copy of chapter11

Upload: hemantdurgawale

Post on 07-Aug-2018

213 views

Category:

Documents


0 download

TRANSCRIPT

  • 8/21/2019 Copy of Chapter11

    1/32

    UNRESTRAINED BEAM DESIGN-I

    UNRESTRAINED BEAM DESIGN – I

    1.0 INTRODUCTION

    Generally, a beam resists transverse loads by bending action In a ty!ical b"ilding #rame,main beams are em!loyed to s!an bet$een ad%acent col"mns& secondary beams $'en

    "sed ( transmit t'e #loor loading on to t'e main beams In general, it is necessary to

    consider only t'e bending e##ects in s"c' cases, any torsional loading e##ects beingrelatively insigni#icant T'e main #orms o# res!onse to "ni-a)ial bending o# beams are

    listed in Table *

    Under increasing transverse loads, beams o# category * +Table* $o"ld attain t'eir #"ll

     !lastic moment ca!acity T'is ty!e o# be'avio"r 'as been covered in an earlier c'a!ter

    T$o im!ortant ass"m!tions 'ave been made t'erein to ac'ieve t'is ideal beam be'avio"r

    T'ey are

    ♦ T'e com!ression #lange o# t'e beam is restrained #rom moving laterally, and

    ♦ Any #orm o# local b"c.ling is !revented

    I# t'e laterally "nrestrained lengt' o# t'e com!ression #lange o# t'e beam is relativelylong as in category / o# Table *, t'en a !'enomenon, .no$n as lateral buckling  or lateral 

    torsional buckling  o# t'e beam may ta.e !lace T'e beam $o"ld #ail $ell be#ore it co"ld

    attain its #"ll moment ca!acity T'is !'enomenon 'as a close similarity to t'e E"ler  b"c.ling o# col"mns, triggering colla!se be#ore attaining its s0"as' load 1#"ll

    com!ressive yield load2

    3ateral b"c.ling o# beams 'as to be acco"nted #or at all stages o# constr"ction, to

    eliminate t'e !ossibility o# !remat"re colla!se o# t'e str"ct"re or com!onent 4or e)am!le, in t'e constr"ction o# steel-concrete com!osite b"ildings, steel beams are

    designed to attain t'eir #"ll moment ca!acity based on t'e ass"m!tion t'at t'e #looring$o"ld !rovide t'e necessary lateral restraint to t'e beams 5o$ever, d"ring t'e erection

    stage o# t'e str"ct"re, beams may not receive as m"c' lateral s"!!ort #rom t'e #loors as

    t'ey get a#ter t'e concrete 'ardens 5ence, at t'is stage, t'ey are !rone to lateral b"c.ling,$'ic' 'as to be conscio"sly !revented

    Beams o# category 6 and 7 given in Table * #ail by local b"c.ling, $'ic' s'o"ld be

     !revented by ade0"ate design meas"res, in order to ac'ieve t'eir ca!acities T'e met'odo# acco"nting #or t'e e##ects o# local b"c.ling on bending strengt' $as disc"ssed in an

    earlier c'a!terIn t'is c'a!ter, t'e conce!t"al be'avio"r o# laterally "nrestrained beams is described in

    detail 8ario"s #actors t'at in#l"ence t'e lateral b"c.ling be'avio"r o# a beam are

    e)!lained T'e design !roced"re #or laterally "nrestrained beams is also incl"ded

    9 :o!yrig't reserved

    Version II 11-1

     11

  • 8/21/2019 Copy of Chapter11

    2/32

    UNRESTRAINED BEAM DESIGN-I

    Table 1  Main failure modes of hot-rolled beams

    Category Moe Co!!ents

    * E)cessive bendingtriggering colla!se T'is is t'e basic #ail"re mode !rovided 1*2 t'e beam is !revented

    #rom b"c.ling laterally,1/2 t'e

    com!onent elements are at leastcom!act, so t'at t'ey do not b"c.le

    locally S"c' ;stoc.y< beams $ill

    colla!se by !lastic 'inge #ormation

    / 3ateral torsional

     b"c.ling o# long beams $'ic' are

    not s"itably braced

    in t'e lateraldirection1ie ;"nrestrained< beams2

    4ail"re occ"rs by a combination o# 

    lateral de#lection and t$ist T'e !ro!ortions o# t'e beam, s"!!ort

    conditions and t'e $ay t'e load is

    a!!lied are all #actors, $'ic' a##ect#ail"re by lateral torsional b"c.ling

    6 4ail"re by local b"c.ling o# a

    #lange in

    com!ression or $eb d"e to s'ear 

    or $eb "nder  

    com!ression d"eto concentrated

    loads

    Unli.ely #or 'ot rolled sections,$'ic' are generally stoc.y

    4abricated bo) sections may re0"ire

    #lange sti##ening to !revent !remat"re colla!se

    =eb sti##ening may be re0"ired #or 

     !late girders to !revent s'ear  b"c.ling

    3oad bearing sti##eners aresometimes needed "nder !oint

    loads to resist $eb b"c.ling

    7 3ocal #ail"re by1*2 s'ear yield o# 

    $eb 1/2 local

    cr"s'ing o# $eb162 b"c.ling o# 

    t'in #langes

    S'ear yield can only occ"r in verys'ort s!ans and s"itable $eb

    sti##eners $ill 'ave to be designed

    3ocal cr"s'ing is !ossible $'en

    concentrated loads act on

    "nsti##ened t'in $ebs S"itable

    sti##eners can be designed

    T'is is a !roblem only $'en very

    $ide #langes are em!loyed=elding o# additional #lange !lates

    $ill red"ce t'e !late b > t ratio and

    t'"s #lange b"c.ling #ail"re can beavoided

    Version II 11-"

