: COUNTERCURRENT MULTISTAGE EXTRACTION II More Applications HETP, HTU, Capacity Chapter 6

0 1 2 3 4 52

4

6

8

10

12n th

, Jä

ne

cke

/ -

/ (kg Rücklauf / kg Extrakt)

0

10

20

30

40

50 12,5 MPa 320 K

15,0 MPa 320 K

17,5 MPa 340 K

20,0 MPa 340 K

20,0 MPa 360 K

22,5 MPa 360 K L

MV

/ (

kg C

O2

/ kg

Fe

ed

)

FAME/-Carotin/CO2 für x

Caro,F = 500 ppm, x

Caro,E = 10 ppm, x

Caro,R = 10 000 ppm

Separation Analysis: FAME - Carotenes

Page 19: COUNTERCURRENT MULTISTAGE EXTRACTION II More Applications HETP, HTU, Capacity Chapter 6

86 88 90 92 94 98 99 1001.0

1.5

2.0

2.5

3.0

11.4 MPa

11.25 MPa

11.1 MPa

10.8 MPa

10.4 MPa

10.0 MPa

9.0 MPa333 K

10.0 MPa 10.4 MPa 10.8 MPa 11.1 MPa 11.25 MPa Eq. 3

Sep

arat

ion

Fac

tor

T/A

Terpenes in Solvent-Free Liquid Phase [wt %]

Representation of an improved separation factor model at 333 K. M. Budich

Orange Peel Oil

Page 20: COUNTERCURRENT MULTISTAGE EXTRACTION II More Applications HETP, HTU, Capacity Chapter 6

2 4 6 8 10 12 1410

20

30

40

50

60

Sol

vent

-to-

Fee

d R

atio

[kg/

kg]

Num

ber of

The

oret

ical

Sta

ges

Reflux Ratio [kg/kg]

100

200

300

400

50099.8 wt % terpenes in extractfolding ratio = 10

333 K, 10.0 MPa 333 K, 10.7 MPa

Budich 1998

Orange Peel Oil: Removal of Terpenes

Page 21: COUNTERCURRENT MULTISTAGE EXTRACTION II More Applications HETP, HTU, Capacity Chapter 6

0 20 40 60 80 100

1

10

CO2+ethanol+water at 333 K, 10 MPa

ethanol+water at 0.1 MPa (Kirschbaum, 1969)

conventional sampling method modified sampling method

Sep

arat

ion

Fac

tor e

than

ol /

wat

er

Ethanol in Solvent-Free Liquid Phase [wt %]

Budich, 1998

No Aceotrope in Ethanol - Water

Page 22: COUNTERCURRENT MULTISTAGE EXTRACTION II More Applications HETP, HTU, Capacity Chapter 6

0 10 20 30 40 500

10

20

30

40

50

Sol

vent

-to-

Fee

d R

atio

[kg/

kg]

number of theoretical stages

Num

ber

of T

heor

etic

al S

tage

s

Extract Reflux Ratio [kg/kg]

0

20

40

60

80

100Feed: 10 wt % ethanolExtract: 99.0 wt % ethanolRaffinate: 0.1 wt % ethanol

333 K, 10 MPa

solvent-to-feed ratio

Calculation of the theoretical number of stages. M. Budich.

Ethanol - Water

Page 23: COUNTERCURRENT MULTISTAGE EXTRACTION II More Applications HETP, HTU, Capacity Chapter 6

Flow Scheme of Mixer-Settler. M. Jungfer, 2000. Design: Trepp, ETH-Zürich

Mixer-Settler (5 Stages)

Page 24: COUNTERCURRENT MULTISTAGE EXTRACTION II More Applications HETP, HTU, Capacity Chapter 6

Mixer-Settler-Module No. n. M. Jungfer, 2000. Design: Trepp, ETH-Zürich

Mixer-Settler, Single Stage

Page 25: COUNTERCURRENT MULTISTAGE EXTRACTION II More Applications HETP, HTU, Capacity Chapter 6

