cosmological black holes and self-gravitating fields from exact...

68
D. C. Guariento Moriond Cosmology 2014 – 1 Cosmological black holes and self-gravitating fields from exact solutions Daniel C. Guariento in collaboration with N. Afshordi, A. M. da Silva, M. Fontanini, E. Papantonopoulos and E. Abdalla based on [1207.1086], [1212.0155], [1312.3682], [1404.xxxx]

Upload: others

Post on 05-Mar-2021

1 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: Cosmological black holes and self-gravitating fields from exact …moriond.in2p3.fr/J14/transparencies/Friday/guariento.pdf · 2014. 3. 28. · D. C. Guariento Moriond Cosmology

D. C. Guariento Moriond Cosmology 2014 – 1

Cosmological black holes and self-gravitating

fields from exact solutions

Daniel C. Guariento

in collaboration with N. Afshordi, A. M. da Silva, M. Fontanini,

E. Papantonopoulos and E. Abdalla

based on [1207.1086], [1212.0155], [1312.3682], [1404.xxxx]

Page 2: Cosmological black holes and self-gravitating fields from exact …moriond.in2p3.fr/J14/transparencies/Friday/guariento.pdf · 2014. 3. 28. · D. C. Guariento Moriond Cosmology

Motivation

Introduction

The McVittie metric

Dynamic accretion

Conclusion

D. C. Guariento Moriond Cosmology 2014 – 2

Exact solutions of Einstein equations

Black holes in the presence of self-gravitating matter

Page 3: Cosmological black holes and self-gravitating fields from exact …moriond.in2p3.fr/J14/transparencies/Friday/guariento.pdf · 2014. 3. 28. · D. C. Guariento Moriond Cosmology

Motivation

Introduction

The McVittie metric

Dynamic accretion

Conclusion

D. C. Guariento Moriond Cosmology 2014 – 2

Exact solutions of Einstein equations

Black holes in the presence of self-gravitating matter

Two competing effects:

Gravitationally bound objects

Expanding universe

Page 4: Cosmological black holes and self-gravitating fields from exact …moriond.in2p3.fr/J14/transparencies/Friday/guariento.pdf · 2014. 3. 28. · D. C. Guariento Moriond Cosmology

Motivation

Introduction

The McVittie metric

Dynamic accretion

Conclusion

D. C. Guariento Moriond Cosmology 2014 – 2

Exact solutions of Einstein equations

Black holes in the presence of self-gravitating matter

Two competing effects:

Gravitationally bound objects

Expanding universe

Coupling between local effects and cosmological evolution

Causal structure

Interaction through Einstein equations

Page 5: Cosmological black holes and self-gravitating fields from exact …moriond.in2p3.fr/J14/transparencies/Friday/guariento.pdf · 2014. 3. 28. · D. C. Guariento Moriond Cosmology

Motivation

Introduction

The McVittie metric

Dynamic accretion

Conclusion

D. C. Guariento Moriond Cosmology 2014 – 2

Exact solutions of Einstein equations

Black holes in the presence of self-gravitating matter

Two competing effects:

Gravitationally bound objects

Expanding universe

Coupling between local effects and cosmological evolution

Causal structure

Interaction through Einstein equations

Field source:

Consistency analysis

Evolution and interaction from equations of motion

Page 6: Cosmological black holes and self-gravitating fields from exact …moriond.in2p3.fr/J14/transparencies/Friday/guariento.pdf · 2014. 3. 28. · D. C. Guariento Moriond Cosmology

The McVittie metric

Introduction

The McVittie metric

Properties

Penrose diagrams

Dependence with

cosmological history

Scalar fields

Dynamic accretion

Conclusion

D. C. Guariento Moriond Cosmology 2014 – 3

Cosmological black holes: McVittie solution [McVittie, MNRAS 93,325 (1933)]

ds2 = −

(

1− m2a(t)r

)2

(

1 + m2a(t)r

)2dt2+a2(t)

(

1 +m

2a(t)r

)4(dr2 + r2dΩ2

)

Page 7: Cosmological black holes and self-gravitating fields from exact …moriond.in2p3.fr/J14/transparencies/Friday/guariento.pdf · 2014. 3. 28. · D. C. Guariento Moriond Cosmology

The McVittie metric

Introduction

The McVittie metric

Properties

Penrose diagrams

Dependence with

cosmological history

Scalar fields

Dynamic accretion

Conclusion

D. C. Guariento Moriond Cosmology 2014 – 3

Cosmological black holes: McVittie solution [McVittie, MNRAS 93,325 (1933)]

ds2 = −(1− m

2r

)2

(1 + m

2r

)2dt2 +

(

1 +m

2r

)4 (dr2 + r2dΩ2

)

a(t) constant: Schwarzschild metric

Page 8: Cosmological black holes and self-gravitating fields from exact …moriond.in2p3.fr/J14/transparencies/Friday/guariento.pdf · 2014. 3. 28. · D. C. Guariento Moriond Cosmology

The McVittie metric

Introduction

The McVittie metric

Properties

Penrose diagrams

Dependence with

cosmological history

Scalar fields

Dynamic accretion

Conclusion

D. C. Guariento Moriond Cosmology 2014 – 3

Cosmological black holes: McVittie solution [McVittie, MNRAS 93,325 (1933)]

ds2 = −dt2 + a2(t)(dr2 + r2dΩ2

)

a(t) constant: Schwarzschild metric

m = 0: FLRW metric

Page 9: Cosmological black holes and self-gravitating fields from exact …moriond.in2p3.fr/J14/transparencies/Friday/guariento.pdf · 2014. 3. 28. · D. C. Guariento Moriond Cosmology

The McVittie metric

Introduction

The McVittie metric

Properties

Penrose diagrams

Dependence with

cosmological history

Scalar fields

Dynamic accretion

Conclusion

D. C. Guariento Moriond Cosmology 2014 – 3

Cosmological black holes: McVittie solution [McVittie, MNRAS 93,325 (1933)]

ds2 = −

(

1− m2a(t)r

)2

(

1 + m2a(t)r

)2dt2+a2(t)