     Box section

     Plate girder in shear 

     Plate girder in shear 

     Buckling of thin flanges

    Crushing of web

    Shear yield 

  • 8/21/2019 Copy of Chapter11

    3/32

    UNRESTRAINED BEAM DESIGN-I

    ".0 SIMI#ARIT$ O% CO#UMN BUCING AND #ATERA# BUCING

    O% BEAMS

    It is $ell .no$n t'at slender members "nder com!ression are !rone to instability ='en

    slender str"ct"ral elements are loaded in t'eir strong !lanes, t'ey 'ave a tendency to #ail

     by b"c.ling in t'eir $ea.er !lanes Bot' a)ially loaded col"mns and transversely loaded beams e)'ibit closely similar #ail"re c'aracteristics d"e to b"c.ling

    :ol"mn b"c.ling 'as been dealt $it' in detail in an earlier c'a!ter In t'is section, lateral

     b"c.ling o# beams is described and its close similarity to col"mn b"c.ling is bro"g't o"t

    :onsider a sim!ly s"!!orted and laterally "ns"!!orted 1e)ce!t at ends2 beam o# ;s'ort-

    s!an< s"b%ected to incremental transverse load at its mid section as s'o$n in 4ig* 1a2

    T'e beam $ill de#lect do$n$ards ie in t'e direction o# t'e load +4ig *1b2

    T'e direction o# t'e load and t'e direction o# movement o# t'e beam are t'e same T'is is

    similar to a s'ort col"mn "nder a)ial com!ression ?n t'e ot'er 'and, a ;long-s!an< beam +4ig/ 1a2, $'en incrementally loaded $ill #irst de#lect do$n$ards, and $'en t'e

    load e)ceeds a !artic"lar val"e, it $ill tilt side$ays d"e to instability o# t'e com!ression

    #lange and rotate abo"t t'e longit"dinal a)is +4ig /1b2

    Version II 11-'

    Undeflected position

     Deflected position

    Fig. 1(a) Short span beam, (b) Vertical deflection of the beam.

    (a) (b)

    W  W 

     ori!ontal

    "o#e"ent 

    θ 

    Fig. 2(a) ong span beam, (b) aterall! deflected shape of the beam

    (a) $fter buckling 

     Before

    buckling 

    %  e r t i c a l  " o # e " e n t 

    &wisting 

    (b)

    W  W 

  • 8/21/2019 Copy of Chapter11

    4/32

    UNRESTRAINED BEAM DESIGN-I

    T'e t'ree !ositions o# t'e beam cross-section s'o$n in 4ig /1b2 ill"strate t'e

    dis!lacement and rotation t'at ta.e !lace as t'e midsection o# t'e beam "ndergoes lateral

    torsional b"c.ling T'e c'aracteristic #eat"re o# lateral b"c.ling is t'at t'e entire crosssection rotates as a rigid disc $it'o"t any cross sectional distortion T'is be'avio"r is

    very similar to an a)ially com!ressed long col"mn, $'ic' a#ter initial s'ortening in t'e

    a)ial direction, de#lects laterally $'en it b"c.les T'e similarity bet$een col"mn b"c.ling and beam b"c.ling is s'o$n in 4ig 6

    In t'e case o# a)ially loaded col"mns, t'e de#lection ta.es !lace side$ays and t'e col"mn

     b"c.les in a !"re #le)"ral mode A beam, "nder transverse loads, 'as a !art o# its cross

    section in com!ression and t'e ot'er in tension T'e !art "nder com!ression becomes"nstable $'ile t'e tensile stresses else$'ere tend to stabili@e t'e beam and .ee! it

    straig't T'"s, beams $'en loaded e)actly in t'e !lane o# t'e $eb, at a !artic"lar load,

    $ill #ail s"ddenly by de#lecting side$ays and t'en t$isting abo"t its longit"dinal a)is+4ig6 T'is #orm o# instability is more com!le) 1com!ared to col"mn instability2 since

    t'e lateral b"c.ling !roblem is 6-dimensional in nat"re It involves co"!led lateral

    de#lection and t$ist ie, $'en t'e beam de#lects laterally, t'e a!!lied moment e)erts ator0"e abo"t t'e de#lected longit"dinal a)is, $'ic' ca"ses t'e beam to t$ist T'e bending

    moment at $'ic' a beam #ails by lateral b"c.ling $'en s"b%ected to a "ni#orm end

    moment is called its elastic critical "o"ent (' cr  )  In t'e case o# lateral b"c.ling o# 

     beams, t'e elastic b"c.ling load !rovides a close "!!er limit to t'e load carrying ca!acityo# t'e beam It is clear t'at lateral instability is !ossible only i# t'e #ollo$ing t$o

    conditions are satis#ied

    • T'e section !ossesses di##erent sti##ness in t'e t$o !rinci!al !lanes, and

    • T'e a!!lied loading ind"ces bending in t'e sti##er !lane 1abo"t t'e ma%or a)is2