Countercurrent Separation

V/L v S / F

FAEE, FAME (5 %) 20 7.5 125

FFA (fatty acids) (2 %) 50 4.5 50

Squalene (1.5 %) 20 10 50

Tocopherol-Purif. (2.5 %) 35 20 45Solvent ratio V/L, kg/kg

Reflux ratio v, -

Solvent to feed ratio S/F, kgF /kgF

Basis:

Solvent: Carbon dioxide

10 - 30 MPa, 350 K

Solvent Cycle: Solvent to Feed Ratio of SFE Processes

Page 26: COUNTERCURRENT MULTISTAGE EXTRACTION II More Applications HETP, HTU, Capacity Chapter 6

0 20 40 60 80 100 120 1400

100

200

300

400

500

600 Feed = 100 kg/h orange peel oilFolding Ratio = 10Reflux Ratio = 4

323 K 333 K 343 K

Sol

vent

-to-

Fee

d R

atio

[kg/

kg]

Loading [g Extract/kg CO2]

Relationship between loading and solvent-to-feed ratio. M. Budich. Orange peel oil.

Solubility and Solvent to Feed Ratio

Page 27: COUNTERCURRENT MULTISTAGE EXTRACTION II More Applications HETP, HTU, Capacity Chapter 6

Enhance solubility in solvent:

Pressure, temperature

other solvent (C3H8 vs. CO2)

Reduce energy for solvent cycle:

low p for extract recovery

Means for reducing costs

Page 28: COUNTERCURRENT MULTISTAGE EXTRACTION II More Applications HETP, HTU, Capacity Chapter 6

350 400 450 500 550 600 650 700 750 800 8500

2

4

6

8

10

12

14

0

2

4

6

8

10

12

14

10% PropanAusgangsware

Löslichkeitgas [%]

[k1

-3/k

TA

,5+

6] [-

]

Temp: Löslichkeit 313K 333K 353K

DichteCO

2/Propan

[kg/m3] Density

Se

lect

ivity

So

lub

ility

Temp. Solubility Selectivity

10 % Propane

initial feed mixture

Fleck 1998

Purification of Tocopherol: CO2-Propane

Page 29: COUNTERCURRENT MULTISTAGE EXTRACTION II More Applications HETP, HTU, Capacity Chapter 6

0 1 2 3 4 5 6 7 86

8

10

12

14

16

18

LMV = const = 30

LMV = const = 70

T = 313 K

MW

= 618 kg/m3

07.08.98 15:51:38

10% Propan; 10 MPa 20% Propan; 9 MPa 30% Propan, 9 MPa

n th M

cCab

e-Th

iele

[-]

Rücklaufverhältnis [-]Reflux ratio

Solvent ratio = 30

Solvent ratio = 70

Propane,10 MPa

Propane, 9 MPa

Propane, 9 MPa

Fleck, 1999

Purification of tocopherol: CO2-Propane

Page 30: COUNTERCURRENT MULTISTAGE EXTRACTION II More Applications HETP, HTU, Capacity Chapter 6

High vacuum distillation: 100 %

p Solvent: CO2 200 %

Solvent: CO2 + C3H8 20 %

Adsorption:

Solvent: CO2 50 %

Solvent: CO2 + C3H8 8 %

Some Data on Solvent Cycle Costs

Page 31: COUNTERCURRENT MULTISTAGE EXTRACTION II More Applications HETP, HTU, Capacity Chapter 6

thnhHETP /

.

,d

,

Fak

VHTU

yy

yNTU

NTUHTUh

v

y

y

o

i

FA-ethyl esters - CO2

Riha 1996

HETP, HTU

Page 32: COUNTERCURRENT MULTISTAGE EXTRACTION II More Applications HETP, HTU, Capacity Chapter 6

20 30 40 50 60 700

1

2

3

23 MPa/353 Ky=0,4440+0,0183x

26 MPa/363 Ky=-0,2697+0,0460x

23 MPa/353 K 26 MPa/363 K 26 MPa/353 K

HE

TP

[m

]

LMVa [kg/kg]

HETP (Jänecke) vs solvent ratio in stripping section. Saure, 1996

HETP: Tocopherol

Page 33: COUNTERCURRENT MULTISTAGE EXTRACTION II More Applications HETP, HTU, Capacity Chapter 6