(

1 +m

2a(t)r

)4(dr2 + r2dΩ2

)

a(t) constant: Schwarzschild metric

m = 0: FLRW metric

Unique solution that satisfies

Spherical symmetry

Perfect fluid

Shear-free

Asymptotically FLRW

Singularity at the center

Page 10: Cosmological black holes and self-gravitating fields from exact …moriond.in2p3.fr/J14/transparencies/Friday/guariento.pdf · 2014. 3. 28. · D. C. Guariento Moriond Cosmology

Metric features

Introduction

The McVittie metric

Properties

Penrose diagrams

Dependence with

cosmological history

Scalar fields

Dynamic accretion

Conclusion

D. C. Guariento Moriond Cosmology 2014 – 4

Past spacelike singularity at a = m2r

Ricci scalar

R = 12H2 + 6H

(m+ 2ar

m− 2ar

)

where H(t) ≡ a/a

Page 11: Cosmological black holes and self-gravitating fields from exact …moriond.in2p3.fr/J14/transparencies/Friday/guariento.pdf · 2014. 3. 28. · D. C. Guariento Moriond Cosmology

Metric features

Introduction

The McVittie metric

Properties

Penrose diagrams

Dependence with

cosmological history

Scalar fields

Dynamic accretion

Conclusion

D. C. Guariento Moriond Cosmology 2014 – 4

Past spacelike singularity at a = m2r

Ricci scalar

R = 12H2 + 6H

(m+ 2ar

m− 2ar

)

where H(t) ≡ a/a

Fluid has homogeneous density

ρ(t) =3

8πH2

Expansion is homogeneous (Hubble flow) and shear-free

Page 12: Cosmological black holes and self-gravitating fields from exact …moriond.in2p3.fr/J14/transparencies/Friday/guariento.pdf · 2014. 3. 28. · D. C. Guariento Moriond Cosmology

Metric features

Introduction

The McVittie metric

Properties

Penrose diagrams

Dependence with

cosmological history

Scalar fields

Dynamic accretion

Conclusion

D. C. Guariento Moriond Cosmology 2014 – 4

Past spacelike singularity at a = m2r

Ricci scalar

R = 12H2 + 6H

(m+ 2ar

m− 2ar

)

where H(t) ≡ a/a

Fluid has homogeneous density

ρ(t) =3

8πH2

Expansion is homogeneous (Hubble flow) and shear-free

Pressure is inhomogeneous

p(r, t) =1

[

−3H2 + 2H

(m+ 2ar

m− 2ar

)]

Page 13: Cosmological black holes and self-gravitating fields from exact …moriond.in2p3.fr/J14/transparencies/Friday/guariento.pdf · 2014. 3. 28. · D. C. Guariento Moriond Cosmology

Areal radius coordinates

Introduction

The McVittie metric

Properties

Penrose diagrams

Dependence with

cosmological history

Scalar fields

Dynamic accretion

Conclusion

D. C. Guariento Moriond Cosmology 2014 – 5

Causal structure is more easily seen on areal radius coordinates

[N. Kaloper, M. Kleban, D. Martin, 1003.4777]

ds2 = −(

1− 2m

r

)2

dt2 +

dr

1− 2mr

−Hrdt

2

+ r2dΩ2

Page 14: Cosmological black holes and self-gravitating fields from exact …moriond.in2p3.fr/J14/transparencies/Friday/guariento.pdf · 2014. 3. 28. · D. C. Guariento Moriond Cosmology

Areal radius coordinates

Introduction

The McVittie metric

Properties

Penrose diagrams

Dependence with

cosmological history

Scalar fields

Dynamic accretion

Conclusion

D. C. Guariento Moriond Cosmology 2014 – 5

Causal structure is more easily seen on areal radius coordinates

[N. Kaloper, M. Kleban, D. Martin, 1003.4777]

ds2 = −(

1− 2m

r

)2

dt2 +

dr

1− 2mr

−Hrdt

2

+ r2dΩ2

Apparent horizons: zero expansion of null radial geodesics

(dr

dt

)

±= R (rH ±R) = 0

+ outgoing

− ingoing

Page 15: Cosmological black holes and self-gravitating fields from exact …moriond.in2p3.fr/J14/transparencies/Friday/guariento.pdf · 2014. 3. 28. · D. C. Guariento Moriond Cosmology

Areal radius coordinates

Introduction

The McVittie metric

Properties

Penrose diagrams

Dependence with

cosmological history

Scalar fields

Dynamic accretion

Conclusion

D. C. Guariento Moriond Cosmology 2014 – 5

Causal structure is more easily seen on areal radius coordinates

[N. Kaloper, M. Kleban, D. Martin, 1003.4777]

ds2 = −(

1− 2m

r

)2

dt2 +

dr

1− 2mr

−Hrdt

2

+ r2dΩ2

Apparent horizons: zero expansion of null radial geodesics

(dr

dt

)

±= R (rH ±R) = 0

+ outgoing

− ingoing

Only ingoing geodesics have a solution: 1− 2mr

−H(t) r2 = 0

r+ Outer (cosmological) horizon

r− Inner horizon

If H(t) → H0 for t → ∞ apparent horizons become

Schwarszchild-de Sitter event horizons (r− → r∞)

Page 16: Cosmological black holes and self-gravitating fields from exact …moriond.in2p3.fr/J14/transparencies/Friday/guariento.pdf · 2014. 3. 28. · D. C. Guariento Moriond Cosmology

Light cones and apparent horizons

Introduction

The McVittie metric

Properties

Penrose diagrams

Dependence with

cosmological history

Scalar fields

Dynamic accretion

Conclusion

D. C. Guariento Moriond Cosmology 2014 – 6

0

tmin

t

2m r

rout

Page 17: Cosmological black holes and self-gravitating fields from exact …moriond.in2p3.fr/J14/transparencies/Friday/guariento.pdf · 2014. 3. 28. · D. C. Guariento Moriond Cosmology

