cosmology beyond the standard model multi component dark matter model

31
Cosmology beyond the standard model Multi component dark matter model A. Doroshkevich, Astro-Space Center, FIAN, Moscow, Russia M. Demianski, University of Warsaw, Warsaw, Poland

Upload: midori

Post on 16-Jan-2016

45 views

Category:

Documents


0 download

DESCRIPTION

Cosmology beyond the standard model Multi component dark matter model. A. Doroshkevich, Astro-Space Center, FIAN, Moscow, Russia M. Demianski, University of Warsaw, Warsaw, Poland. History, three K, second plane, yesterday. 1. Relativistic Astrophysics – black holes - PowerPoint PPT Presentation

TRANSCRIPT

Page 1: Cosmology beyond the standard model Multi component dark matter model

Cosmology beyond the standard modelMulti component dark matter model

A. Doroshkevich,

Astro-Space Center, FIAN, Moscow, Russia

M. Demianski,

University of Warsaw, Warsaw, Poland

Page 2: Cosmology beyond the standard model Multi component dark matter model

History, three K, second plane, yesterday

Page 3: Cosmology beyond the standard model Multi component dark matter model

List of problems

• 1. Relativistic Astrophysics – black holes • 2. Disc accretion – neutron stars • 3. Supernova explosions• 4. Relic radiation - recombination of the Universe• 5. Nonlinear gravitational instability - Zel’dovich

pancakes• 6. HDM model of the Universe• 7. Magnetic field in the Sun

Page 4: Cosmology beyond the standard model Multi component dark matter model
Page 5: Cosmology beyond the standard model Multi component dark matter model

Standard ΛCDM model

Analysis of the CMB fluctuations shows that

the large scale power spectrum of perturbations is the CDM like one

P(k) ~ kn, n ≈ 0.96 ± 0.007

for r >10Mpc, M > 1013M

B – mode of polarisation, 1403.3985

We show that this dependence cannot be

extended to smaller scales

Page 6: Cosmology beyond the standard model Multi component dark matter model

First DM models - HISTORY• Doroshkevich et al. 1980 - HDM

• Bisnovaty-Kogan & Novikov 1980 - HDM• Bond, Efstathiou, Silk 1980 – CDM• Bond, Szalay 1983 CDM & WDM • Blumentale & Primack 1984 – CDM• Doroshkevich, Khlopov 1984 – UDM, MDM• Turner, Steigman, Krauss 1984 – UDM• Doroshkevich, Klypin, Khlopov 1988 – MDM• Mikheeva, Doroshkevich, Lukash 2007• Doroshkevich, Lukash, Mikheeva 2012• CHICAGO-2013

Page 7: Cosmology beyond the standard model Multi component dark matter model

CMB power spectrumHigh precision ΛCDM model

Page 8: Cosmology beyond the standard model Multi component dark matter model

Popular request – sterile neutrino

10-19eV < mdm < 1013eV Six reviews during 2013 year: Feng (2013), Boyarsky et al. (2013), Dreves (2013) Kusenko & Rosenberg (2013), Horiuchi et al. (2013),

Marcovic & Viel (2013).

Three standard problems are discussed: 1. Number of satellites, 2. Core – cusp problem, 3. Ly-α forest. Why they are only qualitative ?

Page 9: Cosmology beyond the standard model Multi component dark matter model

Questions and problems

1. Observed satellites: Ms~ 105 – 107 M, zcr~ 7 –15

Typical mass resolution in simulations M ~ 108 M,

MW-28, A-13

2.Cusp – in simulations of clusters with M > 1013 M, NFW

Core – in LBG – galaxies with M < 109 M

Impact of baryonic component in clusters and galaxies.

3. Ly-α forest: xH~10-5, UV background

Page 10: Cosmology beyond the standard model Multi component dark matter model

Direct and indirect searches DAMA – Bernabei, 2008, 2010

Super CDMS – Agnese 2013

NEGATIVE

Estimates: ms > 13 – 20 keV for WDM

Unstable neutrinos: ms < 3keV

LAC ? X-rays 3.5keV – 73 clusters: (Bulbul et al. 1402.2301)

Decay of DM particles or Ar recombination line

Page 11: Cosmology beyond the standard model Multi component dark matter model

Simulations Maccio 2012 – do not reproduce observations WDM is not a viable solution of the core – cusp

and satellite problems Libeskind 2013 – low mass clouds are not stable

and are expanding Abel (2013) – artefacts appear, filaments

Wang (2013) – unstable DM and Ly-α forest Schultz et al. (1401.3769) – high z Dutton & Maccio (1402.7073) – 17 realizations

Page 12: Cosmology beyond the standard model Multi component dark matter model

Models with one type of DM particles

Page 13: Cosmology beyond the standard model Multi component dark matter model

OUR APPROACHProcess and moment of object formation

Both galaxies and clusters are diversified

steady – state objects.

