corrosion lecture manchester

Upload: ali-abbasov

Post on 02-Jun-2018

223 views

Category:

Documents


0 download

TRANSCRIPT

  • 8/10/2019 Corrosion Lecture Manchester

    1/88

    CorrosionPSLP Short course : November 2012

    Prof. R Akid

    Corrosion & Protection Centre

    University of Manchester

    [email protected]

  • 8/10/2019 Corrosion Lecture Manchester

    2/88

    References

    Corrosion for Scientists & EngineersChamberlain & Trethewey

    Corrosion

    Shreir (Vol 1&2)

    Corrosion Engineering

    Fontana & Greene

    Corrosion: Fundamentals, Testing, andProtection

    ASM Handbook Volume 13A:

  • 8/10/2019 Corrosion Lecture Manchester

    3/88

    Lessons to be learnt

    ! Incompatibility

    ! Cu hull / Fe nails

    1763

  • 8/10/2019 Corrosion Lecture Manchester

    4/88

    Lessons to be learnt

    ! Incompatibility

    ! Cu alloy end plate/ steel

    bolts

    1962

  • 8/10/2019 Corrosion Lecture Manchester

    5/88

    Lessons to be learnt

    ! Incompatibility

    ! SS bearing and Mg alloy

    wheel

    1982

  • 8/10/2019 Corrosion Lecture Manchester

    6/88

    Cost of Corrosion

    ! Direct replacement

    ! Indirect costs

    !

    product loss! environment

    ! production loss

    ! safety

    !

    increased labour

  • 8/10/2019 Corrosion Lecture Manchester

    7/88

    The cost of Corrosion is currently around 3-4% GDP.Typical values for a recent US survey are given belowTotal costs $137.9 billion

    See http://www.corrosioncost.com/downloads/pdf/index.htm

    Bridges, railroads Gas, Electricity distribution

    Road, air , sea

    Oil & gas,chemicals

    DefenceNuclear waste

    1 Hurricane Katrina every year!

  • 8/10/2019 Corrosion Lecture Manchester

    8/88

    Corrosion is bad for business !

    1.4% drop in share price= $2Bn

  • 8/10/2019 Corrosion Lecture Manchester

    9/88

    Why metals & alloys corrode! Metal - unstable

    ! Oxide - stable

    !

    Reverse of metalextraction

  • 8/10/2019 Corrosion Lecture Manchester

    10/88

    Formation of Corrosion Cells

    Microstructurematrix/grain boundary

    Inclusions

    AerationOxygen rich -Cathode

    Oxygen starved - Anode

    Heat Treatment- Welding

    - sensitisation

    Mechanical Workingstrained area - anodeunstrained - cathode

    Differentials

  • 8/10/2019 Corrosion Lecture Manchester

    11/88

    Uniform corrosion

    M = Mn++ ne-

    O2+ 2H2O + 4e-= 4OH-pH !7

    2H++ 2e-= H2 pH "7

    Apply Faradays law to predict corrosion rate

    Corrosion product

  • 8/10/2019 Corrosion Lecture Manchester

    12/88

    Localised corrosion

    M = Mn++ ne-

    O2+ 2H2O + 4e-= 4OH-pH !7

    2H++ 2e-= H2 pH "7

    Faradays law not applicableto predict corrosion rate

  • 8/10/2019 Corrosion Lecture Manchester

    13/88

  • 8/10/2019 Corrosion Lecture Manchester

    14/88

    Pourbaix Diagram : Fe/H2O

  • 8/10/2019 Corrosion Lecture Manchester

    15/88

    What is Corrosion Potential ?