Light cones and apparent horizons

Introduction

The McVittie metric

Properties

Penrose diagrams

Dependence with

cosmological history

Scalar fields

Dynamic accretion

Conclusion

D. C. Guariento Moriond Cosmology 2014 – 6

0

tmin

t

2m r

rout

rin

Page 18: Cosmological black holes and self-gravitating fields from exact …moriond.in2p3.fr/J14/transparencies/Friday/guariento.pdf · 2014. 3. 28. · D. C. Guariento Moriond Cosmology

Light cones and apparent horizons

Introduction

The McVittie metric

Properties

Penrose diagrams

Dependence with

cosmological history

Scalar fields

Dynamic accretion

Conclusion

D. C. Guariento Moriond Cosmology 2014 – 6

0

tmin

t

2m r

routrinr+r-

Page 19: Cosmological black holes and self-gravitating fields from exact …moriond.in2p3.fr/J14/transparencies/Friday/guariento.pdf · 2014. 3. 28. · D. C. Guariento Moriond Cosmology

Light cones and apparent horizons

Introduction

The McVittie metric

Properties

Penrose diagrams

Dependence with

cosmological history

Scalar fields

Dynamic accretion

Conclusion

D. C. Guariento Moriond Cosmology 2014 – 6

0

tmin

t

2m r

r+r-rinrout

Page 20: Cosmological black holes and self-gravitating fields from exact …moriond.in2p3.fr/J14/transparencies/Friday/guariento.pdf · 2014. 3. 28. · D. C. Guariento Moriond Cosmology

Asymptotic behavior

Introduction

The McVittie metric

Properties

Penrose diagrams

Dependence with

cosmological history

Scalar fields

Dynamic accretion

Conclusion

D. C. Guariento Moriond Cosmology 2014 – 7

Inner horizon is an anti-trapping surface for finite coordinate times

Page 21: Cosmological black holes and self-gravitating fields from exact …moriond.in2p3.fr/J14/transparencies/Friday/guariento.pdf · 2014. 3. 28. · D. C. Guariento Moriond Cosmology

Asymptotic behavior

Introduction

The McVittie metric

Properties

Penrose diagrams

Dependence with

cosmological history

Scalar fields

Dynamic accretion

Conclusion

D. C. Guariento Moriond Cosmology 2014 – 7

Inner horizon is an anti-trapping surface for finite coordinate times

Singular surface r∗ = 2m lies in the past of all events (McVittie big

bang)d

dt(r − r∗) = RrH +O

(R2)> 0

Page 22: Cosmological black holes and self-gravitating fields from exact …moriond.in2p3.fr/J14/transparencies/Friday/guariento.pdf · 2014. 3. 28. · D. C. Guariento Moriond Cosmology

Asymptotic behavior

Introduction

The McVittie metric

Properties

Penrose diagrams

Dependence with

cosmological history

Scalar fields

Dynamic accretion

Conclusion

D. C. Guariento Moriond Cosmology 2014 – 7

Inner horizon is an anti-trapping surface for finite coordinate times

Singular surface r∗ = 2m lies in the past of all events (McVittie big

bang)d

dt(r − r∗) = RrH +O

(R2)> 0

If H0 > 0 the inner horizon r∞ is traversable in finite proper time

Black hole at Shwarzschild-de Sitter limit

Page 23: Cosmological black holes and self-gravitating fields from exact …moriond.in2p3.fr/J14/transparencies/Friday/guariento.pdf · 2014. 3. 28. · D. C. Guariento Moriond Cosmology

Asymptotic behavior

Introduction

The McVittie metric

Properties

Penrose diagrams

Dependence with

cosmological history

Scalar fields

Dynamic accretion

Conclusion

D. C. Guariento Moriond Cosmology 2014 – 7

Inner horizon is an anti-trapping surface for finite coordinate times

Singular surface r∗ = 2m lies in the past of all events (McVittie big

bang)d

dt(r − r∗) = RrH +O

(R2)> 0

If H0 > 0 the inner horizon r∞ is traversable in finite proper time

Black hole at Shwarzschild-de Sitter limit

If H0 = 0, some curvature scalars become singular at r∞

Possibly no BH interpretation at Schwarzschild limit

[K. Lake, M. Abdelqader, 1106.3666]

Page 24: Cosmological black holes and self-gravitating fields from exact …moriond.in2p3.fr/J14/transparencies/Friday/guariento.pdf · 2014. 3. 28. · D. C. Guariento Moriond Cosmology

Penrose diagrams

Introduction

The McVittie metric

Properties

Penrose diagrams

Dependence with

cosmological history

Scalar fields

Dynamic accretion

Conclusion

D. C. Guariento Moriond Cosmology 2014 – 8

Geodesic completion with Schwarzschild-de Sitter

i+

b +i0

+

r = 0

r = 2m

( -)

r+r-

Page 25: Cosmological black holes and self-gravitating fields from exact …moriond.in2p3.fr/J14/transparencies/Friday/guariento.pdf · 2014. 3. 28. · D. C. Guariento Moriond Cosmology

Penrose diagrams

Introduction

The McVittie metric

Properties

Penrose diagrams

Dependence with

cosmological history

Scalar fields

Dynamic accretion

Conclusion

D. C. Guariento Moriond Cosmology 2014 – 8

Geodesic completion with Schwarzschild-de Sitter

<

>

Page 26: Cosmological black holes and self-gravitating fields from exact …moriond.in2p3.fr/J14/transparencies/Friday/guariento.pdf · 2014. 3. 28. · D. C. Guariento Moriond Cosmology

Penrose diagrams

Introduction

The McVittie metric

Properties

Penrose diagrams

Dependence with

cosmological history

Scalar fields

Dynamic accretion

Conclusion

D. C. Guariento Moriond Cosmology 2014 – 8

Geodesic completion with Schwarzschild-de Sitter

i+

b +i0

+

-

+

-

r = 0

r = 0

r = 2m

( -)

r+r-

Page 27: Cosmological black holes and self-gravitating fields from exact …moriond.in2p3.fr/J14/transparencies/Friday/guariento.pdf · 2014. 3. 28. · D. C. Guariento Moriond Cosmology