Global characteristics – mass, angular momentum,.. • Periods of anisotropic compression and/or merging • After virialization the structure of DM halos is frozen. • Therefore we can restore the z of formation

• Zcr – Mvir plane

• Links with the spectrum of perturbations. • Impact of baryonic component

Page 14: Cosmology beyond the standard model Multi component dark matter model

For central regions of the DM halo (Klypin et al. 2011) zcr-Mvir plane

3/76/194/),( fcvir zMrRMzc

kpczMr fc3/106/1

98.0

3102/19

8 /10 kpcMzM fc

]1

)1[log(cc

cMM cvir

)(4)(34 333 CfCRzRM mvirccrvirvir

)()(33

cr

mc

zCf

C

pc=pc(zcrM0.1)

Page 15: Cosmology beyond the standard model Multi component dark matter model

Walker et. al, 2009, ApJ, 704, 1274 - 28 dSph objects•

name r sig_v +/- Mhalf +/- <rho> +/- (1 +zcr)/10 +/- kpc km/s 10^6M_o M_o/pc^3 Carina 0.14 6.60 1.20 3.40 1.40 0.320 0.12 1.2 0.53 Draco 0.22 9.10 1.20 11.00 3.00 0.230 0.06 1.1 0.32Fornax 0.34 11.70 0.90 27.00 0.50 0.160 0.03 1.0 0.04LeoI 0.13 9.20 1.40 6.50 2.10 0.660 0.21 1.2 0.44LeoII 0.12 6.60 0.70 3.10 0.90 0.400 0.12 1.2 0.39Sculptor 0.09 9.20 1.10 4.60 1.70 1.300 0.50 1.3 0.55Sextant 0.29 7.90 1.30 11.00 4.00 0.100 0.03 1.0 0.39UMi 0.15 9.50 1.20 7.80 2.20 0.550 0.150 1.2 0.37CVen I 0.56 7.60 0.40 19.00 2.00 0.025 0.003 0.8 0.10 Coma 0.08 4.60 0.80 0.90 0.35 0.490 0.180 1.3 0.56Hercules 0.33 3.70 0.90 2.60 1.40 0.017 0.009 0.9 0.53 Leo T 0.18 7.50 1.60 5.80 2.80 0.250 0.120 1.1 0.59Segue 1 0.03 4.30 1.20 0.31 0.19 3.010 0.800 1.7 1.06UMa I 0.32 11.90 3.50 26.10 6.00 0.200 0.120 1.0 0.29UMa II 0.14 5.70 1.40 2.60 1.40 0.230 0.120 1.2 0.68AndII 1.23 9.30 2.70 62.00 36.00 0.008 0.005 0.7 0.45Cetus 0.59 17.00 2.00 99.00 23.00 0.110 0.020 0.9 0.22Sgr^c 1.55 11.40 0.70 120.00 60.00 0.008 0.001 0.7 0.35Tucana 0.27 15.80 3.60 40.00 19.00 0.460 0.220 1.1 0.57Bootes 1 0.24 6.50 2.00 5.90 3.70 0.100 0.060 1.0 0.70Cven II 0.07 4.60 1.00 0.90 0.40 0.530 0.250 1.3 0.65Leo IV 0.12 3.30 1.70 0.73 0.73 0.110 0.110 1.1 1.26Leo V 0.04 2.40 1.90 0.14 0.14 0.450 0.450 1.4 1.57Segue 2 0.03 3.40 1.80 0.23 0.23 1.310 0.300 1.6 1.59AndIX 0.53 6.80 2.50 14.00 11.00 0.023 0.017 0.8 0.73AndXV 0.27 11.00 6.00 19.00 2.00 0.230 0.250 1.0 0.22

• -----------------------------------------------------------------------------------------------mns 1.6 0.35 sig 2.3 0.33

• Problems of detection

• and • description

• r corresponds to• L(r)=Ltot/2

Page 16: Cosmology beyond the standard model Multi component dark matter model

28 dSph galaxies (Walker et al. 2009)13 And galaxies (Tollerud et al. 2013)

<1+zcr> = 15/M60.1(1 ± 0.12)=3/M13

0.1(1 ± 0.12) <B-1(zcr )> = 11/M6

0.1(1 ± 0.12) = 2.2/M130.1(1 ± 0.12)

For And XVI zcr~14 For Segue I zcr~17 For Sgrc zcr~7

Page 17: Cosmology beyond the standard model Multi component dark matter model

23 dSph 9 SPT-clusters

Page 18: Cosmology beyond the standard model Multi component dark matter model

CLS – 83 dSph

Page 19: Cosmology beyond the standard model Multi component dark matter model

Summary

For 44 SPT – clusters 1 < M13 < 300

<Pc> ≈ 36(1 ± 0.37)eV/cm3, Sb ≈ 185(1 ± 0.9)keV cm2

For 9 SPT - clusters 10 < M13 < 80

<Pc> ≈ 34(1 ± 0.25)eV/cm3, Sb ≈ 200(1 ± 0.7)keV cm2

<1+zcr> ≈ 3.2(1 ± 0.04)M13-0.1

For 9 REXCESS clusters 10 < M13 < 70

<Pc> ≈ 25(1 ± 0.5)eV/cm3, Sb ≈ 320(1 ± 0.3)keV cm2

<1+zcr> ≈ 2.2(1 ± 0.1)