75 80 85 90 95 1000.0

0.5

1.0

1.5

2.0

enriching section

ethanol+water mixtures aqueous aroma mixtures Ikawa et al. (1993)

HETS [m

]

Organic Components in Extract [wt %]

0 20 40 60 80 1000.0

0.5

1.0

1.5

2.0

experiments with liquid CO

2 reflux

stripping section

ethanol+water mixtures aqueous aroma mixtures

HE

TS

[m]

Organic Components in Feed Mixture [wt %]

HETS for aqueous mixtures

M. Budich

Page 34: COUNTERCURRENT MULTISTAGE EXTRACTION II More Applications HETP, HTU, Capacity Chapter 6

log p

log mL

mG

log (gas loading)

log (gas/liquid loading)

Different packings, systems

flooding

Pressure drop, flooding

Page 35: COUNTERCURRENT MULTISTAGE EXTRACTION II More Applications HETP, HTU, Capacity Chapter 6

CY-Water

CY- TocoRaschig-Water

Raschig- Olive oil- Dist.

EX-Water

Stockfleth

1999Billet-diagram

Flooding

Page 36: COUNTERCURRENT MULTISTAGE EXTRACTION II More Applications HETP, HTU, Capacity Chapter 6

10-4 10-3 10-20,1

1

20 MPa, 373 K

30 MPa, 393 K

30 MPa, 373 K

20 MPa, 323 K

30 MPa, 323 K

BP, 23 MPa/353 K BP, 26 MPa/363 K FP, 23 MPa/353 K

QV*

V0,

5 [m

/s*(

kg/m

³)0,

5 ]

QL [m³/m²s]

Flooding diagram for tocopherol feed mixture (T155/CO2), Packing Sulzer CY ; Operating points (BP) and observed flooding points (FP). C. Saure, 1996

Flooding: Tocopherol Feed Mixture (55 % Toco)

Page 37: COUNTERCURRENT MULTISTAGE EXTRACTION II More Applications HETP, HTU, Capacity Chapter 6

14 16 18 20 22 24 26 28 30300

400

500

600

700

800

900

1000

Liquid phase

Gas phase

System: PFAD + CO2

T = 373 KT = 353 KT = 333 K

Den

sity

[kg/

m3 ]

P [MPa]

Densities of the coexisting phases of the system PFAD + CO2. N. Machado

Density of Phases

Page 38: COUNTERCURRENT MULTISTAGE EXTRACTION II More Applications HETP, HTU, Capacity Chapter 6

0,1 10,01

0,1

Loading

Flooding

Gas

Cap

acit

y F

acto

r F V

[m

/s]

Flow Parameter [-]

System: PFAD + CO2

Packing: Sulzer EXD

Kol = 25 mm

T = 373 K, P = 29.3 MPaT = 373 K, P = 25.3 MPaT = 373 K, P = 20.3 MPaT = 353 K, P = 29.2 MPaT = 353 K, P = 24.4 MPaT = 353 K, P = 20.3 MPaT = 333 K, P = 29.0 MPaT = 333 K, P = 24.6 MPaT = 333 K, P = 19.9 MPa

Hydraulic capacity diagram of packed columns. FV = f (y). N. Machado

Flooding: PFAD

Page 39: COUNTERCURRENT MULTISTAGE EXTRACTION II More Applications HETP, HTU, Capacity Chapter 6

14 16 18 20 22 24 26300

400

500

600

700

800

900

Dic

hte

[kg/

m3 ]

Druck [MPa]

Density of coexisting phases: CO2–Squalene. Flüssig-/Gasphase: / = 333,15 K, / = 353,15 K ▲/▲ = 373,15 K. D. Buß

Density of Phases

Page 40: COUNTERCURRENT MULTISTAGE EXTRACTION II More Applications HETP, HTU, Capacity Chapter 6

0,1 10,01

0,1

Flooding

Loading

System: Squalene + CO2

Packing: Sulzer EXD

Col = 25 mm

T = 333 K, P = 20 MPaT = 333 K, P = 25 MPaT = 353 K, P = 20 MPaT = 353 K, P = 25 MPaT = 373 K, P = 20 MPaT = 373 K, P = 25 MPaG

as C

apac

ity

Fac

tor

Fv

[m/s

]