    Similar to t'e col"mns, t'e lateral b"c.ling o# "nrestrained beams, is also a #"nction o# its

    slenderness

    Version II 11-(

     B

     B

    u

     P 

     P 

     

     * 

     + 

    Section B,B

    Colu"n buckling  

     ' 

    θ 

    u

     ' 

    Section B,B

     Bea" buckling 

     -.  x /-. 

     y 

     -.  x /01

    Fig. " Similarit! of column buc#ling and beam buc#ling 

     B

     B

  • 8/21/2019 Copy of Chapter11

    5/32

    UNRESTRAINED BEAM DESIGN-I

     '.0 IN%#UENCE O% CROSS SECTIONA# S)A*E ON #ATERA#

    TORSIONA# BUCING

    Str"ct"ral sections are generally made "! o# eit'er o!en or closed sections E)am!les o# 

    o!en and closed sections are s'o$n in 4ig 7

    :ross sections, em!loyed #or col"mns and beams 1I and c'annel2, are "s"ally o!en

    sections in $'ic' material is distrib"ted in t'e #langes, ie a$ay #rom t'eir centroids, to

    im!rove t'eir resistance to in-!lane bending stresses ?!en sections are also convenientto connect beams to ad%acent members In t'e ideal case, $'ere t'e beams are restrained

    laterally, t'eir bending strengt' abo"t t'e ma%or a)is #orms t'e !rinci!al design

    consideration T'o"g' t'ey !ossess 'ig' ma%or a)is bending strengt', t'ey are relatively$ea. in t'eir minor a)is bending and t$isting

    T'e "se o# o!en sections im!lies t'e acce!tance o# lo$ torsional resistance in'erent in

    t'em No do"bt, t'e 'ig' bending sti##ness 1 -.  x2 available in t'e vertical !lane $o"ldres"lt in lo$ de#lection "nder vertical loads 5o$ever, i# t'e beam is loaded laterally, t'e

    de#lections 1$'ic' are governed by t'e lo$er -.  y rat'er t'an t'e 'ig'er -.  x2 $ill be very

    m"c' 'ig'er 4rom a conce!t"al !oint o# vie$, t'e beam 'as to be regarded as an element'aving an en'anced tendency to #all over on its $ea. a)is

    In contrast, closed sections s"c' as t"bes, bo)es and solid s'a#ts 'ave 'ig' torsionalsti##ness, o#ten as 'ig' as * times t'at o# an o!en section T'e 'ollo$ circ"lar t"be is

    t'e most e##icient s'a!e #or torsional resistance, b"t is rarely em!loyed as a beam element

    on acco"nt o# t'e di##ic"lties enco"ntered in connecting it to t'e ot'er members and lesser 

    Version II 11-+

    Wide 2lange Bea" Channel $ngle

    $pen sections

    %losed sections

    &ubular   Box

    Fig. & $pen and closed sections

    Standard bea" &ee

  • 8/21/2019 Copy of Chapter11

    6/32

    UNRESTRAINED BEAM DESIGN-I

    e##iciency as a #le)"ral member T'e in#l"ence o# sectional s'a!es on t'e lateral strengt'

    o# a beam is #"rt'er ill"strated in a later Section

    (.0 #ATERA# TORSIONA# BUCING O% S$MMETRIC SECTIONS

    As e)!lained earlier, $'en a beam #ails by lateral torsional b"c.ling, it b"c.les abo"t its$ea. a)is, even t'o"g' it is loaded in t'e strong !lane T'e beam bends abo"t its strong

    a)is "! to t'e critical load at $'ic' it b"c.les laterally +4ig 1a2 and 1b2

    4or t'e !"r!ose o# t'is disc"ssion, t'e lateral torsional b"c.ling o# an I-section is

    considered $it' t'e #ollo$ing ass"m!tions

    * T'e beam is initially "ndistorted/ Its be'avio"r is elastic 1no yielding2

    6 It is loaded by e0"al and o!!osite end moments in t'e !lane o# t'e $eb

    7 T'e loads act in t'e !lane o# t'e $eb only 1t'ere are no e)ternally a!!lied lateral or torsional loads2

    T'e beam does not 'ave resid"al stresses

    C Its ends are sim!ly s"!!orted vertically and laterally

    ?bvio"sly, in !ractice, t'e above ideal conditions are seldom met 4or e)am!le, rolled

    sections invariably contain resid"al stresses T'e e##ects o# t'e deviations #rom t'e ideal

    case are disc"ssed in a later Section

    Version II 11-,

    Fig. '(a) $riginal beam (b) laterall! buc#led beam

     ' 

     Plan

     -le#ation

     ' 

    Section

    (a)

    θ 

     3ateral Deflection

     y

      

    (b)

    &wisting 

     x

     $

     $

    Section $, $

  • 8/21/2019 Copy of Chapter11

    7/32

    UNRESTRAINED BEAM DESIGN-I

    T'e critical bending moment ca!acity attained by a symmetric I beam s"b%ected to e0"al

    end moments "ndergoing lateral torsional b"c.ling bet$een !oints o# lateral or torsional

    s"!!ort is a #"nction o# t$o torsional c'aracteristics o# t'e s!eci#ic cross-section t'e !"retorsional resistance "nder "ni#orm torsion and t'e $ar!ing torsional resistance

     ' cr + 1torsional resistance2/

      1 $ar!ing resistance 2/

    *>/

     