  • 8/10/2019 Corrosion Lecture Manchester

    16/88

    --

    -

    -

    -

    -

    +

    +

    +

    +

    +

    +

    +

    --

    -

    -

    -

    +++++

    + +

    ++

    ++ +

    +

    1 2 3

    1 Helmoltz layer

    2 Gouy-Chapman layer

    3 Bulk solution

    The electrode-electrolyte interface

    -

    -

    -

    -+

    +

    +

    +

    A more active than C

    --

    -

    -

    -

    -

    +

    +

    +

    +

    +

    +

    +

    --

    -

    -

    -

    -

    +

    +

    +

    +

    e-

    A C

    E

    i

    EC - uncoupled

    EA- uncoupled

    A-CCoupled

    A C

    Separation of charge

    Metal [ve]

    Solution [+ve] (cations)

  • 8/10/2019 Corrosion Lecture Manchester

    17/88

    Standard Hydrogen Electrode

  • 8/10/2019 Corrosion Lecture Manchester

    18/88

    STANDARD ELECTRODE POTENTIALS(Volts)

    Na++ e- = Na -2.71Mg2++ 2e-= Mg -2.37Al3++ 3e-= Al -1.66Mn2++ 2e-= Mn -1.18Zn2++ 2e-= Zn -0.76Fe2++ 2e-= Fe -0.44

    Cr3+

    + 3e-

    = Cr -0.41Co2++ 2e-= Co -0.28Ni2++ 2e-= Ni -0.25Sn2++ 2e-= Sn -0.14Pb2++ 2e-= Pb -0.132H++ 2e- = H2(g) 0.00 Sn4++ 2e-= Sn2+ 0.15

    Cu2+

    + 2e-

    = Cu 0.34Ag++ e-= Ag 0.80O2 (g) + 4H

    ++ 4e-= 2H2O 1.23Au3++ 3e-= Au 1.50

  • 8/10/2019 Corrosion Lecture Manchester

    19/88

    Comparison of standard electrode potentials

    ElectrodePotential(V)

    Au/Au3+= 1.5

    Cu/Cu2+= 0.34

    Hg2Cl2/Cl-= 0.242

    H2/H+= 0.0

    Fe/Fe2+= - 0.44

    Zn/Zn2+= - 0.76

    Ecell for Cu + Fe = Ecathode Eanode = 0.34 (-0.44) = 0.78V

    SCE

  • 8/10/2019 Corrosion Lecture Manchester

    20/88

    Measurement of Corrosion Potential

    ! Ref to ECorr

  • 8/10/2019 Corrosion Lecture Manchester

    21/88

    Mechanisms

    differential aeration; metal dissolution/hydrolysis;

    lack of passivation

  • 8/10/2019 Corrosion Lecture Manchester

    22/88

    Factors affecting Corrosion Rate

    ! Rate of electron transfer at metal surface

    ! Supply/transport of species to/from surface

    !

    Conductivity of solution! Passivity of metal

    ! Anode/Cathode surface area ratio

  • 8/10/2019 Corrosion Lecture Manchester

    23/88

    Corrosion Rate Measurement

    Laboratory-based methodsElectrochemical techniques

    (icorr!B/Rp)where B= ba.bc/2.3 (ba + bc) = Stern-Geary Equation

    Note Rp= Polarisation Resistance (R=V/I : Ohms Law)

  • 8/10/2019 Corrosion Lecture Manchester

    24/88

    Polarisation Curves (Evans diagrams)

    "a = 2.303 RT/#nFand C = log io

    and $a = "a log ia C

    $c = "c log ia C

    "a"a

    "c

  • 8/10/2019 Corrosion Lecture Manchester

    25/88

    Determination of Rp

    Rp = 1/Slope

    Current(mA)

    Voltage (mV)

    +

    -

    - +

    Note Ohms Law: R=V/I

    But, slope of a graph = y/x = I/V

    Therefore Rp = 1/Slope

    Icorr= (ba.bc)/2.3 Rp. (ba+bc)

    Potential change 20 mV

  • 8/10/2019 Corrosion Lecture Manchester

    26/88

    Q1 - Anodic/Cathodic polarisation curvesfor C steel in 3.5% NaCl

    Current (!)

