cosmic flows: from observations to simulations · introduction 1. observations 2. reductions 3....

16
Introduction 1. Observations 2. Reductions 3. Simulations 4. Analysis Conclusion Cosmic Flows: from Observations to Simulations CLUES 2012 Meeting June 19 th 2012 Jenny Sorce University of Lyon / IPNL - University of Hawaii / IFA Jenny Sorce (IPNL) Cosmic Flows 2012 1 / 16

Upload: others

Post on 03-Jul-2020

2 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: Cosmic Flows: from Observations to Simulations · Introduction 1. Observations 2. Reductions 3. Simulations 4. AnalysisConclusion 3.a Reconstruction: Wiener-Filter 3.a Reconstruction:

Introduction 1. Observations 2. Reductions 3. Simulations 4. Analysis Conclusion

Cosmic Flows: from Observations to Simulations

CLUES 2012 Meeting

June 19th 2012

Jenny Sorce

University of Lyon / IPNL - University of Hawaii / IFA

Jenny Sorce (IPNL) Cosmic Flows 2012 1 / 16

Page 2: Cosmic Flows: from Observations to Simulations · Introduction 1. Observations 2. Reductions 3. Simulations 4. AnalysisConclusion 3.a Reconstruction: Wiener-Filter 3.a Reconstruction:

Introduction 1. Observations 2. Reductions 3. Simulations 4. Analysis Conclusion

Cosmic Flows

Cosmic Flowshttp://www.ifa.hawaii.edu/cosmicflows/

CMB

Dipole → deviantmotions from theHubble expansion

Mostly due to large scale structures

Jenny Sorce (IPNL) Cosmic Flows 2012 2 / 16

Page 3: Cosmic Flows: from Observations to Simulations · Introduction 1. Observations 2. Reductions 3. Simulations 4. AnalysisConclusion 3.a Reconstruction: Wiener-Filter 3.a Reconstruction:

Introduction 1. Observations 2. Reductions 3. Simulations 4. Analysis Conclusion

Cosmic Flows

Cosmic Flows

Goal: Reconstruct density-velocity fields → need of vpeculiar radialWhy: velocity = high linearity, large-scale correlation (> density)

→ ~∇.~v = −H0f (Ωm,ΩΛ)δ (1)

-40 -20 0 20 40SGX (Mpc)

-40

-20

0

20

40

SG

Y (

Mp

c)

Figure: Courtois et al. 2012-40 -20 0 20 40

SGX (Mpc)

-40

-20

0

20

40

SG

Y (

Mp

c)

0.3

0.3

0.3

0.3

0.3

0.3

0.3

0.9

0.9

0.9

0.9

0.9

0.9

1.5

1.5

1.5

1.5

1.5

2.1

2.1

2.7 3.

3

Figure: Courtois et al. 2012

Jenny Sorce (IPNL) Cosmic Flows 2012 3 / 16

Page 4: Cosmic Flows: from Observations to Simulations · Introduction 1. Observations 2. Reductions 3. Simulations 4. AnalysisConclusion 3.a Reconstruction: Wiener-Filter 3.a Reconstruction:

Introduction 1. Observations 2. Reductions 3. Simulations 4. Analysis Conclusion

1.a Cosmic Flows 1, 2, etc

1.a Cosmic Flows 1, 2, etc

Observed Galaxies

Figure: Courtesy of H. Courtois

→ Cosmic Flows - 1

Tully et al. 2008,Courtois et al.2012b, etc

→ Cosmic Flows - 2

Courtois et al.2011a, b, 2012a,Tully et al. 2012, etc

”Each CF” tendsto improve:

1 quality (e.g.accuracy)

2 quantity(e.g. ZOA,farther)

Jenny Sorce (IPNL) Cosmic Flows 2012 4 / 16

Page 5: Cosmic Flows: from Observations to Simulations · Introduction 1. Observations 2. Reductions 3. Simulations 4. AnalysisConclusion 3.a Reconstruction: Wiener-Filter 3.a Reconstruction:

Introduction 1. Observations 2. Reductions 3. Simulations 4. Analysis Conclusion

1.b Two very accurate observations

1.a Two very accurate observations

Photometry: Optical & Infrared Radioastronomy: HI (21cm)

