costel b and vasile preda - ssmr.ro · bull. math. so c. sci. roumanie t ome 50(98) no. 4, 2007,...

10
Costel B and Vasile Preda

Upload: others

Post on 07-Sep-2019

0 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: Costel B and Vasile Preda - ssmr.ro · Bull. Math. So c. Sci. Roumanie T ome 50(98) No. 4, 2007, 295 304 On maxen tropic reconstruction of m ultiple Mark o v c hains b y Costel B

Bull. Math. So . S i. Math. RoumanieTome 50(98) No. 4, 2007, 295304

On maxentropi re onstru tion of multiple Markov hains

by

Costel BLCU and Vasile Preda

Abstra t

We use the maxentropi re onstru tion method for obtaining some ho-mogeneous and stationary multiple Markov hains.

Key Words: Homogeneous and stationary multiple Markov hain,

maximum entropy.

2000 Mathemati s Subje t Classi ation: Primary 94A17, Se-

ondary: 90C25.

1 Introdu tion

The problems of re onstru tion of a ountable probability distribution or of a

homogeneous and stationary simple or multiple Markov hain with dis rete time

and ountable state spa e, when only a partial information is know, present a

remarkable interest in many appli ations from various s ien es (see Fang, Ra-

jasekera and Tsao [2, Guia³u [3, Iosifes u [7, Iosifes u and Grigores u [8, for

example). Jaynes [10, 11 and Kullba k [12 proposed a variational method for

solving su h problems, alled the method of standard maximum entropy (SME ).

This method states that one should hoose the probability distribution that max-

imizes the Shannon entropy [16. In the ase of multiple Markov hains, we an

use the Iosifes u-Theodores u entropy [9 (see Preda and B l u [14).

In this arti le we re ast the proposed problem as a linear inverse problem

and we solve it by using the method of maximum entropy in the mean (MEM ).

This method, originally proposed by Riet h [15, was used by Gzyl [4 for nite

probability distributions, Gzyl and Velásquez [6 for homogeneous simple Markov

hains with nite state spa e, Preda and B l u [13 for ountable simple Markov

hains with ommon steady-state probabilities and for matrix s aling problems.

In Se tion 2 we present the general frame of the MEM method and we apply

this method for maxentropi re onstru tion of some nonnegative multidimen-

sional matri es. In Se tion 3 we derive a method to obtain ountable multiple

Markov hains with xed joint probabilities. We give an example for our ap-

proa h.

Page 2: Costel B and Vasile Preda - ssmr.ro · Bull. Math. So c. Sci. Roumanie T ome 50(98) No. 4, 2007, 295 304 On maxen tropic reconstruction of m ultiple Mark o v c hains b y Costel B

296 Costel B l u and Vasile Preda

2 MEM method

We onsider the following linear inverse problem

Ax = b,x ∈ C,

(1)

where

C =

x = (xi)i∈I / xi ≥ 0, ∀i ∈ I,∑

i∈I

xi < ∞

, (2)

A : C → RK is a bounded linear operator, b ∈ R

K , I and K being two

ountable (nite or innite) sets of indi es.

Let (Ω,B, ν) be a probability spa e, and let X : (Ω,B) → (C,B(C)) be a

random variable. Usually, Ω = C and we suppose that

co (supp ν) = C,

where supp ν is the support of ν and co (supp ν) is the losed onvex hull

generated by supp ν.If the set K is innite, then we suppose also that

Ω is ountable, b is bounded, A ≥ 0 and b ≥ 0. (3)

Denition 2.1. Let M0 be the set of all probability measures on (Ω,B), and let

M(ν,A,b) = µ ∈ M0 / µ ≺ ν, AEµ[X] = b.

For all µ ∈ M(ν,A,b), let

H(µ; ν) =

Ω

dνln

dνdν, if Eµ

[

| ln dµdν

|]

< ∞,

+∞, otherwise

(the relative entropy of µ with respe t to ν; the ross-entropy of ν with respe t to

µ; the Kullba k-Leibler number).

We onsider the following entropy optimization problem, a ording to SME

method:

Program (P1) :

max−H(µ; ν) s.t.

µ ∈ M(ν,A,b).