Flow Parameter [-]Hydraulic capacity diagram of packed columns: Squalene - CO2. N. Machado

Flooding: Squalene

Page 41: COUNTERCURRENT MULTISTAGE EXTRACTION II More Applications HETP, HTU, Capacity Chapter 6

0,01 0,1

0,01

Flutpunkte Betriebspunkte

Sulzer EX Gewebedrahtpackung mit CPO / CO2

A / V = 2725 m2/m

3 = 0,86 d

hydr = 2,02 mm

Kap

azitä

tsfa

ktor

F' V

/ (m

/s)

Flussparameter / -

Flooding Diagram, Crude Palm Oil - Carbon Dioxide, M. Jungfer, 2000

Flooding: CPO

Page 42: COUNTERCURRENT MULTISTAGE EXTRACTION II More Applications HETP, HTU, Capacity Chapter 6

0,01 0,1 1

0,01

0,1

Gas

bela

stun

gsfa

ktor

FG [

-]

Strömungsparameter [-]

Flooding diagram CO2–OODD; Packing “Sulzer EX 35 mm”. Exp. Flooding Data: Stockfleth , o = Data of separation column. D. Buß, 2001.

GL

GGG uF

L

G

V

L

Flooding: Olive Oil Deodorizer Distillate

Page 43: COUNTERCURRENT MULTISTAGE EXTRACTION II More Applications HETP, HTU, Capacity Chapter 6

320 325 330 335 340 345

44000

48000

52000

56000

60000

64000

35 mm Kolonne 50 mm Kolonne

= 776 kg/m3

Bela

stung

sgre

nze [k

g CO

2/m2 *h

]

Temperatur [K]

Loading limits for a 35 and 50 mm column. CO2. U. Fleck.

Purification of Synthetic Tocopherolacetate

Page 44: COUNTERCURRENT MULTISTAGE EXTRACTION II More Applications HETP, HTU, Capacity Chapter 6

0 10000 20000 30000 400000

200

400

600

800

1000

1200

40000 30000 20000

Vapor phase cross-section capacity [kg/(m²h)] =

CO2+orange peel oil

at 333 K and 10 MPa

Pre

ssur

e D

rop P

/H [P

a/m

]

Liquid-Phase Cross-Section Capacity [kg/(m²h)]

Pressure-drop curves. M. Budich. Orange peel oil.

Pressure Drop

Page 45: COUNTERCURRENT MULTISTAGE EXTRACTION II More Applications HETP, HTU, Capacity Chapter 6

0.1 10.01

0.1

CO2+orange peel oil

323 K 333 K 343 K

±15%

Capa

city

Fact

or F

V [m

/s]

Flow Parameter [-]

Overall correlation of flooding lines for CO2+orange peel oil. M. Budich

L

V

V

L

m

m

VL

VVV uF

A

mu

V

VV

velocity of vapor phase inside an empty tube

BAFV

1

Flooding: Orange Peel Oil

Page 46: COUNTERCURRENT MULTISTAGE EXTRACTION II More Applications HETP, HTU, Capacity Chapter 6

0.1 10.01

0.1

increasing percentageof aroma components

CO2+terpenes CO2+orange peel oil CO2+5-fold concentrate

Cap

acity

Fac

tor F

V [m

/s]

Flow Parameter [-]

Comparison of flooding behavior of different mixtures. M. Budich.

Median lines: B=52.7 for CO2+terpenes; B=77.5 for CO2+5-fold concentrate.

A = 8.0.

BAFV

1

Flooding: Orange Peel Oil

Page 47: COUNTERCURRENT MULTISTAGE EXTRACTION II More Applications HETP, HTU, Capacity Chapter 6

0 20 40 60 80 100275

300

325

350

375

700

800

900

1000 T = 333 K, P = 10 MPa

derived from VLE measurements

Vapor phase

Liquid phase

Den

sity

[kg/

m³]

Ethanol in Solvent-Free Phase [wt %]

Densities of coexisting phases of CO2+ethanol+water mixtures. M. Budich.