2.2m UHT

HST

Spitzer

Green Bank

Parkes

Jenny Sorce (IPNL) Cosmic Flows 2012 5 / 16

Page 6: Cosmic Flows: from Observations to Simulations · Introduction 1. Observations 2. Reductions 3. Simulations 4. AnalysisConclusion 3.a Reconstruction: Wiener-Filter 3.a Reconstruction:

Introduction 1. Observations 2. Reductions 3. Simulations 4. Analysis Conclusion

2.a Surface Photometry

2.a Surface Photometry

Figure: Isophotes

Figure: SB

Figure: Masking

−→Growthcurve

Figure: Sky

Figure: Asymp. & Extr. mag

Jenny Sorce (IPNL) Cosmic Flows 2012 6 / 16

Page 7: Cosmic Flows: from Observations to Simulations · Introduction 1. Observations 2. Reductions 3. Simulations 4. AnalysisConclusion 3.a Reconstruction: Wiener-Filter 3.a Reconstruction:

Introduction 1. Observations 2. Reductions 3. Simulations 4. Analysis Conclusion

2.b HI/Inclination

2.b HI/Inclination

HI profile width at 50 % of the mean flux within the velocity range encompassing

90 % of the total HI flux.

Figure: Courtois et al. 2011 Figure: Courtois et al. 2011.

At EDD, http://edd.ifa.hawaii.edu, you can find all the material !

Jenny Sorce (IPNL) Cosmic Flows 2012 7 / 16

Page 8: Cosmic Flows: from Observations to Simulations · Introduction 1. Observations 2. Reductions 3. Simulations 4. AnalysisConclusion 3.a Reconstruction: Wiener-Filter 3.a Reconstruction:

Introduction 1. Observations 2. Reductions 3. Simulations 4. Analysis Conclusion

2.c Peculiar Velocities

2.c Peculiar Velocities

vCMB = H0 × d + vpeculiar radial (2) m −M = 5log10(d(Mpc)) + 25 (3)

—————————————————————————————–

DATA

m ( Photometry ) + vHI ( HI ) + d ( Cepheids, TRGB ) → TF: L ∝ vαHI , H0

26 Zero Point Calibrators24 Virgo15 Fornax 32 UMa 11 Antlia 11 Centaurus12 Pegasus14 Hydra 23 Pisces11 Cancer16 Coma 19 Abell 1367 7 Abell 400 18 Abell 2634/66

Figure: Tully et al. 2012, Sorce et al. in prep

⇓ Luminosity & H0 ⇓m ( Photometry ) + vHI ( HI ) + M ( Tully-Fisher ) → d → vpec

Other methods: Not as far (Cepheids, TRGB, SBF), too sparse (SNIA),not in the field (Fundamental plane)

Jenny Sorce (IPNL) Cosmic Flows 2012 8 / 16

Page 9: Cosmic Flows: from Observations to Simulations · Introduction 1. Observations 2. Reductions 3. Simulations 4. AnalysisConclusion 3.a Reconstruction: Wiener-Filter 3.a Reconstruction:

Introduction 1. Observations 2. Reductions 3. Simulations 4. Analysis Conclusion

3.a Reconstruction: Wiener-Filter

3.a Reconstruction: Wiener-FilterWF = Linear Minimal Variance Estimator using noisy, sparse and incomplete data

with the covariance matrix given by an assumed prior model.

(CR (ΛCDM) ; IC) + WF = Constrained Simulations reproducing LSS

Figure: Adapted from Timur’s Thesis

1 Structures are not at the proper positions.2 The quality decreases quickly with the scale.

Jenny Sorce (IPNL) Cosmic Flows 2012 9 / 16

Page 10: Cosmic Flows: from Observations to Simulations · Introduction 1. Observations 2. Reductions 3. Simulations 4. AnalysisConclusion 3.a Reconstruction: Wiener-Filter 3.a Reconstruction:

Introduction 1. Observations 2. Reductions 3. Simulations 4. Analysis Conclusion

3.b Reconstruction: Reverse Zeldovich Approximation

3.b Reconstruction: Reverse Zeldovich Approximation

Figure: Timur’s Thesis

Zeldovich Approx.:

~x(t) = ~q + D(t)~Ψ(~q)