For 41 dSph galaxies 10-7 < M13 < 10-4, 0.1 < M6 < 100

<P > ≈ 28(1 ± 0.8)eV/cm3,

<1+zcr> ≈ 3.4(1 ± 0.15)M13-0.1

Page 20: Cosmology beyond the standard model Multi component dark matter model

B(zcr) – M12, observations

Page 21: Cosmology beyond the standard model Multi component dark matter model

Power spectrum of MDM model

Page 22: Cosmology beyond the standard model Multi component dark matter model

Mdmp≈107Mo /ms3 (keV)

Page 23: Cosmology beyond the standard model Multi component dark matter model

Two composite MDM models P=0.3Pcdm+0.7Pwdm(50eV), P=0.1Pcdm+0.65Pwdm(50eV)+0.25Pwdm(10keV) Press, Schechter 1974, Bond et al. 1991

Page 24: Cosmology beyond the standard model Multi component dark matter model

RESULTS According to this criterion CDM model is rejected

The WDM model with P=PWDM is consistent with observations when αw ≈ 1, mw ≈ 3keV

For MDM model with P=0.3PCDM+0.7PWDM

fCDM ≈ 0.8, fWDM ≈ 0.2, mw ≈ 50eV

For MDM model with

P=0.1PCDM+0.65PWDM1+0.25PWDM2

with mw1 ~ 50eV, mw2 ~ 10keV

FINAL ANSWER - SIMULATIONS

Page 25: Cosmology beyond the standard model Multi component dark matter model
Page 26: Cosmology beyond the standard model Multi component dark matter model
Page 27: Cosmology beyond the standard model Multi component dark matter model

The endThe end

Page 28: Cosmology beyond the standard model Multi component dark matter model

Small scale perturbations Linear evolution

Page 29: Cosmology beyond the standard model Multi component dark matter model

28 dSph galaxies

Page 30: Cosmology beyond the standard model Multi component dark matter model

CLS-83

Page 31: Cosmology beyond the standard model Multi component dark matter model

Problems of detection

and

description

r corresponds to

L(r)=Ltot/2

name r sig_v +/- Mhalf +/- <rho> +/- (1 +zcr)/10 +/- kpc km/s 10^6M_o M_o/pc^3 Carina 0.14 6.60 1.20 3.40 1.40 0.320 0.120 0.12E01 0.53 Draco 0.22 9.10 1.20 11.00 3.00 0.230 0.06 0.11E01 0.32Fornax 0.34 11.70 0.90 27.00 0.50 0.160 0.03 0.99E00 0.04LeoI 0.13 9.20 1.40 6.50 2.10 0.660 0.210 0.12E01 0.44LeoII 0.12 6.60 0.70 3.10 0.90 0.400 0.120 0.12E01 0.39Sculptor 0.09 9.20 1.10 4.60 1.70 1.300 0.500 0.13E01 0.55Sextant 0.29 7.90 1.30 11.00 4.00 0.100 0.030 0.99E00 0.39UMi 0.15 9.50 1.20 7.80 2.20 0.550 0.150 0.12E01 0.37CVen I 0.56 7.60 0.40 19.00 2.00 0.025 0.003 0.84E00 0.10 Coma 0.08 4.60 0.80 0.90 0.35 0.490 0.180 0.13E01 0.56Hercules 0.33 3.70 0.90 2.60 1.40 0.017 0.009 0.89E00 0.53 Leo T 0.18 7.50 1.60 5.80 2.80 0.250 0.120 0.11E01 0.59Segue 1 0.03 4.30 1.20 0.31 0.19 3.010 0.800 0.17E01 1.06UMa I 0.32 11.90 3.50 26.10 6.00 0.200 0.120 0.10E01 0.29UMa II 0.14 5.70 1.40 2.60 1.40 0.230 0.120 0.12E01 0.68AndII 1.23 9.30 2.70 62.00 36.00 0.008 0.005 0.71E00 0.45Cetus 0.59 17.00 2.00 99.00 23.00 0.110 0.020 0.90E00 0.22Sgr^c 1.55 11.40 0.70 120.00 60.00 0.008 0.001 0.68E00 0.35Tucana 0.27 15.80 3.60 40.00 19.00 0.460 0.220 0.11E01 0.57Bootes 1 0.24 6.50 2.00 5.90 3.70 0.100 0.060 0.10E01 0.70Cven II 0.07 4.60 1.00 0.90 0.40 0.530 0.250 0.13E01 0.65Leo IV 0.12 3.30 1.70 0.73 0.73 0.110 0.110 0.11E01 1.26Leo V 0.04 2.40 1.90 0.14 0.14 0.450 0.450 0.14E01 1.57Segue 2 0.03 3.40 1.80 0.23 0.23 1.310 0.300 0.16E01 1.59AndIX 0.53 6.80 2.50 14.00 11.00 0.023 0.017 0.84E00 0.73AndXV 0.27 11.00 6.00 19.00 2.00 0.230 0.250 0.10E01 0.22-----------------------------------------------------------------------------------------------mns 0.16E01 0.35 sig 0.23E00 0.33

Walker et. al, 2009, ApJ, 704, 1274 - 28 dSph objects