MEM method is based on the following result (see [5 or [1, Theorem 1):

Theorem 2.1. If µ is a feasible solution for program (P1), then x = Eµ[X] is a

solution of linear inverse problem (1).

Next, we derive a onvex dual program of program (P1).

Denition 2.2. For all λ ∈ RK , let the measure µ(λ) dened by

dµ(λ) =e−〈λ,AX〉

Z(λ)dν, where Z(λ) =

Ω

e−〈λ,AX〉dν.

Page 3: Costel B and Vasile Preda - ssmr.ro · Bull. Math. So c. Sci. Roumanie T ome 50(98) No. 4, 2007, 295 304 On maxen tropic reconstruction of m ultiple Mark o v c hains b y Costel B

On maxentropi re onstru tion 297

Denition 2.3. Let the set

Λ(ν,A,b) =

λ ∈ RK / Z(λ) < ∞, if K is nite,

λ ∈ RK+ / Z(λ) < ∞,

k∈K

λk < ∞, if K is innite,

and let the fun tion L : Λ(ν,A,b) → R dened by

L(λ) = lnZ(λ) + 〈λ,b〉, ∀λ ∈ Λ(ν,A,b).

Remark 2.1. For all λ ∈ Λ(ν,A,b), µ(λ) is a probability measure on (Ω,B) (i.e.

µ(λ) ∈ M0) and µ(λ) ≺ ν.

We an dene the following geometri dual problem for program (P1):

Program (D1) :

min L(λ) s.t.

λ ∈ Λ(ν,A,b).

We have the following duality theorem (see [13, Theorems 1 and 2):

Theorem 2.2. (i) (weak duality) If µ is a primal feasible solution of program

(P1) and λ is a dual feasible solution of program (D1), then

−H(µ; ν) ≤ L(λ).

Moreover, the equality holds if and only if

dµ =e−〈λ,AX〉

Z(λ)dν.

(ii) (strong duality) Assume that

Ω

es‖X‖dν < ∞, ∀s ∈ R. (4)

If λ∗ ∈ Int Λ(ν,A,b) is a dual optimal solution of program (D1), then µ(λ∗) is a

primal optimal solution of program (P1) and the duality gap vanishes, i.e.

−H(µ(λ∗); ν) = L(λ∗).

Remark 2.2. The assumptions (3), λ ≥ 0,∑

k∈K

λk < ∞ and (4) are imposed for

proving the theorem in the ountable innite ase (see [13).

Next we apply the MEM method to obtain d-dimensional matri es

T = (Ti1,...,id)i1,...,id∈J

Page 4: Costel B and Vasile Preda - ssmr.ro · Bull. Math. So c. Sci. Roumanie T ome 50(98) No. 4, 2007, 295 304 On maxen tropic reconstruction of m ultiple Mark o v c hains b y Costel B

298 Costel B l u and Vasile Preda

verifying the onstraints similar to (1). Parti ularly, in Se tion 3 we apply the

pro edure to obtain ountable Markov hains of order r with xed joint probabil-

ities of the states at r onse utive times and with r-step transition probabilities

verifying some given linear onstraints.

Let d ∈ N∗, J be a ountable (nite or innite) set of indi es, and let

I = Jd , Ω =∏

(i1,...,id)∈I

Ωi1,...,id,

B =⊗

(i1,...,id)∈I

B(Ωi1,...,id), ν =

(i1,...,id)∈I

νi1,...,id,

where, for all (i1, . . . , id) ∈ I, (Ωi1,...,id,B(Ωi1,...,id

), νi1,...,id) is a probability spa e.

Taking µ =⊗

(i1,...,id)∈I

µi1,...,id, where, for all (i1, . . . , id) ∈ I, µi1,...,id

is a

probability measure on the spa e (Ωi1,...,id,B(Ωi1,...,id

)), the primal problem (P1)has now the following form:

Program (P2) :

max−H(µ; ν) s.t.

µi1,...,id≺ νi1,...,id

, ∀(i1, . . . , id) ∈ I,∑

(i1,...,id)∈I

A(k)i1,...,id

Eµi1,...,id[Xi1,...,id

] = bk, ∀k ∈ K.