McVittie with compact Φ

Introduction

The McVittie metric

Properties

Penrose diagrams

Dependence with

cosmological history

Scalar fields

Dynamic accretion

Conclusion

D. C. Guariento Moriond Cosmology 2014 – 9

i+

b +i0

+

r = 0

r = 2m

( -)

r+r-

Page 28: Cosmological black holes and self-gravitating fields from exact …moriond.in2p3.fr/J14/transparencies/Friday/guariento.pdf · 2014. 3. 28. · D. C. Guariento Moriond Cosmology

McVittie with compact Φ

Introduction

The McVittie metric

Properties

Penrose diagrams

Dependence with

cosmological history

Scalar fields

Dynamic accretion

Conclusion

D. C. Guariento Moriond Cosmology 2014 – 9

i+

-i0 +i0

+

+

-

r = 0

r = 2m

te

b

( -)

r+r-

Page 29: Cosmological black holes and self-gravitating fields from exact …moriond.in2p3.fr/J14/transparencies/Friday/guariento.pdf · 2014. 3. 28. · D. C. Guariento Moriond Cosmology

Convergence to H0

Introduction

The McVittie metric

Properties

Penrose diagrams

Dependence with

cosmological history

Scalar fields

Dynamic accretion

Conclusion

D. C. Guariento Moriond Cosmology 2014 – 10

Causal structure depends on cosmological history

Horizon behavior at t → ∞ depends on the set Φ(H−)[A. M. da Silva, M. Fontanini, DCG, 1212.0155]

Page 30: Cosmological black holes and self-gravitating fields from exact …moriond.in2p3.fr/J14/transparencies/Friday/guariento.pdf · 2014. 3. 28. · D. C. Guariento Moriond Cosmology

Convergence to H0

Introduction

The McVittie metric

Properties

Penrose diagrams

Dependence with

cosmological history

Scalar fields

Dynamic accretion

Conclusion

D. C. Guariento Moriond Cosmology 2014 – 10

Causal structure depends on cosmological history

Horizon behavior at t → ∞ depends on the set Φ(H−)[A. M. da Silva, M. Fontanini, DCG, 1212.0155]

Causal structure of McVittie depends on how fast H → H0.

Page 31: Cosmological black holes and self-gravitating fields from exact …moriond.in2p3.fr/J14/transparencies/Friday/guariento.pdf · 2014. 3. 28. · D. C. Guariento Moriond Cosmology

Convergence to H0

Introduction

The McVittie metric

Properties

Penrose diagrams

Dependence with

cosmological history

Scalar fields

Dynamic accretion

Conclusion

D. C. Guariento Moriond Cosmology 2014 – 10

Causal structure depends on cosmological history

Horizon behavior at t → ∞ depends on the set Φ(H−)[A. M. da Silva, M. Fontanini, DCG, 1212.0155]

Causal structure of McVittie depends on how fast H → H0.

Example: cold dark matter (“dust”) and cosmological constant

H(t) = H0 coth

(3

2H0t

)

Convergence depends on the sign of η

η ≡ R(r∞)

3

[R′(r∞)

H0− 1

]

− 1

η depends only on the product λ ≡ mH0, (0 < λ < 13√3

)

Page 32: Cosmological black holes and self-gravitating fields from exact …moriond.in2p3.fr/J14/transparencies/Friday/guariento.pdf · 2014. 3. 28. · D. C. Guariento Moriond Cosmology

Cosmological history

Introduction

The McVittie metric

Properties

Penrose diagrams

Dependence with

cosmological history

Scalar fields

Dynamic accretion

Conclusion

D. C. Guariento Moriond Cosmology 2014 – 11

-1

-0.5

0

0.5

1

1.5

0 0.0755 13 3

= m H0

< 0

(-) compact

> 0

(-) non-compact

= 0

Page 33: Cosmological black holes and self-gravitating fields from exact …moriond.in2p3.fr/J14/transparencies/Friday/guariento.pdf · 2014. 3. 28. · D. C. Guariento Moriond Cosmology

Scalar fields

Introduction

The McVittie metric

Properties

Penrose diagrams

Dependence with

cosmological history

Scalar fields

Dynamic accretion

Conclusion

D. C. Guariento Moriond Cosmology 2014 – 12

McVittie is also a solution of a scalar field with a modified kinetic term

minimally coupled to GR

[E. Abdalla, N. Afshordi, M. Fontanini, DCG, E. Papantonopoulos, 1312.3682]

Page 34: Cosmological black holes and self-gravitating fields from exact …moriond.in2p3.fr/J14/transparencies/Friday/guariento.pdf · 2014. 3. 28. · D. C. Guariento Moriond Cosmology

Scalar fields

Introduction

The McVittie metric

Properties

Penrose diagrams

Dependence with

cosmological history

Scalar fields

Dynamic accretion

Conclusion

D. C. Guariento Moriond Cosmology 2014 – 12

McVittie is also a solution of a scalar field with a modified kinetic term

minimally coupled to GR

[E. Abdalla, N. Afshordi, M. Fontanini, DCG, E. Papantonopoulos, 1312.3682]

Gravity and Cuscuton field

S =

d4x√−g

[1

2R+ µ2

√X − V (φ)

]

with X = −1

2φ;αφ;α

Page 35: Cosmological black holes and self-gravitating fields from exact …moriond.in2p3.fr/J14/transparencies/Friday/guariento.pdf · 2014. 3. 28. · D. C. Guariento Moriond Cosmology

Scalar fields

Introduction

The McVittie metric

Properties

Penrose diagrams

Dependence with

cosmological history

Scalar fields

Dynamic accretion

Conclusion

D. C. Guariento Moriond Cosmology 2014 – 12

McVittie is also a solution of a scalar field with a modified kinetic term

minimally coupled to GR

[E. Abdalla, N. Afshordi, M. Fontanini, DCG, E. Papantonopoulos, 1312.3682]

Gravity and Cuscuton field

S =

d4x√−g

[1

2R+ µ2

√X − V (φ)

]

with X = −1

2φ;αφ;α

Field has constant Kαα on homogeneous surfaces

Kαα =

1

µ2

dV

dφ= 3H(t)