    4

    5

    4

     y

    4

     y

     .  - 6  1  0  .  - 

    cr  '  

    +=

    Γ      *1a2

    T'is may be re$ritten as

    ( )  4

    5

    45

     1 0

     - 5 1 0 .  -  ' 

    4

    4

     ycr   

    +=

    Γ  π π    *1b2

     

    $'ere,  -.  y is t'e minor a)is #le)"ral rigidity

      01   is t'e torsional rigidity

       - Γ   is t'e $ar!ing rigidity

    T'e torsion t'at accom!anies lateral b"c.ling is al$ays non-"ni#orm T'e critical bending

    moment, ' cr  is given by E0n* 1a2

    It is evident #rom E0n* 1a2 t'at t'e #le)"ral and torsional sti##ness o# t'e member relate

    to t'e lateral and torsional com!onents o# t'e b"c.ling de#ormations T'e magnit"de o# 

    t'e second s0"are root term in E0n* 1b2 is a meas"re o# t'e contrib"tion o# $ar!ing tot'e resistance o# t'e beam In !ractice, t'is val"e is large #or s'ort dee! girders 4or long

    s'allo$ girders $it' lo$ $ar!ing sti##ness, Γ  ≈  and E0n *1b2 red"ces to

    An I-section com!osed o# very t'in !lates $ill !osses very lo$ torsional rigidity 1since Fde!ends on t'ird !o$er o# t'ic.ness2 and bot' terms "nder t'e root $ill be o# com!arable

    magnit"de T'e second term is negligible com!ared to t'e #irst #or t'e ma%ority o# 'ot

    rolled sections B"t lig't ga"ge sections derive most o# t'e resistance to torsional

    de#ormation #rom t'e $ar!ing action T'e beam lengt' also 'as considerable in#l"ence"!on t'e relative magnit"des o# t'e t$o terms as s'o$n in t'e term π 4 - Γ   7 401  S'orter and dee! beams 1π 4 - Γ   7 401  term $ill be large2 demonstrate more $ar!ing resistance,$'ereas, t'e term $ill be small #or long and s'allo$ beams E0n 1*2 may be re$ritten in

    a sim!ler #orm as given belo$

     

     

    4

    5

    4

    44

    5

     y B

    6 5

    6   1 0 .  - cr  ' 

      162

    Version II 11-

    4

    5

     y  1  0 .  - 

    cr  '     

      

      =

      1/2

  • 8/21/2019 Copy of Chapter11

    8/32

    UNRESTRAINED BEAM DESIGN-I

    $'ere  B4 8 4 0 1 7 - Γ    61a2

     ' cr  8 α (- .  y 0 1)574 γ    172

    $'ere  γ  8 π  7  (59π 4 7 B4 )574  71a2

    E0n 172 is a !rod"ct o# t'ree terms t'e #irst term, α  : varies $it' t'e loading and s"!!ortconditions& t'e second term varies $it' t'e material !ro!erties and t'e s'a!e o# t'e beam&

    and t'e t'ird term, γ , varies $it' t'e lengt' o# t'e beam E0n 172 is regarded as t'e basice0"ation #or lateral torsional b"c.ling o# beams T'e in#l"ence o# t'e t'ree terms

    mentioned above is disc"ssed in t'e #ollo$ing Section

    +.0 %ACTORS A%%ECTING #ATERA# STABI#IT$

    T'e elastic critical moment, ' cr  : as obtained in t'e !revio"s Section, is a!!licable only to

    a beam o# I section $'ic' is sim!ly s"!!orted and s"b%ected to end moments T'is case isconsidered as t'e basic case #or #"t"re disc"ssion In !ractical sit"ations, s"!!ort

    conditions, beam cross section, loading etc vary #rom t'e basic case T'e #ollo$ingsections elaborate on t'ese variations and ma.e t'e necessary modi#ications to t'e basic

    case #or design !"r!oses

    +.1 S//ort onitions

    T'e lateral restraint !rovided by t'e sim!ly s"!!orted conditions ass"med in t'e basiccase is t'e lo$est and t'ere#ore ' cr  is also t'e lo$est It is !ossible, by ot'er restraint

    conditions, to obtain 'ig'er val"es o#  ' cr , #or t'e same str"ct"ral section, $'ic' $o"ld

    res"lt in better "tili@ation o# t'e section and t'"s saving in $eig't o# material As lateral b"c.ling involves t'ree .inds o# de#ormations, namely lateral bending: twisting   andwarping , it is #easible to t'in. o# vario"s ty!es o# end conditions B"t, t'e s"!!orts

    s'o"ld eit'er com!letely !revent or o##er no resistance to eac' ty!e o# de#ormation

    Sol"tions #or !artial restraint conditions are com!licated T'e e##ect o# vario"s s"!!ortconditions is ta.en into acco"nt by $ay o# a !arameter called effecti#e length: $'ic' is

    e)!lained, in t'e ne)t Section

    +." Eeti2e 3engt4

    T'e conce!t o# e##ective lengt' incor!orates t'e vario"s ty!es o# s"!!ort conditions 4or 

    t'e beam $it' sim!ly s"!!orted end conditions and no intermediate lateral restraint, t'ee##ective lengt' is e0"al to t'e act"al lengt' bet$een t'e s"!!orts ='en a greater amo"nt

    o# lateral and torsional restraints is !rovided at s"!!orts, t'e e##ective lengt' is less t'an

    t'e act"al lengt' and alternatively, t'e lengt' becomes more $'en t'ere is less restraintT'e e##ective lengt' #actor $o"ld indirectly acco"nt #or t'e increased lateral and torsional

    rigidities !rovided by t'e restraints As an ill"stration, t'e e##ective lengt's a!!ro!riate