A ording to the above assumptions, K is a ountable set of indi es, X =(Xi1,...,id

)(i1,...,id)∈I is a random variable on (Ω,B) with values in the spa e

(C,B(C)) dened by

C =

x = (xi1,...,id)(i1,...,id)∈I / x ≥ 0,

(i1,...,id)∈I

xi1,...,id< ∞

,

A : C → RK is a bounded linear operator, b ∈ R

K , and the onditions (3) are

also satised.

The maxentropi re onstru tion of some d-dimensional matri es

T = (Ti1,...,id)i1,...,id∈J

that verify the following linear system

AT = b,T ∈ C,

(5)

is based on the following dire t onsequen e of Theorem 2.1.

Corollary 2.1. If µ is a feasible solution for program (P2), then the matrix

T = (Ti1,...,id)(i1,...,id)∈I given by

Ti1,...,id= Eµi1,...,id

[Xi1,...,id], ∀(i1, . . . , id) ∈ I

is a d-dimensional matrix whi h veries (5).

Page 5: Costel B and Vasile Preda - ssmr.ro · Bull. Math. So c. Sci. Roumanie T ome 50(98) No. 4, 2007, 295 304 On maxen tropic reconstruction of m ultiple Mark o v c hains b y Costel B

On maxentropi re onstru tion 299

Next, we derive a geometri dual program of program (P2). We have

Z(λ) =

Ω

e−〈λ,AX〉dν =∏

(i1,...,id)∈I

ζi1,...,id((A∗λ)i1,...,id

),

where

ζi1,...,id(y) =

Ωi1,...,id

e−yxi1,...,id dνi1,...,id(xi1,...,id

).

The dual problem for program (P2) has the following form:

Program (D2) :

min L(λ) =∑

(i1,...,id)∈I

ln ζi1,...,id((A∗λ)i1,...,id

) + 〈λ,b〉 s.t.

λ ∈ Λ(ν,A,b),

where Λ(ν,A,b) is given by Denition 2.3.

As a dire t onsequen e of Theorem 2.2, we have the next duality result.

Corollary 2.2. Assume that∑

(i1,...,id)∈I

Ωi1,...,id

Xi1,...,iddνi1,...,id

< ∞.

(i) (weak duality) If µ is a primal feasible solution of program (P2) and λ is a

dual feasible solution of program (D2), then

−H(µ; ν) ≤ L(λ).

Moreover, the equality holds if and only if

dµi1,...,id=

e−(A∗λ)i1,...,idXi1,...,id

ζi1,...,id((A∗λ)i1,...,id

)dνi1,...,id

, ∀(i1, . . . , id) ∈ I.

(ii) (strong duality) If λ∗ ∈ Int Λ(ν,A,b) is a dual optimal solution of program

(D2), then µ(λ∗) =⊗

(i1,...,id)∈I

µi1,...,id(λ∗) given by

dµi1,...,id(λ∗) =

e−(A∗λ∗)i1,...,idXi1,...,id

ζi1,...,id((A∗λ∗)i1,...,id

)dνi1,...,id

, ∀(i1, . . . , id) ∈ I

is a primal optimal solution of program (P2) and the duality gap vanishes, i.e.

−H(µ(λ∗); ν) = L(λ∗).

3 Re onstru tion of some ountable multiple Markov hains

In this se tion we apply the above results to obtain homogeneous and stationary

Markov hains of order r (r ∈ N∗) X(t) / t ∈ N with the ountable (nite

or innite) state spa e J and with r-step transition probability array P(r) =

Page 6: Costel B and Vasile Preda - ssmr.ro · Bull. Math. So c. Sci. Roumanie T ome 50(98) No. 4, 2007, 295 304 On maxen tropic reconstruction of m ultiple Mark o v c hains b y Costel B

300 Costel B l u and Vasile Preda

(

P(r)i1,...,ir;j

)

i1,...,ir,j∈Jverifying the onstraints (5) for d = r + 1. We re all that

for any j, i1, . . . , ir ∈ I

P(r)i1,...,ir ;j = P (X(t + r) = j/X(t) = i1, . . . ,X(t + r − 1) = ir), ∀t ∈ N.