Page 36: Cosmological black holes and self-gravitating fields from exact …moriond.in2p3.fr/J14/transparencies/Friday/guariento.pdf · 2014. 3. 28. · D. C. Guariento Moriond Cosmology

Scalar fields

Introduction

The McVittie metric

Properties

Penrose diagrams

Dependence with

cosmological history

Scalar fields

Dynamic accretion

Conclusion

D. C. Guariento Moriond Cosmology 2014 – 12

McVittie is also a solution of a scalar field with a modified kinetic term

minimally coupled to GR

[E. Abdalla, N. Afshordi, M. Fontanini, DCG, E. Papantonopoulos, 1312.3682]

Gravity and Cuscuton field

S =

d4x√−g

[1

2R+ µ2

√X − V (φ)

]

with X = −1

2φ;αφ;α

Field has constant Kαα on homogeneous surfaces

Kαα =

1

µ2

dV

dφ= 3H(t)

Einstein equations and equations of motion give consistent results

V (φ) = −6πµ4 (φ+ C)2 =3

8πH2

Page 37: Cosmological black holes and self-gravitating fields from exact …moriond.in2p3.fr/J14/transparencies/Friday/guariento.pdf · 2014. 3. 28. · D. C. Guariento Moriond Cosmology

Scalar fields

Introduction

The McVittie metric

Properties

Penrose diagrams

Dependence with

cosmological history

Scalar fields

Dynamic accretion

Conclusion

D. C. Guariento Moriond Cosmology 2014 – 12

McVittie is also a solution of a scalar field with a modified kinetic term

minimally coupled to GR

[E. Abdalla, N. Afshordi, M. Fontanini, DCG, E. Papantonopoulos, 1312.3682]

Gravity and Cuscuton field

S =

d4x√−g

[1

2R+ µ2

√X − V (φ)

]

with X = −1

2φ;αφ;α

Field has constant Kαα on homogeneous surfaces

Kαα =

1

µ2

dV

dφ= 3H(t)

Einstein equations and equations of motion give consistent results

V (φ) = −6πµ4 (φ+ C)2 =3

8πH2

Uniform expansion, shear-free solutions are unique to this type of field

Page 38: Cosmological black holes and self-gravitating fields from exact …moriond.in2p3.fr/J14/transparencies/Friday/guariento.pdf · 2014. 3. 28. · D. C. Guariento Moriond Cosmology

Uniqueness of the cuscuton solution

Introduction

The McVittie metric

Properties

Penrose diagrams

Dependence with

cosmological history

Scalar fields

Dynamic accretion

Conclusion

D. C. Guariento Moriond Cosmology 2014 – 13

K-essence action: S =∫d4x

√−g[12R+K(X,ϕ)

]

Page 39: Cosmological black holes and self-gravitating fields from exact …moriond.in2p3.fr/J14/transparencies/Friday/guariento.pdf · 2014. 3. 28. · D. C. Guariento Moriond Cosmology

Uniqueness of the cuscuton solution

Introduction

The McVittie metric

Properties

Penrose diagrams

Dependence with

cosmological history

Scalar fields

Dynamic accretion

Conclusion

D. C. Guariento Moriond Cosmology 2014 – 13

K-essence action: S =∫d4x

√−g[12R+K(X,ϕ)

]

Einstein equations in McVittie

−2XK,X +K = − 3

8πH2

2XK,XX +K,X = 0

Page 40: Cosmological black holes and self-gravitating fields from exact …moriond.in2p3.fr/J14/transparencies/Friday/guariento.pdf · 2014. 3. 28. · D. C. Guariento Moriond Cosmology

Uniqueness of the cuscuton solution

Introduction

The McVittie metric

Properties

Penrose diagrams

Dependence with

cosmological history

Scalar fields

Dynamic accretion

Conclusion

D. C. Guariento Moriond Cosmology 2014 – 13

K-essence action: S =∫d4x

√−g[12R+K(X,ϕ)

]

Einstein equations in McVittie

−2XK,X +K = − 3

8πH2

2XK,XX +K,X = 0

Unique solution: cuscuton

K(X,ϕ) = A(ϕ) +B(ϕ)√X

A(ϕ) =3

8πH2 , B(ϕ) = constant

Dual to Horava-Lifshitz gravity with anisotropic Weyl symmetry

Page 41: Cosmological black holes and self-gravitating fields from exact …moriond.in2p3.fr/J14/transparencies/Friday/guariento.pdf · 2014. 3. 28. · D. C. Guariento Moriond Cosmology

Uniqueness of the cuscuton solution

Introduction

The McVittie metric

Properties

Penrose diagrams

Dependence with

cosmological history

Scalar fields

Dynamic accretion

Conclusion

D. C. Guariento Moriond Cosmology 2014 – 13

K-essence action: S =∫d4x

√−g[12R+K(X,ϕ)

]

Einstein equations in McVittie

−2XK,X +K = − 3

8πH2

2XK,XX +K,X = 0

Unique solution: cuscuton

K(X,ϕ) = A(ϕ) +B(ϕ)√X

A(ϕ) =3

8πH2 , B(ϕ) = constant

Dual to Horava-Lifshitz gravity with anisotropic Weyl symmetry

McVittie is also a vacuum solution of modified gravity

Page 42: Cosmological black holes and self-gravitating fields from exact …moriond.in2p3.fr/J14/transparencies/Friday/guariento.pdf · 2014. 3. 28. · D. C. Guariento Moriond Cosmology

Accretion of general fluids

Introduction

The McVittie metric

Dynamic accretion

Conclusion

D. C. Guariento Moriond Cosmology 2014 – 14

Generalized McVittie metric: m → m(t) [V. Faraoni and A. Jacques, 0707.1350]

Page 43: Cosmological black holes and self-gravitating fields from exact …moriond.in2p3.fr/J14/transparencies/Friday/guariento.pdf · 2014. 3. 28. · D. C. Guariento Moriond Cosmology