    #or di##erent end restraints according to BS are given in Table / T'e destabili@ing#actor indicated in Table / is e)!lained in t'e ne)t Section

    Version II 11-5

  • 8/21/2019 Copy of Chapter11

    9/32

    UNRESTRAINED BEAM DESIGN-I

      Table 2 ffecti*e length

    Eeti2e #engt46 e6 or 7ea!s 6 7et8een s//orts

    Conitions at s//orts #oaing onitions

     Normal Destabilising

    Beam torsionally "nrestrained

    :om!ression #lange laterally "nrestrained

    Bot' #langes #ree to rotate on !lan

    */1 9 4D2 *71 9 4D2

    Beam torsionally "nrestrained

    :om!ression #lange laterally "nrestrained:om!ression #lange only #ree to rotate on

     !lan

    *1 9 4D2 */1 9 4D2

    Beam torsionally restrained

    :om!ression #lange laterally restrained:om!ression #lange only #ree to rotate on

     !lan

    * */

    Beam torsionally restrained:om!ression #lange laterally restrained

    Bot' #langes !artially #ree to rotate on

     !lan1ie !ositive connections to bot' #langes2

    H *

    Beam torsionally restrained

    :om!ression #lange laterally restrainedBot' #langes N?T #ree to rotate on !lan

    H

    is t'e lengt' o# t'e beam bet$een restraints D is t'e de!t' o# t'e beam

    +.' #e2e3 o a//3iation o trans2erse 3oas

    T'e lateral stability o# a transversely loaded beam is de!endent on t'e arrangement o# t'eloads as $ell as t'e level o# a!!lication o# t'e loads $it' res!ect to t'e centroid o# t'e

    cross section 4ig C s'o$s a centrally loaded beam e)!eriencing eit'er destabilising or 

    restoring e##ect $'en t'e cross section is t$isted

    A load a!!lied above t'e centroid o# t'e cross section ca"ses an additional overt"rning

    moment and becomes more critical t'an t'e case $'en t'e load is a!!lied at t'e centroid?n t'e ot'er 'and, i# t'e load is a!!lied belo$ t'e centroid, it !rod"ces a stabilisinge##ect T'"s, a load a!!lied belo$ or above t'e centroid can c'ange t'e b"c.ling load by

    ±  ;

  • 8/21/2019 Copy of Chapter11

    10/32

    UNRESTRAINED BEAM DESIGN-I

    Jrovision o# intermediate lateral s"!!orts can conveniently increase t'e lateral stability o# 

    a beam =it' a central s"!!ort, $'ic' is ca!able o# !reventing lateral de#lection and

    t$isting, t'e beam s!an is 'alved and eac' s!an be'aves inde!endently As a res"lt, t'erigidity o# t'e beam is considerably increased T'is as!ect is dealt in more detail in a later 

    c'a!ter

    +.( In3ene o ty/e o 3oaing

    So #ar, only t'e basic case o# beams loaded $it' e0"al and o!!osite end moments 'as been considered B"t, in reality, loading !atterns $o"ld vary $idely #rom t'e basic caseT'e t$o reasons #or st"dying t'e basic case in detail are 1*2 it is analytically amenable,

    and 1/2 t'e loading condition is regarded as t'e most severe :ases o# moment gradient,

    $'ere t'e end moments are "ne0"al, are less !rone to instability and t'is bene#icial e##ectis ta.en into acco"nt by t'e "se o# + eui*alent uniform moments. In t'is case, t'e basic

    design !roced"re is modi#ied by com!aring t'e elastic critical moment #or t'e act"al case

    $it' t'e elastic critical moment #or t'e basic case T'is !rocess is similar to t'e e##ectivelengt' conce!t in str"t !roblems #or ta.ing into acco"nt end #i)ity

    +.(.1 #oaing a//3ie at /oints o 3atera3 restraint

    ='ile considering ot'er loading cases, t'e variation o# t'e bending moment $it'in asegment 1ie t'e lengt' bet$een t$o restraints2 is ass"med to be linear #rom  ' "ax at one

    end to ' "in at t'e ot'er end as s'o$n in 4ig

    Version II 11-10

     ' "in

    Fig. /on uniform distribution of bending moment 

     ' "in

     ' "ax

     ' "in

     Positi#eβ 

     ' "in

     >egati#eβ 

     ' "ax

     ' "ax

     ' "ax

    w w w

     Botto" flangeloading 

    Shear center

    loading 

    To! #lange loading

    %alue of   4 0 1 7 - Γ 

    5< 5

  • 8/21/2019 Copy of Chapter11

    11/32

    UNRESTRAINED BEAM DESIGN-I

    T'e val"e o# β  is de#ined as

    β   ' "in 7 ' "ax  .1 .1  

    T'e val"e o# β   is !ositive #or o!!osing moments at t'e ends 1single c"rvat"re bending2and negative #or moments o# t'e same .ind 1do"ble c"rvat"re bending2 4or a !artic"lar 

    case o# β , t'e val"e o#   '  at $'ic' elastic instability occ"rs can be e)!ressed as a ratio"  involving t'e val"e o# ' cr  #or t'e segment ie t'e elastic critical moment #or β  8 *T'e ratio may be e)!ressed as a single c"rve in t'e #orm