Density of Phases

Page 48: COUNTERCURRENT MULTISTAGE EXTRACTION II More Applications HETP, HTU, Capacity Chapter 6

1000 10000

10000

20000

30000

40000

50000

60000

70000

80000

experiments at theextraction tower

333.2 K, 10 MPa 90.4 56.0 80.1 50.0 69.6 44.6

19.5

Ethanol in Liquid Phase [wt %]

Vap

or P

hase

C

ross

-Sec

tion

Cap

acity

[kg/

(m²h

)]

Liquid Phase Cross-Section Capacity [kg/(m²h)]

Flooding point data for CO2+ethanol+water

M. Budich, 1999

Page 49: COUNTERCURRENT MULTISTAGE EXTRACTION II More Applications HETP, HTU, Capacity Chapter 6

0.01 0.1 1

0.01

0.1Ethanol in an ethanol+water mixture [wt %]

2.1 3.1 19.5

36.140.144.650.056.0

69.6 80.1 90.4 90.6 93.8 96.5

Capaci

ty F

act

or

FV [m

/s]

Flow Parameter [-]

Flooding point of CO2+ ethanol + water. M Budich.

Flooding: Ethanol - Water - CO2

GL

GGG uF

L

G

V

L

Page 50: COUNTERCURRENT MULTISTAGE EXTRACTION II More Applications HETP, HTU, Capacity Chapter 6

Flooding point 100 000 kgCO2/(m2h):

Column diameter Throughput

[mm] [kgCO2/h]

25 49

50 196

100 785

Linear velocity: 46 mm/s

Capacity of Columns

Page 51: COUNTERCURRENT MULTISTAGE EXTRACTION II More Applications HETP, HTU, Capacity Chapter 6

Column diameter

FA-ethyl esters - CO2

Riha 1996

Page 52: COUNTERCURRENT MULTISTAGE EXTRACTION II More Applications HETP, HTU, Capacity Chapter 6

HYDRODYNAMIC BEHAVIOUR IN PACKED COUNTERCURRENT COLUMNS FOR

SUPERCRITICAL FLUID EXTRACTION

DPI1DPI2

FI2

FI1

1

23

4

45

5

1 - Column, 2 - Autoclave, 3 - Differential Pressure Transducers 4 - Gear Pumps, 5 - Flow Meters, Full Line - Liquid Cycle, Dashed Line - Supercritical Fluid Cycle

Flowsheet of the experimental Apparatus

Page 53: COUNTERCURRENT MULTISTAGE EXTRACTION II More Applications HETP, HTU, Capacity Chapter 6

Structure of flow channels in regular packings

Sulze r M e lla p a kSulze r EX

Regular Structured Column Packings

Page 54: COUNTERCURRENT MULTISTAGE EXTRACTION II More Applications HETP, HTU, Capacity Chapter 6

wG

wG

wG

wL , m a x

0

Film

a .

x

Film

x

c .

wL

wL

Film

x

b .

Flow of liquid film against countercurrent gas flow:

a) negigible, b) strong, c) very strong influence of gas flow.

Page 55: COUNTERCURRENT MULTISTAGE EXTRACTION II More Applications HETP, HTU, Capacity Chapter 6

Shape of liquid film: smooth, rippled (waves), with noses, drops are formed.

Increasing flow velocity

Page 56: COUNTERCURRENT MULTISTAGE EXTRACTION II More Applications HETP, HTU, Capacity Chapter 6

Flow Regimesa. – Waves. b. – Crests. c. – Drop formation. d. – Flooding. T = 338 K, P = 20.6 MPa.

A Falling Film At High Pressures

Page 57: COUNTERCURRENT MULTISTAGE EXTRACTION II More Applications HETP, HTU, Capacity Chapter 6

1 100,9

1

2

3

L1/

3 = (

2g L

²/(

L/U

)²)1/

3

ReL = m

L/(

LU)

Corn germ oil - CO2, 338 K , 7.6 MPa  P 20,6 MPa, : Nusselt (1916)

Film-Thickness: Nusselt’s Theory

Page 58: COUNTERCURRENT MULTISTAGE EXTRACTION II More Applications HETP, HTU, Capacity Chapter 6

4000

6000

8000

10000

20000

40000

60000

80000

0,70,80,91

2

3

4

5

6

7

Figure 4

Re L = mL/(LU)

KF=L³/(g

L

4)

Flow Regimes: Full Squares: Drop formation without gas flow. Empty Squares: Drop formation with gas flow. Full Triangles: Crest formation without gas flow. Empty Triangles: Crest formation with gas flow. Line: Moser’s correlation

From the figure it is obvious that the gas flow has a significant impact on the flow regime of the liquid film.