    0.1 1 10 100 1000

    -1300

    -1200

    -1100

    -1000

    -900

    -800

    -700

    -600

    Icorr = 3!Bc = 170 mV

    Ba = 70 mV

    Voltage

    (mVvsRef)

  • 8/10/2019 Corrosion Lecture Manchester

    27/88

    Q1 - Anodic/Cathodic polarisation curvesfor C steel in 3.5% NaCl

    Current (!)

    0.1 1 10 100 1000

    -1300

    -1200

    -1100

    -1000

    -900

    -800

    -700

    -600

    Icorr = 3!Bc = 170 mV

    Ba = 70 mV

    Voltage

    (mVvsRef)

  • 8/10/2019 Corrosion Lecture Manchester

    28/88

    Q1 - Anodic/Cathodic polarisation curvesfor C steel in 3.5% NaCl

    Current (!)

    0.1 1 10 100 1000

    -1300

    -1200

    -1100

    -1000

    -900

    -800

    -700

    -600

    Icorr = 3!Bc = 170 mV

    Ba = 70 mV

    Voltage

    (mVvsRef)

  • 8/10/2019 Corrosion Lecture Manchester

    29/88

    Q1 - Anodic/Cathodic polarisation curvesfor C steel in 3.5% NaCl

    Current (!)

    0.1 1 10 100 1000

    -1300

    -1200

    -1100

    -1000

    -900

    -800

    -700

    -600

    Icorr = 3!Bc = 170 mV

    Ba = 70 mV

    Voltage

    (mVvsRef)

  • 8/10/2019 Corrosion Lecture Manchester

    30/88

    Q1 - Anodic/Cathodic polarisation curvesfor C steel in 3.5% NaCl

    Current (!)

    0.1 1 10 100 1000

    -1300

    -1200

    -1100

    -1000

    -900

    -800

    -700

    -600

    Icorr = 3!Bc = 170 mV

    Ba = 70 mV

    Voltage

    (mVvsRef)

  • 8/10/2019 Corrosion Lecture Manchester

    31/88

    Q1 - Anodic/Cathodic polarisation curvesfor C steel in 3.5% NaCl

    Current (!)

    0.1 1 10 100 1000

    -1300

    -1200

    -1100

    -1000

    -900

    -800

    -700

    -600

    Icorr = 3!Bc = 170 mV

    Ba = 70 mV

    Voltage

    (mVvsRef)

  • 8/10/2019 Corrosion Lecture Manchester

    32/88

    Corrosion Calculations

    ! Rate of metal loss can be calculated using Faradays

    Law.!

    Given that a metal has a molecular wt M, valency z, density ,g cm3, and is

    corroding uniformly over its surface with a current i given in A, thefollowing expression may be used to determine the total weight loss m,

    centimetres per unit area (s) per unit time, t, is:

    m/s = Mit/zF

    where m =%sd and F = Faraday constant (96487 As)

  • 8/10/2019 Corrosion Lecture Manchester

    33/88

    Example

    ! A storage tank containing sulphuric acid

    corrodes at a rate of 50 A/cm2. Calculate the

    minimum metal thickness required for a life of10 years assuming that a safety factor of 2mm

    thickness is required.

    where z=2, M = 55.85, %= 7.68 g/cm3

  • 8/10/2019 Corrosion Lecture Manchester

    34/88

    Answer

    Corr rate = 50A/cm2Lifetime = 10 years (3.1536 x 108 s)

    Final thickness d = 2 mm

    m/s = Mit/zF and m =%sd

    d = Mit/%zF

    = 55.85g . 50x10-6A/cm2 . 3.1536 x 108 s

    7.86 g/cm3. 2 . 96487 As

    = 0.58 cm ( 5.8 mm) in 10 years

    Initial thickness = 2 mm + loss = 7.8 mm

    Note: For Fe corrosion 1 A/cm2= 0.0116 mm/y

  • 8/10/2019 Corrosion Lecture Manchester

    35/88

    Corrosion rate calculations

    1. A mild steel tank corrodes at a rate of 120 A/cm2. Calculate theminimum metal thickness required for a life of 10 years assuming a safetyfactor of 2mm. z=2, M=55.85, 7.86g.cm-3. F=96487 A.s

    2a. A cylindrical tank, 2m high by 0.5m diameter contains aerated sea water toa depth of 0.6m. Inspection after 8 weeks revealed a loss of 500g of metal.