Parti ularly, we obtain homogeneous and stationary Markov hains of order

r without supplementary onstraints, i.e. the r-step transition probability array

verifying only the imposed onstraints

P(r)i1,...,ir;j ≥ 0, ∀j, i1, . . . , ir ∈ J,

j∈J

P(r)i1,...,ir;j = 1, ∀i1, . . . , ir ∈ J,

i1,...,ir∈J

π(r)i1,...,ir

P(r)i1,...,ir;j =

i1,...,ir−1∈J

π(r)i1,...,ir−1,j , ∀j ∈ J,

(6)

where π(r) =(

π(r)i1,...,ir

)

i1,...,ir∈Jis the given joint probability of the states at r

onse utive times, i.e. for any i1, . . . , ir ∈ I

π(r)i1,...,ir

= P (X(t) = i1, . . . ,X(t + r − 1) = ir), ∀t ∈ N.

Remark 3.1. Obviously, the hain X(t) / t ∈ N is ompletely hara terized

by the distribution π(r) and the transition probability array P(r) verifying the

onstraints (6) and the following onstraints

π(r)i1,...,ir

> 0, ∀i1, . . . , ir ∈ I, (7)∑

i1,...,ir∈I

π(r)i1,...,ir

= 1, (8)

i1,...,ik∈I

π(r)i1,...,ik,ik+1,...,ir

=∑

i1,...,ik∈I

π(r)ik+1,...,ir,i1,...,ik

, ∀1 ≤ k ≤ r − 1. (9)

In this parti ular ase P(r) is a solution of (5) by taking

d = r + 1,

K = Jr ∪ (−J),

A(k1,...,kr)i1,...,ir,j =

1, if (i1, . . . , ir) = (k1, . . . , kr),0, if (i1, . . . , ir) 6= (k1, . . . , kr),

∀i1, . . . , ir, j, k1, . . . , kr ∈ J,

A(−k)i1,...,ir,j =

π(r)i1,...,ir

, if j = k,

0, if j 6= k,∀i1, . . . , ir, j, k ∈ J,

bk1,...,kr= 1, ∀k1, . . . , kr ∈ J,

b−k = πk, ∀k ∈ J,

Page 7: Costel B and Vasile Preda - ssmr.ro · Bull. Math. So c. Sci. Roumanie T ome 50(98) No. 4, 2007, 295 304 On maxen tropic reconstruction of m ultiple Mark o v c hains b y Costel B

On maxentropi re onstru tion 301

where

πk =∑

i1,...,ir−1∈J

π(r)i1,...,ir−1,k, ∀k ∈ J.

The primal problem (P2) has now the following form:

Program (P3) :

max−H(µ; ν) s.t.

µi1,...,ir,j ≺ νi1,...,ir,j , ∀i1, . . . , ir, j ∈ J,∑

j∈J

Eµi1,...,ir,j[Xi1,...,ir,j ] = 1, ∀i1, . . . , ir ∈ J,

i1,...,ir∈J

π(r)i1,...,ir

Eµi1,...,ir,j[Xi1,...,ir,j ] = πj , ∀j ∈ J.

The maxentropi re onstru tion of r-step transition probability array P(r) =(

P(r)i1,...,ir;j

)

i1,...,ir,j∈Jis based on the following dire t onsequen e of Corollary

2.1.

Corollary 3.1. If µ is a feasible solution of (P3), then the matrix P(r) =(

P(r)i1,...,ir;j

)

i1,...,ir,j∈Jgiven by

P(r)i1,...,ir ;j = Eµi1,...,ir,j

[Xi1,...,ir,j ], ∀i1, . . . , ir, j ∈ J

is a solution for system (6).

Obviously, we have

〈λ,b〉 =∑

k1,...,kr∈J

λk1,...,kr+

k∈J

πkλ−k,

(A∗λ)i1,...,ir,j = λi1,...,ir+ π

(r)i1,...,ir

λ−j , ∀i1, . . . , ir, j ∈ J,

and hen e we obtain that the geometri dual problem of (P3) has the following

form:

Program (D3) :

min L(λ) =∑

i1,...,ir∈J

[

j∈J

ln ζi1,...,ir,j(λi1,...,ir+ π

(r)i1,...,ir

λ−j)

+λi1,...,ir

]

+∑

i∈J

πiλ−i s.t.