Flow Regimes: Influence of Gas Flow

Page 59: COUNTERCURRENT MULTISTAGE EXTRACTION II More Applications HETP, HTU, Capacity Chapter 6

The gas flow exerts a shear force on the liquid film, and this affects the shape of the interface, i. e. the flow regime. ,

Hshear dHF where is the shear stress, H the height of the film and dH its hydraulic diameter.

The gas flow exerts the following force on the liquid surface:

2Hgas dPF

where P is the pressure drop.

If the shear force the gas exerts on the inner wall of the glass tube is neglected, a force balance yields:

H

dPFF H

sheargas

Influence of Gas Flow

Page 60: COUNTERCURRENT MULTISTAGE EXTRACTION II More Applications HETP, HTU, Capacity Chapter 6

Rating the pressure drop to the impact pressure of the gas flow yields the dimensionless gas resistance factor G:

Huu

dP

LGG

HG 2

where uG – uL is the slip velocity.

The influence of the gas flow on the flow regime is now taken into account by using the property ReL(1+G)n instead of ReL.

Influence of Gas Flow

Page 61: COUNTERCURRENT MULTISTAGE EXTRACTION II More Applications HETP, HTU, Capacity Chapter 6

4000

6000

8000

10000

20000

40000

60000

80000

0,70,80,91

2

3

4

5

6

7

Figure 5

Re L(1+ G)1/3

KF=L³/(g

L

4)

Flow Regimes: New Diagram accounting for Shear Stress. Full Squares: Drop formation without gas flow. Empty Squares: Drop formation with gas flow. Full Triangles: Crest formation without gas flow. Empty Triangles: Crest formation with gas flow. Line: Moser’s correlation.

Page 62: COUNTERCURRENT MULTISTAGE EXTRACTION II More Applications HETP, HTU, Capacity Chapter 6

Flooding

Correlation of the flooding points according to Wallis [10]:

GLH

LLL

GLH

GGGLG dg

uj

dg

ujjfj

**** ;;

With uL for the superficial liquid velocity and the fractional void volume which is unity for a falling film column but smaller than unity for packed columns. jG* and jL* are modified Froude-Numbers rating the respective impact pressure to the difference between liquid head and buoyancy.

21

2*2

*1

*

1

K

KjKjKj GLG

For the correlation of the data displayed, the values K1=0,4222 and K2=1,1457 with a standard deviation of 19%.

G. B Wallis, (1969), One-Dimensional Two-Phase Flow, McGraw-Hill, New York

Page 63: COUNTERCURRENT MULTISTAGE EXTRACTION II More Applications HETP, HTU, Capacity Chapter 6

0,01 0,1 10,04

0,1

0,2

0,3

0,4

HP Packings14,15

HP Packings13

NP Mellapak19

This work

Figure 6

j G* =

u G/( G

/(g

d H( L

-G)))0.

5

=uL/u

G(

L/

G)0.5

Flooding Diagram. Thick line: Correlation. Dashed lines: 30% interval. Empty triangles: Structured and random packings at high pressures. Circles: Structured packings at high pressures. Full diamond: MellapakTM at normal pressure. Full triangles: Falling film flooding at high pressures.

Very similar to:T. K. Sherwood, G. H. Shipley and F. A. L. Holloway (1938),

Ind. Eng. Chem., 7, 765 - 769,

Packings: Sulzer CY, Sulzer EX, Sulzer Mellapak, 5x5x0.5 mm Raschig rings, and 4 mm Berl saddles.

Substances: water, air, carbon dioxide, olive oil deodorizer distillate, soybean oil deodorizer distillate, fatty acid methyl esters, and tocopherols.

General Flooding Diagram