    Calculate the corrosion current, current density and corrosion rate. Assumingan initial wall thickness of 3mm, calculate the expected life of the tank. z=2,M=55.85, %=7.86g.cm-3. F=96487 A.s. Note 1A/cm2= 0.0116mm/y loss

    2b. After 1 year a cathodic protection system was installed. Calculate the

    maximum corrosion current density that can be tolerated to ensure a tank lifeof a further 20 years.

  • 8/10/2019 Corrosion Lecture Manchester

    36/88

    Forms of Corrosion!

    Uniform

    ! Pitting

    ! Galvanic

    !

    Crevice

    ! Selective (de-alloying, IG)

    ! Stress-assisted (SCC. CF, HE)

    Localised

  • 8/10/2019 Corrosion Lecture Manchester

    37/88

  • 8/10/2019 Corrosion Lecture Manchester

    38/88

    Influence of material composition on

    uniform corrosion! corrosion behaviour

    related to formation of

    oxide films

  • 8/10/2019 Corrosion Lecture Manchester

    39/88

    Example of Weathering Steel

    Angel of the North, Newcastle

  • 8/10/2019 Corrosion Lecture Manchester

    40/88

    Pit mechanism

    Specific reactions in stainless steel Fe = Fe2++ 2e-Fe2++ H2O = Fe(OH)

    ++ H+CrCl3+ 3H2O = Cr(OH)3+ 3HCl (drop in pH)MnS + 2H+= H2S + Mn

    2+

    Stages of Pitting corrosionStage I Breakdown of passive film (High chloride ion concentration in solution)Stage II Metal dissolution (localised corrosion)Stage III Repassivation (giving metastable pitting) or pit propagation due to stable pitting.

  • 8/10/2019 Corrosion Lecture Manchester

    41/88

    Examples

    Cu piping/hotwater system

    C film(cathode)oninner surface

  • 8/10/2019 Corrosion Lecture Manchester

    42/88

    Examples

    316 Stainless steel inleisure pool environment

    Screw locationStainless steel piping, water treatment plant

  • 8/10/2019 Corrosion Lecture Manchester

    43/88

    Pitting

    Potenti

    alV

    vs,SCE

    Log corrosion current

    (A/unit area)

    1

    2

    3

    45

    Eb

    Erp 4. Passive film breakdown (pitting) (Eb)

    1. Active dissolution

    2. Passive film formation

    3. Passivity

    5. Repassivation Erp

  • 8/10/2019 Corrosion Lecture Manchester

    44/88

    Critical Pitting Temperature

    Cr, Ni, Mo, N Eb

    Si, Ti, S, C Eb

  • 8/10/2019 Corrosion Lecture Manchester

    45/88

    Galvanic

    ! Galvanic series

    ! conductivity of soln

    ! anode/cathode area

    ! distance between

    couples

  • 8/10/2019 Corrosion Lecture Manchester

    46/88

    Galvanic Series

  • 8/10/2019 Corrosion Lecture Manchester

    47/88

    Crevice

    ! differential aeration

    ! separation of anode/

    cathode sites

    !

    local hydrolysis and

    acidification

  • 8/10/2019 Corrosion Lecture Manchester

    48/88

    Crevice mechanism

    General reaction: M++ Cl-+H2O = MOH + HClSpecific reactions in the case of stainless steels we have:

    CrCl3+ 3H2O = Cr(OH)3+ 3HCl (local solution pH drops)and

    FeCl2+2H2O = Fe(OH)2+ 2HCl

    Stages of Crevice corriosionStage 1 Depletion of oxygen in the crevice solutionStage II Increase in acidity and chloride content of the crevice solutionStage III Permanent breakdown of passive film and onset of localised corrosionStage IV Propagation of crevice corrosion

  • 8/10/2019 Corrosion Lecture Manchester

    49/88

    Selective dissolution

    ! Intergranular corrosion

    ! enrichment/depletion at

    grain boundaries

    !