Accretion of general fluids

Introduction

The McVittie metric

Dynamic accretion

Conclusion

D. C. Guariento Moriond Cosmology 2014 – 14

Generalized McVittie metric: m → m(t) [V. Faraoni and A. Jacques, 0707.1350]

Imperfect fluid (heat conductivity χ, bulk viscosity ζ , shear viscosity η)

Page 44: Cosmological black holes and self-gravitating fields from exact …moriond.in2p3.fr/J14/transparencies/Friday/guariento.pdf · 2014. 3. 28. · D. C. Guariento Moriond Cosmology

Accretion of general fluids

Introduction

The McVittie metric

Dynamic accretion

Conclusion

D. C. Guariento Moriond Cosmology 2014 – 14

Generalized McVittie metric: m → m(t) [V. Faraoni and A. Jacques, 0707.1350]

Imperfect fluid (heat conductivity χ, bulk viscosity ζ , shear viscosity η)

McVittie class is shear-free

Page 45: Cosmological black holes and self-gravitating fields from exact …moriond.in2p3.fr/J14/transparencies/Friday/guariento.pdf · 2014. 3. 28. · D. C. Guariento Moriond Cosmology

Accretion of general fluids

Introduction

The McVittie metric

Dynamic accretion

Conclusion

D. C. Guariento Moriond Cosmology 2014 – 14

Generalized McVittie metric: m → m(t) [V. Faraoni and A. Jacques, 0707.1350]

Imperfect fluid (heat conductivity χ, bulk viscosity ζ , shear viscosity η)

McVittie class is shear-free

Bulk viscosity reabsorbed into pressure

T rr = T θ

θ = T φφ = p− 3ζ

(

H +2m

2ar −m

)

Page 46: Cosmological black holes and self-gravitating fields from exact …moriond.in2p3.fr/J14/transparencies/Friday/guariento.pdf · 2014. 3. 28. · D. C. Guariento Moriond Cosmology

Accretion of general fluids

Introduction

The McVittie metric

Dynamic accretion

Conclusion

D. C. Guariento Moriond Cosmology 2014 – 14

Generalized McVittie metric: m → m(t) [V. Faraoni and A. Jacques, 0707.1350]

Imperfect fluid (heat conductivity χ, bulk viscosity ζ , shear viscosity η)

McVittie class is shear-free

Bulk viscosity reabsorbed into pressure

T rr = T θ

θ = T φφ = p− 3ζ

(

H +2m

2ar −m

)

Landau-Eckart hydrodynamical model

Fluid temperature has an extra term

T√−gtt = T∞(t) +

m

4πχmln(√

−gtt)

Page 47: Cosmological black holes and self-gravitating fields from exact …moriond.in2p3.fr/J14/transparencies/Friday/guariento.pdf · 2014. 3. 28. · D. C. Guariento Moriond Cosmology

Accretion of general fluids

Introduction

The McVittie metric

Dynamic accretion

Conclusion

D. C. Guariento Moriond Cosmology 2014 – 14

Generalized McVittie metric: m → m(t) [V. Faraoni and A. Jacques, 0707.1350]

Imperfect fluid (heat conductivity χ, bulk viscosity ζ , shear viscosity η)

McVittie class is shear-free

Bulk viscosity reabsorbed into pressure

T rr = T θ

θ = T φφ = p− 3ζ

(

H +2m

2ar −m

)

Landau-Eckart hydrodynamical model

Fluid temperature has an extra term

T√−gtt = T∞(t)

︸ ︷︷ ︸

equilibrium

+m

4πχmln(√

−gtt)

Page 48: Cosmological black holes and self-gravitating fields from exact …moriond.in2p3.fr/J14/transparencies/Friday/guariento.pdf · 2014. 3. 28. · D. C. Guariento Moriond Cosmology

Accretion of general fluids

Introduction

The McVittie metric

Dynamic accretion

Conclusion

D. C. Guariento Moriond Cosmology 2014 – 14

Generalized McVittie metric: m → m(t) [V. Faraoni and A. Jacques, 0707.1350]

Imperfect fluid (heat conductivity χ, bulk viscosity ζ , shear viscosity η)

McVittie class is shear-free

Bulk viscosity reabsorbed into pressure

T rr = T θ

θ = T φφ = p− 3ζ

(

H +2m

2ar −m

)

Landau-Eckart hydrodynamical model

Fluid temperature has an extra term

T√−gtt = T∞(t) +

m

4πχmln(√

−gtt)

︸ ︷︷ ︸

heat flow

Page 49: Cosmological black holes and self-gravitating fields from exact …moriond.in2p3.fr/J14/transparencies/Friday/guariento.pdf · 2014. 3. 28. · D. C. Guariento Moriond Cosmology

Accretion through heat flow

Introduction

The McVittie metric

Dynamic accretion

Conclusion

D. C. Guariento Moriond Cosmology 2014 – 15

An imperfect fluid gives an exact solution to Einstein equations

Page 50: Cosmological black holes and self-gravitating fields from exact …moriond.in2p3.fr/J14/transparencies/Friday/guariento.pdf · 2014. 3. 28. · D. C. Guariento Moriond Cosmology

Accretion through heat flow

Introduction

The McVittie metric

Dynamic accretion

Conclusion

D. C. Guariento Moriond Cosmology 2014 – 15

An imperfect fluid gives an exact solution to Einstein equations

Two arbitrary functions: a(t) and m(t).

