copyright © 2013 r. r. dickerson & z.q. li 1 hydrostatic equilibrium chapt 3, page 28 g :...

39
Copyright © 2013 R. R. Dickerson & Z.Q. Li 1 Hydrostatic Equilibrium Chapt 3, page 28 forc gradient pressure : z p g : gravity p-dp p+dp z-dz z+dz g dz dp m equilibriu in (one of the best approximations in meteorology)

Upload: augusta-foster

Post on 17-Dec-2015

217 views

Category:

Documents


1 download

TRANSCRIPT

Copyright © 2013 R. R. Dickerson & Z.Q. Li

1

Hydrostatic EquilibriumChapt 3, page 28

forcegradient pressure:z

p

g : gravity

p-dp

p+dp z-dz

z+dz

gdz

dp mequilibriuin

(one of the best approximations in meteorology)

Copyright © 2010 R. R. Dickerson & Z.Q. Li

2

Remember pressure is force per unit area so pressure per unit height is weight (mg) per unit volume (Nm-2 m-1 = kg m s-2 m-3). In this class we will usually ignore horizontal variations in thermodynamic variables (T* is virtual temp) and write

dgdzp

dpRT

dzRT

g

p

dpor

RTpbut

gdz

dp

z

p

*

*

*/

Copyright © 2010 R. R. Dickerson & Z.Q. Li

3

p

dpRTSo Increment of geopotential energy.

Thus the thermodynamic coordinates -RlnP, Tyield areas proportional to energy (emagram)

Consider the case for g constant (good assumption).Integrate the hydrostatic equation from p = po to p and zo to z.

)(exp)(

* oo zzRT

gpzp

Copyright © 2013 R. R. Dickerson & Z.Q. Li

4

To find the mean virtual temperature take the weighted average:

o

o

p

p

p

p

pdp

pdp

TT

*

*

p

po

T*

-Rlnp

*T

Thus thermodynamic diagrams can be used to determine the geopotential thickness between pressure levels.

Copyright © 2013 R. R. Dickerson & Z.Q. Li

5

g has a slight variation with latitude and altitude which can usually be ignored; in AOSC652 you will integrate for g = f(z). So we can define an increment of geopotential thickness, or height.

d dgo; go = 9.8 m/s2

Geopotential

Define an increment of geopotential

p

dpRTgdz *

ss)(energy/ma gdzd

)ln( 12

*

12

*

ppg

TR

p

dp

g

TRd

o

o

Copyright © 2013 R. R. Dickerson & Z.Q. Li

6

Moisture effects on Geopotential

)6.0()(

)ln(

:includednot weremoisture If

)ln()6.01(

)ln(

12

12

12

*

w

ppg

TR

ppwg

TR

ppg

TR

o

oo

o

o

Copyright © 2013 R. R. Dickerson & Z.Q. Li

7

Pressure Variation with z for “Special” Atmospheres

1. Constant Density o (Homogenous Atmosphere)

g

RT

g

RT

g

PH

dzgdP

gdzgdzdP

o

o

o

o

o

H

o

p

o

o

0

0

H → “Scale Height” = height of const. T (288K), homogenous atmosphere ~ 8 km.

Copyright © 2013 R. R. Dickerson & Z.Q. Li

8

2. Constant Lapse Rate Atmosphere

Define Lapse Rate z

T

Copyright © 2013 R. R. Dickerson & Z.Q. Li

9

3. Isothermal Atmosphere : = 0

Hzo

o

ePzP

H

dzdz

RT

g

P

dP

/)(

The isothermal approximation is good to about 30% for the troposphere. Problem for students: What fraction of the mass of atmosphere lies between 800 and 700 hPa?

Copyright © 2013 R. R. Dickerson & Z.Q. Li

10

Stability Criteria

Air parcelproperties

P, T, w

Environment properties

P’, T’, ’,’w’

Assume 1. Parcel and environment are in instantaneous dynamic equilibrium: P = P’2. Atmosphere is in hydrostatic equilibrium.3. Parcel and environment do not mix.4. No compensating motion by environment as an air parcel moves.