    " 8

  • 8/21/2019 Copy of Chapter11

    12/32

    UNRESTRAINED BEAM DESIGN-I

    T'is a!!ro)imation 'el!s in !redicting t'e b"c.ling o# t'e segments o# a beam, $'ic' is

    loaded t'ro"g' transverse members !reventing local lateral de#lection and t$ist Eac'

    segment is treated as a beam $it' "ne0"al end moments and its elastic critical momentsmay be determined #rom t'e relations'i! given in E0n T'e critical moment o# eac'

    segment can be determined and t'e lo$est o# t'em $o"ld give a conservative

    a!!ro)imation to t'e act"al critical moment

    Beam and loads Act"al bending

    moment

     ' "ax " E0"ivalent

    "ni#ormmoment

     '  *

     ' 

     '  76

    W  7; 7

    W 4 7@ HH

    W  7; C

    It may be noted 'ere t'at t'e val"es o# "  a!!ly only $'en t'e !oint o# ma)im"m

    moment occ"rs at one end o# t'e segments o# t'e beams $it' "ni#orm cross section and

    e0"al #langes In all ot'er cases "85

  • 8/21/2019 Copy of Chapter11

    13/32

    UNRESTRAINED BEAM DESIGN-I

    As disc"ssed earlier, t'e s'a!e o# t'e moment diagram in#l"ences t'e lateral stability o# a

     beam A beam design "sing "ni#orm moment loading $ill be "nnecessarily conservative

    In order to acco"nt #or t'e non-"ni#ormity o# moments, a modi#ication o# t'e momentmay be made based on a com!arison o# t'e elastic critical moment #or t'e basic case

    T'is can be done in t$o $ays T'ey are

    (i) Use e0"ivalent "ni#orm moment val"e  '    " ' "ax (' "ax is t'e larger o# t'e t$o

    end moments2  #or c'ec.ing against t'e b"c.ling resistance moment ' b 

    (ii) '  b val"e is determined "sing an e##ective slenderness ratio λ   3&  8 λ  3&   " 1$'ere λ  3&  is t'e lateral torsional slenderness ratio and λ   3&  is t'e e##ective lateraltorsional slenderness ratio2

    T'e idea o# lateral torsional slenderness λ3T is introd"ced 'ere to $rite t'e design ca!acity

     ' b as

       

      

     =

    /

    *

     3&  p

    b  f   ' 

     ' 

    λ   12

    $'ere '  p is t'e #"lly !lastic moment

    Version II 11-1'

      Fig. 1 Moment capacit! of beams

     3ateral J torsional slenderness λ  3& 

       '  o  "  e  n   t  c  a  p  a  c   i   t  y   f  a  c

       t  o  r   '   7   '

      p

    5;;

  • 8/21/2019 Copy of Chapter11

    14/32

    UNRESTRAINED BEAM DESIGN-I

    T'e 0"antity λ  3&  is de#ined by

    cr 

     p

     y

     3&  ' 

     ' 

     p

     - /π λ    = 1*2

    4or a !artic"lar material 1ie !artic"lar -  and p y2 t'e above e0"ation can be considered as

    a !rod"ct o# c constant and ( ) 3& cr 

     p

     ' 

     ' λ  T'e 0"antity  3& λ   is called as t'e ne$ de#ined

    slenderness ratio

    B"c.ling resistance moment,  ' b  is al$ays less t'an t'e elastic critical moment,  ' cr 

    T'ere#ore, t'e second met'od is more conservative es!ecially #or lo$ val"es o# λ  3&   T'et$o met'ods are com!ared in 4ig *, $'ere #or t'e #irst case  ' "ax is to be c'ec.edagainst ' b  7 " and #or t'e second case against ' b only Met'od 1i2 is more s"itable #or 

    cases $'ere loads are a!!lied only at !oints o# e##ective lateral restraint 5ere, t'eyielding is restricted to t'e s"!!orts& conse0"ently, res"lts in a small red"ction in t'elateral b"c.ling strengt' In order to avoid overstressing at one end, an additional c'ec.,

     ' "ax  H '  p  s'o"ld also be satis#ied In certain sit"ations, ma)im"m moment occ"rs

    $it'in t'e s!an o# t'e beam T'e red"ction in sti##ness d"e to yielding $o"ld res"lt in a

    smaller lateral b"c.ling strengt' In t'is case, t'e !rediction according to met'od 1i2 based on t'e !attern o# moments $o"ld not be conservative& 'ere t'e met'od 1ii2 is more

    a!!ro!riate In t'e second met'od, a correction #actor n is a!!lied to t'e slenderness ratio

    λ  3&  and design strengt' is obtained #or nλ  3&  It is clear #rom t'e above t'at n 8   " T'eslenderness correction #actor is e)!lained in t'e ne)t section

    +.(.' S3enerness orretion ator

    4or sit"ations, $'ere t'e ma)im"m moment occ"rs a$ay #rom a braced !oint, eg $'en

    t'e beam is "ni#ormly loaded in t'e s!an, a modi#ication to t'e slenderness, λ  3&  : may be"sed T'e allo$able critical stress is determined #or an e##ective slenderness, nλ  3& : $'eren is t'e slenderness correction #actor, as ill"strated in 4ig ** #or a #e$ cases o# loading