Page 51: Cosmological black holes and self-gravitating fields from exact …moriond.in2p3.fr/J14/transparencies/Friday/guariento.pdf · 2014. 3. 28. · D. C. Guariento Moriond Cosmology

Accretion through heat flow

Introduction

The McVittie metric

Dynamic accretion

Conclusion

D. C. Guariento Moriond Cosmology 2014 – 15

An imperfect fluid gives an exact solution to Einstein equations

Two arbitrary functions: a(t) and m(t). Expansion scalar and fluid density are related via (t, t)

component of field equations

ρ(r, t) =3

[

H +2m

2ar −m

]2

=1

Θ2

3

Page 52: Cosmological black holes and self-gravitating fields from exact …moriond.in2p3.fr/J14/transparencies/Friday/guariento.pdf · 2014. 3. 28. · D. C. Guariento Moriond Cosmology

Accretion through heat flow

Introduction

The McVittie metric

Dynamic accretion

Conclusion

D. C. Guariento Moriond Cosmology 2014 – 15

An imperfect fluid gives an exact solution to Einstein equations

Two arbitrary functions: a(t) and m(t). Expansion scalar and fluid density are related via (t, t)

component of field equations

ρ(r, t) =3

[

H +2m

2ar −m

]2

=1

Θ2

3

Energy flow through heat transfer; temperature gradient gives m

T =1√−gtt

[

T∞(t) +m

4πχmln(√

−gtt)]

Page 53: Cosmological black holes and self-gravitating fields from exact …moriond.in2p3.fr/J14/transparencies/Friday/guariento.pdf · 2014. 3. 28. · D. C. Guariento Moriond Cosmology

Null geodesics

Introduction

The McVittie metric

Dynamic accretion

Conclusion

D. C. Guariento Moriond Cosmology 2014 – 16

^ r

t

^r+static

^r-static

^r+dyn

^r-dyn

Page 54: Cosmological black holes and self-gravitating fields from exact …moriond.in2p3.fr/J14/transparencies/Friday/guariento.pdf · 2014. 3. 28. · D. C. Guariento Moriond Cosmology

Null geodesics

Introduction

The McVittie metric

Dynamic accretion

Conclusion

D. C. Guariento Moriond Cosmology 2014 – 16

^ r

t

^r+s

^r-s

^r+d

^r-d

Page 55: Cosmological black holes and self-gravitating fields from exact …moriond.in2p3.fr/J14/transparencies/Friday/guariento.pdf · 2014. 3. 28. · D. C. Guariento Moriond Cosmology

Null geodesics

Introduction

The McVittie metric

Dynamic accretion

Conclusion

D. C. Guariento Moriond Cosmology 2014 – 16

^ r

t

^r+s

^r-s

^r-d

^r = 2 m

Page 56: Cosmological black holes and self-gravitating fields from exact …moriond.in2p3.fr/J14/transparencies/Friday/guariento.pdf · 2014. 3. 28. · D. C. Guariento Moriond Cosmology

Next steps

Introduction

The McVittie metric

Dynamic accretion

Conclusion

D. C. Guariento Moriond Cosmology 2014 – 17

Page 57: Cosmological black holes and self-gravitating fields from exact …moriond.in2p3.fr/J14/transparencies/Friday/guariento.pdf · 2014. 3. 28. · D. C. Guariento Moriond Cosmology

Next steps

Introduction

The McVittie metric

Dynamic accretion

Conclusion

D. C. Guariento Moriond Cosmology 2014 – 17

Causal structure of the generalized McVittie metric

Apparent horizons

Cauchy horizons on the past singularity

Page 58: Cosmological black holes and self-gravitating fields from exact …moriond.in2p3.fr/J14/transparencies/Friday/guariento.pdf · 2014. 3. 28. · D. C. Guariento Moriond Cosmology

Next steps

Introduction

The McVittie metric

Dynamic accretion

Conclusion

D. C. Guariento Moriond Cosmology 2014 – 17

Causal structure of the generalized McVittie metric

Apparent horizons

Cauchy horizons on the past singularity

Thermodynamics: entropy; temperature; first and second laws

Reabsorb heat current into rest frame of the fluid: accretion

Page 59: Cosmological black holes and self-gravitating fields from exact …moriond.in2p3.fr/J14/transparencies/Friday/guariento.pdf · 2014. 3. 28. · D. C. Guariento Moriond Cosmology

Next steps

Introduction

The McVittie metric

Dynamic accretion

Conclusion

D. C. Guariento Moriond Cosmology 2014 – 17

Causal structure of the generalized McVittie metric

Apparent horizons

Cauchy horizons on the past singularity

Thermodynamics: entropy; temperature; first and second laws

Reabsorb heat current into rest frame of the fluid: accretion

Other shear-free members of the family of solutions:

Kustaanheimo-Qvist class

Page 60: Cosmological black holes and self-gravitating fields from exact …moriond.in2p3.fr/J14/transparencies/Friday/guariento.pdf · 2014. 3. 28. · D. C. Guariento Moriond Cosmology

Next steps

Introduction

The McVittie metric

Dynamic accretion

Conclusion

D. C. Guariento Moriond Cosmology 2014 – 17

Causal structure of the generalized McVittie metric

Apparent horizons

Cauchy horizons on the past singularity

Thermodynamics: entropy; temperature; first and second laws

Reabsorb heat current into rest frame of the fluid: accretion

Other shear-free members of the family of solutions:

Kustaanheimo-Qvist class

Heat flow and anisotropic stress in higher orders of L: Stay tuned

[1404.xxxx]

Page 61: Cosmological black holes and self-gravitating fields from exact …moriond.in2p3.fr/J14/transparencies/Friday/guariento.pdf · 2014. 3. 28. · D. C. Guariento Moriond Cosmology

Next steps

Introduction

The McVittie metric

Dynamic accretion

Conclusion

D. C. Guariento Moriond Cosmology 2014 – 17

Causal structure of the generalized McVittie metric

Apparent horizons

Cauchy horizons on the past singularity

Thermodynamics: entropy; temperature; first and second laws

Reabsorb heat current into rest frame of the fluid: accretion

Other shear-free members of the family of solutions:

Kustaanheimo-Qvist class

Heat flow and anisotropic stress in higher orders of L: Stay tuned

[1404.xxxx]

Thank you!

Page 62: Cosmological black holes and self-gravitating fields from exact …moriond.in2p3.fr/J14/transparencies/Friday/guariento.pdf · 2014. 3. 28. · D. C. Guariento Moriond Cosmology

Horndeski action

Introduction

The McVittie metric

Dynamic accretion

Conclusion

Extra slides

D. C. Guariento Moriond Cosmology 2014 – 18

Can we have a field as source for generalized McVittie?