~v(t) = D(t)~Ψ(~q)Figure: Adapted from Timur’s Thesis

Jenny Sorce (IPNL) Cosmic Flows 2012 10 / 16

Page 11: Cosmic Flows: from Observations to Simulations · Introduction 1. Observations 2. Reductions 3. Simulations 4. AnalysisConclusion 3.a Reconstruction: Wiener-Filter 3.a Reconstruction:

Introduction 1. Observations 2. Reductions 3. Simulations 4. Analysis Conclusion

3.c Reconstruction: Summary

3.c Reconstruction: Summary

Figure: Timur’s Thesis

Jenny Sorce (IPNL) Cosmic Flows 2012 11 / 16

Page 12: Cosmic Flows: from Observations to Simulations · Introduction 1. Observations 2. Reductions 3. Simulations 4. AnalysisConclusion 3.a Reconstruction: Wiener-Filter 3.a Reconstruction:

Introduction 1. Observations 2. Reductions 3. Simulations 4. Analysis Conclusion

4.a Cosmic-Flows 1: Inanimate

4.a Cosmic-Flows 1: Inanimate

90km.s−1

Figure: Adapted from Courtois et al. 2012

Density Field

Figure: Adapted fromCourtois et al. 2012

Jenny Sorce (IPNL) Cosmic Flows 2012 12 / 16

Page 13: Cosmic Flows: from Observations to Simulations · Introduction 1. Observations 2. Reductions 3. Simulations 4. AnalysisConclusion 3.a Reconstruction: Wiener-Filter 3.a Reconstruction:

Introduction 1. Observations 2. Reductions 3. Simulations 4. Analysis Conclusion

4.a Cosmic-Flows 1: Animate

4.a Cosmic-Flows 1: Animate1 Towards the Great Attractor (Plane: (SGX,SGY))

Figure: Courtesy of D. Pomarede

2 Away from the Local Void (Plane: (SGY, SGZ))

Figure: Courtesy of D. Pomarede

3 Voyage to the Great Attractor (4 dimensions)

Figure: Courtesy of D. Pomarede

Jenny Sorce (IPNL) Cosmic Flows 2012 13 / 16

Page 14: Cosmic Flows: from Observations to Simulations · Introduction 1. Observations 2. Reductions 3. Simulations 4. AnalysisConclusion 3.a Reconstruction: Wiener-Filter 3.a Reconstruction:

Introduction 1. Observations 2. Reductions 3. Simulations 4. Analysis Conclusion

Conclusionhttp://www.ifa.hawaii.edu/cosmicflows/

Observations → Reductions → Constrained Simulations (RZA) → Analysis

CMB

→ Great Attractor in CF2 data:nature and position?

→ 90km.s−1=Shapley? Farther? (Kashlinsky et al.)

(not in CF2 data → in CF2 Simulations)→ Dark Matter & Energy

Jenny Sorce (IPNL) Cosmic Flows 2012 14 / 16

Page 15: Cosmic Flows: from Observations to Simulations · Introduction 1. Observations 2. Reductions 3. Simulations 4. AnalysisConclusion 3.a Reconstruction: Wiener-Filter 3.a Reconstruction:

Introduction 1. Observations 2. Reductions 3. Simulations 4. Analysis Conclusion

Aknowledgments

Thank you

Jenny Sorce (IPNL) Cosmic Flows 2012 15 / 16

Page 16: Cosmic Flows: from Observations to Simulations · Introduction 1. Observations 2. Reductions 3. Simulations 4. AnalysisConclusion 3.a Reconstruction: Wiener-Filter 3.a Reconstruction:

Introduction 1. Observations 2. Reductions 3. Simulations 4. Analysis Conclusion

References

1 R.B. Tully & J.R. Fisher, A&A, 54:661-673, 1977.

2 R.B. Tully et al., ApJ, 184:676, 2008.

3 S. Gottlober et al., CLUES, 309, 2010.

4 H.M. Courtois et al., MNRAS, 415:1935-1942, 2011a.

5 H.M. Courtois et al., MNRAS, 414:2005-2016, 2011b.

6 H.M. Courtois et al., ApJ, 744, 2012.

7 R.B. Tully & H.M. Courtois, ApJ, 749, 2012.

8 J.G. Sorce et al, in prep.

9 A. Kashlinsky et al., ApJ Letters, 712:L81-L85, 2010.

10 A. Kashlinsky et al., ApJ, 732, 2011.

Jenny Sorce (IPNL) Cosmic Flows 2012 16 / 16