    4or design !"r!oses, one o# t'e above met'ods ( eit'er t'e moment correction #actor 

    met'od 1" met'od2 or slenderness correction #actor met'od 1n met'od2 may be "sed I# s"itable val"es are c'osen #or " and n:  bot' met'ods yield identical res"lts T'e

    di##erence arises only in t'e $ay in $'ic' t'e correction is made& in t'e n #actor met'od

    t'e slenderness is red"ced to ta.e advantage o# t'e e##ect o# t'e non- "ni#orm moment,$'ereas, in t'e "  #actor met'od, t'e moment to be c'ec.ed against   lateral moment

    ca!acity, ' b : is red"ced #rom ' "ax  to  '   by t'e #actor " It is al$ays sa#e to "se " 8 n

    * basing t'e design on "ni#orm moment case In any sit"ation, eit'er " 8 * or  n8 *, ieany one met'od s'o"ld be "sed

    Version II 11-1(

  • 8/21/2019 Copy of Chapter11

    15/32

    UNRESTRAINED BEAM DESIGN-I

    Slenderness correction #actor, n

    3oad !attern Act"al bending moment n E0"ivalent "ni#orm

    moment

       ' ' 

    *

     '    '  

    C

      W 

    HC

     

    w7" 7

      W   W 

    7

     

    7

    +.+ Eet o ross-setiona3 s4a/e

    T'e s'a!e o# t'e cross-section o# a beam is a very im!ortant !arameter $'ile eval"atingits lateral b"c.ling ca!acity In ot'er $ords, lateral instability can be red"ced or even

    avoided by c'oosing a!!ro!riate sections T'e e##ect o# cross-sectional s'a!e on lateralinstability is ill"strated in 4ig */ #or di##erent ty!e o# section $it' same cross sectional

    area

    T'e #ig"re s'o$s t'at t'e I-section $it' t'e larger in-!lane bending sti##ness does not

    'ave matc'ing stability Bo) sections $it' 'ig' torsional sti##ness are most s"itable #or 

    Version II 11-1+

     7;

     7;

    >;

  • 8/21/2019 Copy of Chapter11

    16/32

        '

       C  r   K   '   C  r

  • 8/21/2019 Copy of Chapter11

    17/32

    UNRESTRAINED BEAM DESIGN-I

    T'ere are t'ree distinct regions in t'e c"rve as given belo$

    5 Beams $it' 'ig' slenderness 1 */>cr  ' 

     p '  ) T'e #ail"re o# t'e beam is by elastic

    lateral b"c.ling at ' cr 

    4 Beams o# intermediate slenderness 7 L */<cr  ' 

     p ' 2, $'ere #ail"re occ"rs by

    inelastic lateral b"c.ling at loads belo$ '  p and above ' cr 

    F Stoc.y beams 1 A7<cr  ' 

     p ' 22, $'ic' attain '  p $it'o"t b"c.ling

    Version II 11-1

    Strain distribution

    Stress distribution

    Spread of yield 

    (-lastic Jperfectly plastic "aterial beha#iour is assu"ed  )

    Fig 1" Strain 6 Stress 7istribution and !ielding of  section

     .nelastic buckling (no residual stress) 'H' Cr 

     

     Plastic failure ' 8 '  p

    5<

     '  y 7 ' 

     P 

     '  yr 

     7 '  P 

       '  o  "  e  n   t  r  a   t   i  o   '   7   '

      p

     'odified Slenderness

  • 8/21/2019 Copy of Chapter11

    18/32

    UNRESTRAINED BEAM DESIGN-I

    ,." Resia3 stresses

    It is normally ass"med t'at a str"ct"ral section in t'e "nloaded condition is #ree #romstress and strain In reality, t'is is not tr"e D"ring t'e !rocess o# man"#act"re o# steel

    sections, t'ey are s"b%ected to large t'ermal e)!ansions res"lting in yield level strains in

    t'e sections As t'e s"bse0"ent cooling is not "ni#orm t'ro"g'o"t t'e section, sel#-e0"ilibrating !atterns o# stresses are #ormed T'ese stresses are .no$n as residual 

     stresses Similar e##ects can also occ"r at t'e #abrication stage d"ring $elding and #lame

    c"tting o# sections A ty!ical resid"al stress distrib"tion in a 'ot rolled steel beam sectionis s'o$n in 4ig*

    D"e to t'e !resence o# resid"al stresses, yielding o# t'e section starts at lo$er momentsT'en, $it' t'e increase in moment, yielding s!reads t'ro"g' t'e cross-section T'e in-

    elastic range, $'ic' starts at  '  yr   increases instead o# t'e elastic range T'e !lastic

    moment val"e '  p is not in#l"enced by t'e !resence o# resid"al stresses

    ,.' I!/eretions

    T'e initial distortion or lac. o# straig'tness in beams may be in t'e #orm o# a lateral bo$or t$ist In addition, t'e a!!lied loading may be eccentric ind"cing more t$ist to t'e

     beam It is clear t'at t'ese initial im!er#ections corres!ond to t'e t$o ty!es o# 

    de#ormations t'at t'e beam "ndergoes d"ring lateral b"c.ling Ass"ming  ' cr  

  • 8/21/2019 Copy of Chapter11

    19/32

     2irst yield of initially defor"ed bea"s at

     'H' cr  (no residual stress)