Copyright © 2013 R. R. Dickerson & Z.Q. Li

11

Consider a dry adiabatic displacement by an air parcel:

Copyright © 2013 R. R. Dickerson & Z.Q. Li

12

Consider a Saturated Adiabatic displacement (pseudo adiabatic):

dz

dP

dz

dTc

dz

dwLor

dPdTcdwLqd

po

v

pov

Note that wo= f(T,P)

We want to derive dT/dz for this process using the hydrostatic equation and assuming ’ ~ 1.

so gdz

dTc

dz

dwL p

ov

Copyright © 2013 R. R. Dickerson & Z.Q. Li

13

s

p

sv

sv

p

s

v

sv

s

s

s

s

ss

RTc

wL

RT

wL

c

g

dz

dT

RT

gw

dz

dT

TR

wL

RT

g

TR

g

P

g

dz

Pd

Pdz

dP

Pbut

dz

dP

Pdz

dT

dT

de

edz

dw

w

P

ewbut

T

2

2

2s

s

1

1

dz

dw

:EquationClapeyron Clausius the toapplied becan above The

11

111

:by w dividing and atingdifferentiby So

)(

Copyright © 2013 R. R. Dickerson & Z.Q. Li

14

Saturated Adiabatic Lapse Rate

The table below lists values of s in oK/km

1000 mb 700 mb 500 mb

-30 C 9.2 9.0 8.7

0 C 6.5 5.8 5.1

20 C 4.3 3.7 3.3

pressure

tem

pera

ture

Note that s < d

Copyright © 2013 R. R. Dickerson & Z.Q. Li

15

Buoyant Force on an Air Parcel

The environment is in hydrostatic equilibrium (no acceleration)

z

Pg

dt

zdso

0

2

2

In general, an air parcel WILL be subject to an acceleration due to density differences with the environment, so for the parcel:

z

Pgz

Copyright © 2013 R. R. Dickerson & Z.Q. Li

16

*

**

*

)(

)(then

since

T

TTgzonacceleratiso

P

RTbut

gz

z

P

z

P

Copyright © 2013 R. R. Dickerson & Z.Q. Li

17

Stability Criteria

We are interested in small displacements of a parcel from its original location.

If with a small displacement we

find thatThe environment is

said to be

Unstable

Neutral

Stable0

0

0

z

z

z

zo

Copyright © 2013 R. R. Dickerson & Z.Q. Li

18

For convenience, consider the parcel location zo to be zero. The temperature of the environment may be written as:

...22

*2

21

**

0*

z

dz

Tdz

dz

TdTT

If the displacement z is sufficiently small,

rate" lapse talenvironmen" the*

*0

*

**

0*

dz

Td

zTTor

zdz

TdTT

Copyright © 2013 R. R. Dickerson & Z.Q. Li

19

For the parcel we may write:

zTTor

zdz

dTTT

p

*0

*

**

0*

p = parcel lapse rate.

zT

zgz

T

TTgz

p

*0

*

**

)(

)( remember

Copyright © 2013 R. R. Dickerson & Z.Q. Li

20

zT

zgz p

*

0

)(

Thus if…

For dry displacements, use p= d

For saturated displacements, use p= s

Copyright © 2013 R. R. Dickerson & Z.Q. Li

21

Since s< d, we must also consider conditions between the two stability criteria for dry and saturated.