λ ∈ Λ1(ν, π(r)),

where

Λ1(ν, π(r)) =

λ ∈ RK / L(λ) < ∞, if J is nite,

λ ∈ RK+ / L(λ) < ∞,

k∈K

λk < ∞, if J is innite.

A ording to Corollary 2.2 we have the next duality result.

Page 8: Costel B and Vasile Preda - ssmr.ro · Bull. Math. So c. Sci. Roumanie T ome 50(98) No. 4, 2007, 295 304 On maxen tropic reconstruction of m ultiple Mark o v c hains b y Costel B

302 Costel B l u and Vasile Preda

Corollary 3.2. Assume that∑

(i1,...,ir,j)∈I

Ωi1,...,ir,j

Xi1,...,ir,jdνi1,...,ir,j < ∞.

(i) (weak duality) If µ is a primal feasible solution of program (P3) and λ is a

dual feasible solution of program (D3), then

−H(µ; ν) ≤ L(λ).

Moreover, the equality holds if and only if

dµi1,...,ir,j =e−[λi1,...,ir +π

(r)i1,...,ir

λ−j ]Xi1,...,ir,j

ζi1,...,ir,j(λi1,...,ir+ π

(r)i1,...,ir

λ−j)dνi1,...,ir,j , ∀(i1, . . . , ir, j) ∈ I.

(ii) (strong duality) If λ∗ ∈ Int Λ1(ν, π(r)) is a dual optimal solution of program

(D3), then µ(λ∗) =⊗

(i1,...,ir,j)∈I

µi1,...,ir,j(λ∗) given by

dµi1,...,ir,j(λ∗) =

e−[λ∗

i1,...,ir+π

(r)i1,...,ir

λ∗

−j ]Xi1,...,ir,j

ζi1,...,ir,j(λ∗i1,...,ir

+ π(r)i1,...,ir

λ∗−j)

dνi1,...,ir,j , ∀(i1, . . . , ir, j) ∈ I

is a primal optimal solution of program (P3) and

−H(µ(λ∗); ν) = L(λ∗).

Remark 3.2. Taking r = 1, we obtain the maxentropi re onstru tion of simple

Markov hains with given ommon steady-state probabilities, with supplementary

onstraints of type (5) (see [13) or without supplementary onstraints (see [6).

Example 3.1. Let a ∈ R+. For any (i1, . . . , ir, j) ∈ I, let

Ωi1,...,ir,j = 0, a, νi1,...,ir,j = (1 − θi1,...,ir,j)ε0 + θi1,...,ir,jεa,

where θi1,...,ir,j ∈ [0, 1]. Assume that

(i1,...,ir,j)∈I

θi1,...,ir,j < ∞.

We have

ζi1,...,ir,j(y) = 1 − θi1,...,ir,j + θi1,...,irje−y·a.

The dual problem (D3) has the following form:

min L(λ) =∑

i1,...,ir∈J

j∈J

ln[

1 − θi1,...,ir,j + θi1,...,irje−a(λi1,...,ir +π

(r)i1,...,ir

λ−j)]

+λi1,...,ir

+∑

i∈J

πiλ−i s.t.

λ ∈ Λ1(ν, π(r)).

Page 9: Costel B and Vasile Preda - ssmr.ro · Bull. Math. So c. Sci. Roumanie T ome 50(98) No. 4, 2007, 295 304 On maxen tropic reconstruction of m ultiple Mark o v c hains b y Costel B

On maxentropi re onstru tion 303

Let λ∗ be an interior optimal solution of this problem. Then the primal problem

(P3) has the optimal solution µ(λ∗) =⊗

(i1,...,ir,j)∈I

µi1,...,ir,j(λ∗) given by

µi1,...,ir,j(λ∗) =

(1 − θi1,...,ir,j)ε0 + θi1,...,ir,je−a[λ∗

i1,...,ir+π

(r)i1,...,ir

λ∗

−j ]εa

1 − θi1,...,ir,j + θi1,...,ir,je−a[λ∗

i1,...,ir+π

(r)i1,...,ir

λ∗

−j]

,

∀(i1, . . . , ir, j) ∈ I.