Additional terms in the action must look like heat flow

Most general scalar action: Horndeski

First term added to the k-essence action: kinetic gravity braiding

[C. Deffayet, O. Pujolàs, I. Sawicki, A. Vikman, 1008.0048]

Sϕ =

d4x√−g [K(X,ϕ) +G(X,ϕ)ϕ]

with ϕ = gαβϕ;αβ

Up to total derivatives, the Lagrangian may be rewritten as

L = K +Gϕ

= K −G;αϕ;α

= K + 2XG,ϕ −G,Xϕ;αX;α

Page 63: Cosmological black holes and self-gravitating fields from exact …moriond.in2p3.fr/J14/transparencies/Friday/guariento.pdf · 2014. 3. 28. · D. C. Guariento Moriond Cosmology

Full Horndeski action

Introduction

The McVittie metric

Dynamic accretion

Conclusion

Extra slides

D. C. Guariento Moriond Cosmology 2014 – 19

S =

d4x√−g

(

1

2R+

3∑

n=0

L(n)

)

where

L(0) =K(X,ϕ)

L(1) =G(X,ϕ)ϕ

L(2) =G(2)(X,ϕ),X

[

(ϕ)2 − ϕ;αβϕ;αβ]

+RG(2)(X,ϕ)

L(3) =G(3)(X,ϕ),X

[

(ϕ)3 − 3ϕϕ;αβϕ;αβ + 2ϕ;αβϕ

;αρϕ β;ρ

]

− 6Gµνϕ;µνG(3)(X,ϕ)

L(2) and L(3) components of Tµν have non-vanishing anisotropic

stress

Page 64: Cosmological black holes and self-gravitating fields from exact …moriond.in2p3.fr/J14/transparencies/Friday/guariento.pdf · 2014. 3. 28. · D. C. Guariento Moriond Cosmology

Energy-momentum tensor

Introduction

The McVittie metric

Dynamic accretion

Conclusion

Extra slides

D. C. Guariento Moriond Cosmology 2014 – 20

Energy-momentum tensor of the KGB term

Tµν = (K −G;αϕ;α) gµν + (K,X +ϕG,X)ϕ;µϕ;ν +2G(;µϕ;ν)

Equivalent fluid four-velocity uµ

uµ =ϕ;µ

√2X

Energy-momentum tensor of the equivalent fluid

ρ ≡ 2X (K,X +ϕG,X)−√2Xϕ;αG

p ≡ K −G;αϕ;α

qµ ≡√2XhµαG

Page 65: Cosmological black holes and self-gravitating fields from exact …moriond.in2p3.fr/J14/transparencies/Friday/guariento.pdf · 2014. 3. 28. · D. C. Guariento Moriond Cosmology

Einstein equations

Introduction

The McVittie metric

Dynamic accretion

Conclusion

Extra slides

D. C. Guariento Moriond Cosmology 2014 – 21

tr and tt Einstein equations

− m

mϕ= 8πXG,X

−1

3Θ2 = 8π

K − 2X[

G,ϕ +K,X + 3√2XG,XΘ

]

solution of the tr equation

G(X,ϕ) = g0(ϕ) lnX + g1(ϕ)

with

g0(ϕ) = − 1

m

Inserting in the tt equation, taking derivative with respect to r and

using the definition of X

K,X + 2XK,XX + 2[(1 + lnX)g′0 + g′1 + 24πg20

]= 0

Page 66: Cosmological black holes and self-gravitating fields from exact …moriond.in2p3.fr/J14/transparencies/Friday/guariento.pdf · 2014. 3. 28. · D. C. Guariento Moriond Cosmology

Einstein equations

Introduction

The McVittie metric

Dynamic accretion

Conclusion

Extra slides

D. C. Guariento Moriond Cosmology 2014 – 22

Solution of tt equation

K = f1(ϕ) + f2(ϕ)√X + 2X

[(2− lnX)g′0 − g′1 − 24πg20

]

Plugging the solution into rr Einstein equation and solving for f1 and

f2

f1 = − 3

8π(H −M)2

f2 =

√2

4πϕ

[

H −M + 3M(

H − M)]

(m

m≡ M and

a

a≡ H

)

Page 67: Cosmological black holes and self-gravitating fields from exact …moriond.in2p3.fr/J14/transparencies/Friday/guariento.pdf · 2014. 3. 28. · D. C. Guariento Moriond Cosmology

Equation of motion

Introduction

The McVittie metric

Dynamic accretion

Conclusion

Extra slides

D. C. Guariento Moriond Cosmology 2014 – 23

Consistency check: equation of motion of the scalar

K,ϕ +G,ϕϕ+ [(K,X +G,Xϕ)ϕ;µ +G;µ];µ = 0

Inserting the solutions for G and K

G = g0(ϕ) lnX + g1(ϕ)

K = f1(ϕ) + f2(ϕ)√X + 2X

[(2− lnX)g′

0− g′

1− 24πg2

0

]

where

g0 = − 1

8πϕM

f1 = − 3

8π(H −M)

2

f2 =√2

4πϕ

[

H −M + 3M(

H − M)]

the equation of motion is identically satisfied

Reduces to McVittie/Cuscuton when G = 0 (m = 0)

Page 68: Cosmological black holes and self-gravitating fields from exact …moriond.in2p3.fr/J14/transparencies/Friday/guariento.pdf · 2014. 3. 28. · D. C. Guariento Moriond Cosmology

Action coefficients

Introduction

The McVittie metric

Dynamic accretion

Conclusion

Extra slides

D. C. Guariento Moriond Cosmology 2014 – 24

Functions g0, f1 and f2 can be written in terms of ϕ

g0 = − 1

d (lnm)

dϕ⇒ m(ϕ) = e−8π

∫g0dϕ

f2 = − 1√3π

(

8πg0 +f ′1√−f1

)

H =

−8πf13

− 8πg0ϕ

Two functions necessary, plus ϕ(t)

Compare with cuscuton case: K(X,ϕ) = A(ϕ) +B(ϕ)√X

A(ϕ) =3

8πH2 , B(ϕ) = constant

One function necessary, plus ϕ(t)