unstable Absolutely

neutralDry

unstablelly Conditiona

neutral Saturated

stable Absolutely

d

d

ds

s

s

= parcel lapse rate = environment lapse rate

Copyright © 2013 R. R. Dickerson & Z.Q. Li

22

DIURNAL CYCLE OF SURFACE HEATING/COOLING:

z

T0

1 km

MIDDAY

NIGHT

MORNING

Mixingdepth

Subsidenceinversion

NIGHT MORNING AFTERNOON

Copyright © 2013 R. R. Dickerson & Z.Q. Li

23

*** Emagram ***

Copyright © 2013 R. R. Dickerson & Z.Q. Li

24

Convective Instabilitydry air

Copyright © 2013 R. R. Dickerson & Z.Q. Li

25

Creterion for Convective Stability

Copyright © 2013 R. R. Dickerson & Z.Q. Li

26

Criterion for Convective Instability

unstablez

Neutralz

Stablez

w

w

w

,0

,0

,0

DIURNAL CYCLE OF SURFACE HEATING/COOLING:

z

T0

1 km

MIDDAY

NIGHT

MORNING

Mixingdepth

Subsidenceinversion

NIGHT MORNING AFTERNOON

Copyright © 2013 R. R. Dickerson & Z.Q. Li

28

ATMOSPHERIC LAPSE RATE AND STABILITYATMOSPHERIC LAPSE RATE AND STABILITY

T

z

= 9.8 K km-1

Consider an air parcel at z lifted to z+dz and released.It cools upon lifting (expansion). Assuming lifting to be adiabatic, the cooling follows the adiabatic lapse rate :

z

“Lapse rate” = -dT/dz

-1/ 9.8 K kmp

gdT dz

C

ATM(observed)

What happens following release depends on the local lapse rate –dTATM/dz:• -dTATM/dz > upward buoyancy amplifies initial perturbation: atmosphere is unstable• -dTATM/dz = zero buoyancy does not alter perturbation: atmosphere is neutral• -dTATM/dz < downward buoyancy relaxes initial perturbation: atmosphere is stable• dTATM/dz > 0 (“inversion”): very stable

unstable

inversion

unstable

stable

The stability of the atmosphere against vertical mixing is solely determined by its lapse rate

Copyright © 2013 R. R. Dickerson & Z.Q. Li

29

EFFECT OF STABILITY ON VERTICAL STRUCTUREEFFECT OF STABILITY ON VERTICAL STRUCTURE

Copyright © 2013 R. R. Dickerson & Z.Q. Li

30

WHAT DETERMINES THE LAPSE RATE OF THE WHAT DETERMINES THE LAPSE RATE OF THE ATMOSPHERE?ATMOSPHERE?

• An atmosphere left to evolve adiabatically from an initial state would eventually tend to neutral conditions (-dT/dz = at equilibrium

• Solar heating of surface disrupts that equilibrium and produces an unstable atmosphere:

Initial equilibriumstate: - dT/dz =

z

T

z

T

Solar heating ofsurface: unstableatmosphere

ATM

ATM

z

Tinitial

final

buoyant motions relaxunstable atmosphere to –dT/dz =

• Fast vertical mixing in an unstable atmosphere maintains the lapse rate to Observation of -dT/dz = is sure indicator of an unstable atmosphere.

Copyright © 2013 R. R. Dickerson & Z.Q. Li 31

Copyright © 2013 R. R. Dickerson & Z.Q. Li 32

Copyright © 2013 R. R. Dickerson & Z.Q. Li 33

Plume looping, Baltimore ~2pm.

Copyright © 2013 R. R. Dickerson & Z.Q. Li 34

Plume Lofting, Beijing in Winter ~7am.

Copyright © 2010 R. R. Dickerson & Z.Q. Li

35

Copyright © 2010 R. R. Dickerson & Z.Q. Li

36

Did you report the calibrated T?

Copyright © 2010 R. R. Dickerson & Z.Q. Li

37

Copyright © 2010 R. R. Dickerson & Z.Q. Li

38

Mean (±σ) oC

24.7 (2.2)

Copyright © 2010 R. R. Dickerson & Z.Q. Li

39

Results

• Calibrating thermometers reduced σ from 2.2 to 1.5 oC.

• Eliminating siting differences and operator bias further reduced σ to 0.74 oC, a major improvement in precision, even without applying the calibration coefficients.

• To identify mesoscale differences in temperature, we need precision. We can identify a T of 1.5 oC with 95% confidence.