Hen e the r + 1-dimensional matrix P(r) =(

P(r)i1,...,ir;j

)

i1,...,ir,j∈Jgiven by

P(r)i1,...,ir;j = Eµi1,...,ir,j(λ∗)[Xi1,...,ir,j ]

=aθi1,...,ir,je

−a[λ∗

i1,...,ir+π

(r)i1,...,ir

λ∗

−j ]

1 − θi1,...,ir,j + θi1,...,ir,je−a[λ∗

i1,...,ir+π

(r)i1,...,ir

λ∗

−j]

, ∀i1, . . . , ir, j ∈ J,

is a r-step transition probability array of a homogeneous and stationary Markov

hains of order r that veries the imposed onstraints (6), where

π(r) =(

π(r)i1,...,ir

)

i1,...,ir∈J

is the given joint probability of the states at r onse utive times.

Remark 3.3. If the given joint probability π(r) is unknown, then it an be also

re onstru ted using the MEM method, from the imposed onstraints (7), (8) and

(9).

Referen es

[1 C. BLCU, Some examples for maxentropi re onstru tion of ountable

probability distributions, Bul. Sti. Univ. Pitesti ser. Mat.-Inf., 11 (2005),

13-22.

[2 S.-C. Fang, J.R. Rajasekera, H.-S.J. Tsao, Entropy Optimization and

Mathemati al Programming, Kluwer A ademi , Dordre ht, 1997.

[3 S. GUIAU, Quantum Me hani s, Nova S ien e Publ., Huntington, New

York, 2001.

[4 H. Gzyl, Maxentropi re onstru tion of some probability distributions,

Studies in Appl. Math., 105 (2000), 235-243.

[5 H. Gzyl, Ill-posed linear inverse problems and maximum entropy in the

mean, A ta Cientif. Venez., 53 (2002), 74-93.

[6 H. Gzyl, Y. VElÁSQUEZ, Re onstru tion of transition probabilities by max-

imum entropy in the mean, Bayesian Inferen e and Maximum Entropy Meth-

ods in S ien e and Engineering, R. Fry (ed.), Ameri an Institute of Physi s,

617 (2002), 192-203.

Page 10: Costel B and Vasile Preda - ssmr.ro · Bull. Math. So c. Sci. Roumanie T ome 50(98) No. 4, 2007, 295 304 On maxen tropic reconstruction of m ultiple Mark o v c hains b y Costel B

304 Costel B l u and Vasile Preda

[7 M. Iosifescu, Finite Markov Pro esses and their Appli ations, Wiley Series

in Probability and Mathemati al Statisti s, Chi hester, 1980.

[8 M. Iosifescu, S. Grigorescu, Dependen e with Complete Conne tions

and its Appli ations, Cambridge University Press, Cambridge, 1990.

[9 M. Iosifescu, R. Theodorescu, On the entropy of hains with omplete

onne tions, Comun. A ad. R.P.R., 11 (1961), 821-824.

[10 E.T. Jaynes, Information theory and statisti al me hani s, Phys. Rev., 106

(1957), 620-630.

[11 E.T. Jaynes, Information theory and statisti al me hani s, Phys. Rev., 108

(1957), 171-190.

[12 S. Kullbeck, Information Theory and Statisti s, Wiley, New York, 1959.

[13 V. Preda, C. BLCU, On maxentropi re onstru tion of ountable

Markov hains and matrix s aling problems, Studies in Appl. Math., 111

(2003), 85-100.

[14 V. Preda, C. BLCU, Homogeneous and stationary multiple Markov

hains with maximum Iosifes u-Theodores u entropy, Rev. Roumaine de

Math. Pures et Appl., to appear.

[15 E. Rietch, A maximum entropy approa h to inverse problems, J. Geophys.,

42 (1977), 489-506.

[16 C.E. Shannon, A mathemati al theory of omuni ation, Part III, Bell Sys-

tem Te hni al Journal, 27 (1948), 623-656.

Re eived: 27.08.2007.

University of Pite³ti,Fa ulty of Mathemati s and Informati s

E-mail: bal aulinux.math.upit.ro

University of Bu ure³ti,Fa ulty of Mathemati s and Informati s;

E-mail: predafmi.unibu .ro