    De-metallification! Zn/Cu in brasses

    ! Fe/C in graphitic cast iron

  • 8/10/2019 Corrosion Lecture Manchester

    50/88

    Sensitisation (weld decay)

  • 8/10/2019 Corrosion Lecture Manchester

    51/88

    Microbiologically Influenced Corrosion (MIC)

    (Bacteria & Biofilms)

    }

    ColonisationofSulphateReducing

    Bacteria(SRB)

    H2S formation

    LocalisedCorrosion(pitting)

    Microorganisms,

    especially bacteria,colonise surfaces toform Biofilms

    Biofilm formation;up to 48hrs dependingupon temperature

  • 8/10/2019 Corrosion Lecture Manchester

    52/88

    Consequences of MIC

  • 8/10/2019 Corrosion Lecture Manchester

    53/88

    Bacterial-activesol-gel coatings

    Anti-'microbial induced corrosion' (MIC) coating

    Combination of anti-corrosion sol-gel coating and protective bacteria.

    Uniform distribution of protective bacteria fixed on the surface

    Substrate

    'Biocoat'

    Viable bacterial cells

    immobilised in coating

  • 8/10/2019 Corrosion Lecture Manchester

    54/88

  • 8/10/2019 Corrosion Lecture Manchester

    55/88

    Bio-active coating - field trials

    Patents: GB 2425976 (15.11.06) Akid/WangGB 2425975 (18.04.07) Akid/Wang

  • 8/10/2019 Corrosion Lecture Manchester

    56/88

    Application of a biological active

    anticorrosion coatings for Microbial Induced Corrosion

    The sol-gel biological active coatings on Al

    samples after 6 months field trials in an estuarine

    environment (brackish)

    Bare Al alloyR/T curedAbiotic sol-gel

    Biocoat

    0.5 mm

  • 8/10/2019 Corrosion Lecture Manchester

    57/88

    Comparison of sol-gel coatings with non-viable(dead) and viable (live) endospores

    27 weeks Whitby Harbour

    J. Gittens, H. Wang, TJ. Smith, R. Akidand D. Greenfield (2010)Biotic sol-gel coating for the inhibition of corrosion in seawater ECS Transactions, 24, 211-229

  • 8/10/2019 Corrosion Lecture Manchester

    58/88

  • 8/10/2019 Corrosion Lecture Manchester

    59/88

    Stress Corrosion Cracking

    Material

    Stress

    Environment

    SCC

  • 8/10/2019 Corrosion Lecture Manchester

    60/88

    SCC SusceptibilityMetal/alloy Environment

    Al Alloy NaCl and H2O solutions, H2O vapour

    Cu Alloys Ammonia solutions and vapours, Water, Amines

    Mg Alloys NaCl, NaCl/K 2Cr2O7solutions

    Steels NaOH, NaCl and NO3 solutions, Mixed acids,

    H2S gas/solutions

    Stainless steels Acidic NaCl solutions at elevated temperatures, MgCl2, H2S

  • 8/10/2019 Corrosion Lecture Manchester

    61/88

    Metallographic features

    of SCC

    Intergranular

    Transgranular

    Brass Spheroidal Cast Fe

  • 8/10/2019 Corrosion Lecture Manchester

    62/88

    Example

    Aloha Airlines (1988)

    E l Fli b h 1 t J 1974

  • 8/10/2019 Corrosion Lecture Manchester

    63/88

    Example: Flixborough, 1stJune 1974

    Manufacture of Caprolactam (for Nylon 6:6)

    Leak of cyclohexane from reactor No. 5 led to by 20bypass system being installed this leaked leading to explosion

    28 Killed

    36 Injured

  • 8/10/2019 Corrosion Lecture Manchester

    64/88

    Prevention of SCC

    ! Remove or reduce working/residual stresses

    ! Induce compressive residual stresses

    ! Control the operating environment,composition,

    pH, temperature or potential! Apply anodic or cathodic protection

    ! Change alloy composition or structure

  • 8/10/2019 Corrosion Lecture Manchester

    65/88

    Corrosion Fatigue

    ! combination of cyclic

    stress and envment

    ! all combinations of

    material/envmentsusceptible

    ! CF strength not related to

    UTS

  • 8/10/2019 Corrosion Lecture Manchester

    66/88

    Corrosion Fatigue (CF)

    S

    tress

    Time

    Stress

    Time

    SCC CF

    Load History

  • 8/10/2019 Corrosion Lecture Manchester

    67/88

    CF development from pit sites!

    Structural Steel

    ! Seawater

    ! frequency, 0.2Hz

    !

    R = 0.1

  • 8/10/2019 Corrosion Lecture Manchester

    68/88

    CP -No Failure

    103 104 105 106 107200

    400

    600

    800

    1000

    In-Air

    Fatigue Limit

    -1250 mV (vs SCE) (1 Hz)

    Air -No Failure

    StressAm

    plitude(MPa)

    Number of Cycles to Failure

    0.6M NaCl (1 Hz)

    Air (5 Hz)

    Assessment of CF (SN curves)

    StressAmplitude(MPa

  • 8/10/2019 Corrosion Lecture Manchester

    69/88

    Prevention of CF

    ! Increase corrosion resistance of material

    ! Reduce aggressiveness of environment (dilution

    or inhibitors)

    !

    Lower applied stresses/induce compressivestresses

    ! Prevent metal/environment contact - metallic or

    non-metallic coatings

    ! Apply cathodic protection

  • 8/10/2019 Corrosion Lecture Manchester

    70/88

    Corrosion Fatigue Case Study

  • 8/10/2019 Corrosion Lecture Manchester

    71/88

    Hydrogen Embrittlement

    ! Premature failure of high

    strenth steels

    ! Stress corrosion cracking

    !

    Pick up from pickling and

    electroplating processes

    ( H atom)

    +

    H2(gas)

    Adsorption of H Metal/Metal bond failure

  • 8/10/2019 Corrosion Lecture Manchester

    72/88

    Approaches to Corrosion Prevention

    1. Design

    2. Coatings

    3. Modification of the environment (Inhibitors, O2. pH)

    4.

    Material Selection5. Anodic Protection

    6. Cathodic Protection

  • 8/10/2019 Corrosion Lecture Manchester

    73/88

    Material Selection and Design

    Considerations

    Material Selection

    Material Availabilityand Cost

    Maintainability

    Mechanical

    Properties

    Physical Properties

    Existence of PreviousKnowledge of Design

    Corrosion Resistance

    Suitability for CorrosionControl Measures Fabrication

    RequirementsFire

    Resistance

  • 8/10/2019 Corrosion Lecture Manchester

    74/88

    Design

  • 8/10/2019 Corrosion Lecture Manchester

    75/88

    C steel versus stainless steel

  • 8/10/2019 Corrosion Lecture Manchester

    76/88

    Design Aspects water traps

    weld orsealant

    poor improved

    poor improved

    sealant

  • 8/10/2019 Corrosion Lecture Manchester

    77/88

    Design Aspects water traps

    poor improved

    Poor improved

    water trapfree

    drainage

    welds

  • 8/10/2019 Corrosion Lecture Manchester

    78/88

    Design Aspects coating aspects

    poor improved

    poor improved

    lack ofcoverage

  • 8/10/2019 Corrosion Lecture Manchester

    79/88

    Design Aspects galvanic couples

    sealant

    Al alloy

    Cu Alloy

    non-metallicgasket/sleeve

  • 8/10/2019 Corrosion Lecture Manchester

    80/88

    Design Aspects flow effects

    erosion-corrosionand poor drainage

    turbulent flow non-turbulent flow

    poor

    improved

  • 8/10/2019 Corrosion Lecture Manchester

    81/88

    Design Dangers!

  • 8/10/2019 Corrosion Lecture Manchester

    82/88

    Protection Mechanisms - Coatings

    Barrier Coatings non metallic, non conducting

    environment/substrate contact

    eliminated

    Sacrificial (Base) Coatings coating dissolves in preference to

    substrate

    Noble Coatings higher corrosion resistance than

    substrate, must be pore and crackfree

  • 8/10/2019 Corrosion Lecture Manchester

    83/88

    Defects in coating systems

  • 8/10/2019 Corrosion Lecture Manchester

    84/88

    Coatings

    ! Electrodeposition substrate must be conducting, i.e. metallic

    coating thickness &1-50 microns

    ! Electroless deposit uses chemical reducing agents, no external

    DC supply required, can coat non-conductingsubstrates

    ! Electrophoresis charged particles in solution are electrostatically

    attracted to a substrate, can get rapid deposition

    !

    Hot dipping low melting point coating applied to substrate

    thick coatings can be applied

    ! Spraying can spray paints, metals, ceramics

    ! Cladding provides a laminate coating to the substrate,

    often in sandwich form, must ensure satisfactory

    bond between cladding and substrate!

    Vacuum/

    Vapour depositionhi-tectype coatings, very expensive therefore very thin

  • 8/10/2019 Corrosion Lecture Manchester

    85/88

    Corrosion Inhibitors

    Anodic

    Forms a passive film

    ! eg. orthophosphates

    !

    raises pH!

    needs Ca ions in solution

    ! Silicates

    !

    as above

    ! Nitrites

    !

    oxidising agent

    Cathodic

    Blocks cathodic reactions

    through precipitation

    reaction! eg. As, Sb ions

    ! reduce H evolution reaction

    (could increase risk of HE)

    ! Polyphosphate compounds

    !

    form on cathode sites

  • 8/10/2019 Corrosion Lecture Manchester

    86/88

    1 icorr No inhibitor

    2 icorr Anodic inhibitor

    3 icorr Cathodic inhibitor

    4 icorr Mixed inhibitor

    Influence of Inhibitors on corrosion rates

    No inhibitor

    No inhibitor1

    Anodic inhibitor

    2

    Cathodic inhibitor34

    Potential

    Current density

  • 8/10/2019 Corrosion Lecture Manchester

    87/88

    Basis of cathodic/anodic protection

    (Anodic)

    Answers to Questions

  • 8/10/2019 Corrosion Lecture Manchester

    88/88

    Answer No. 1;Require value of d for a 10 year life (3.1536 x 108seconds)But d = 2mm after 10 years (safety factor)

    m/s = Mit/zF and m=%sdd=Mit/%zF = (55.85g x 120x10-6A.cm-2x 3.1536x10-8s)/(7.86g.cm-3x 2 x 96487 A.s)

    = 1.426cm in 10 years (14.26 mm)Therefore minimum metal thickness = 14.26mm + 2mm = 16.26 mm.

    Answer No. 2aSurface area = Base + sides = 'r2+ 2'rh = 11387cm2m = 500g after 8 weeks (4.8384 x 106s)

    Current density (i) = mnF/sMt = (500g x 2 x 96487 A.s)/ (11387cm2x 55.85g x 4.8384 x 106s)=31.36 x 10-6A.cm-2

    Corrosion rate = 31.36 x 10-6A.cm-2x 0.0116 mm/y (0.00116cm/y) = 0.364 mm/yLifetime = 3mm/0.364mm/y = 8.24 years

    Answer No. 2b

    After 1 year 0.364 mm lost, therefore 2.636mm wall thickness remains.2.636 must last 20 years which equates to 2.363/20 = 0.132 mm/y.Given 0.0116mm/y = 1A/cm2, then current density for 0.132 mm/y = 11.4A/cm2

    Answers to Questions