     -lastic buckling 

     'H' cr 

     .nitial

    defor"ationsincreasing 

     'odified Slenderness

       >  o  n   d

       i  "  e  n  s   i  o  n  a   l  a  p  p   l   i  e   d  "  o  "  e  n   t

     

  • 8/21/2019 Copy of Chapter11

    20/32

    UNRESTRAINED BEAM DESIGN-I

    T'ree distinct regions o# be'avio"r may be noticed in t'e #ig"re T'ey are

    • Stoc.y, $'ere beams attain '  p, $it' val"es o#  3&  L  L 7

    • Intermediate, t'e region $'ere beams #ail to reac' eit'er '  P  or ' cr   & 7L   3&  L L*/

    • Slender, $'ere beams #ail at moment ' cr M   3&  L */

    As !ointed o"t earlier, lateral stability is not a criterion #or stoc.y beams 4or beams o# t'e second category, $'ic' com!rise o# t'e ma%ority o# available sections, design is based

    on inelastic b"c.ling acco"nting #or geometrical im!er#ections and resid"al stresses

    .1 Conser2ati2e esign /roere

    T'e lateral b"c.ling moment ca!acity o# a section can be e)!ressed as

     ' b  8 pb S  x  1** 2

    $'ere : pb is t'e bending strengt' acco"nting #or lateral instability  S ) is t'e a!!ro!riate !lastic section mod"l"s

    T'e slenderness o# t'e beam λ  3&  is de#ined asN

    λ  3&  8  3&  L y p - 46 

      1*/2

    T'is 'as close similarity to t'e slenderness associated $it' com!ressive b"c.ling o# a

    col"mn T'e relation bet$een pb and λ  3&  is s'o$n in 4ig*H

    In t'e case o# slender beams : pb is related to λ  3&   λ  3& can be determined #or a given section by t'e #ollo$ing relations'i!

    Version II 11-"0

  • 8/21/2019 Copy of Chapter11

    21/32

    UNRESTRAINED BEAM DESIGN-I

    λ  3&  8n u # e 7 r  y 1*62

    $'ere : n is t'e slenderness correction #actor  

    u is b"c.ling !arameter #rom steel tables 1 #or rolled beams and c'annels and  * #or ot'er sections2

    # is slenderness #actor and  f(  7r  y : x): given in Table *7 o# BS !art *& b"t

    a!!ro)imated to * #or !reliminary calc"lations

       x is t'e torsional inde) $'ic' is !rovided in BS !art *

     x 8( )

      2 

    1

     1  $h ABCC  #or bi-symmetric sections and sections symmetric abo"t

    minor a)is, and

     x 82 

    1

       

        1  .    $

     y**6/

      #or sections symmetric abo"t ma%or a)is

    $'ere

     $  is t'e cross sectional area o# t'e member

     .  y  is t'e second moment o# t'e area abo"t t'e minor a)is    is t'e $ar!ing constant

     1   is t'e torsion constant

    h  is t'e distance bet$een t'e s'ear center o# t'e #langes

    4or com!act sections, #"ll !lasticity is develo!ed at t'e most 'eavily stressed section

    Unli.e !lastic design, moment redistrib"tion is not considered 'ere 4or e)am!le, #or a

     !artic"lar grade o# steel and #or  3&  L  

  • 8/21/2019 Copy of Chapter11

    22/32

    UNRESTRAINED BEAM DESIGN-I

    A good design can be ac'ieved by determining t'e val"e o# λ  3&   and t'ereby  pb  moreacc"rately  ' b can be determined "sing E0n** E##ective lengt's o# t'e beam may be

    ado!ted as !er t'e g"idelines given in Table / 4or beams, and segments o# beams bet$een lateral s"!!orts, e0"ivalent "ni#orm moments may be calc"lated to determine

    t'eir relative severity o# instability T'e lateral stability is c'ec.ed #or an e0"ivalent

    moment  '  given by

      '  8 " ' "ax 1*72

     

    $'ere " is t'e e0"ivalent "ni#orm moment #actor

    I# ' b   '  , t'e section c'osen is satis#actory At t'e 'eavily stressed locations, local

    strengt' s'o"ld be c'ec.ed against develo!ment o# '  p

     ' "ax >  '  p 1*2 

    5.0 SUMMAR$

    Unrestrained beams t'at are loaded in t'eir sti##er !lanes may "ndergo lateral torsional

     b"c.ling T'e !rime #actors t'at in#l"ence t'e b"c.ling strengt' o# beams are t'e "n braced s!an, cross sectional s'a!e, ty!e o# end restraint and t'e distrib"tion o# moment

    4or t'e !"r!ose o# design, t'e sim!li#ied a!!roac' as given in BS Jart-* 'as been

     !resented T'e e##ects o# vario"s !arameters t'at a##ect b"c.ling strengt' 'ave beenacco"nted #or in t'e design by a!!ro!riate correction #actors T'e be'avio"r o# real

     beams 1$'ic' do not com!ly $it' t'e t'eoretical ass"m!tions2 'as also been described

    In order to increase t'e lateral strengt' o# a beam, bracing o# s"itable sti##ness and

    strengt' 'as to be !rovided

    9.0 RE%ERENCES

    * Timos'en.o S, KT'eory o# elastic stability McGra$ 5ill Boo. :o, *st Edition *6C

    / :lar.e AB and :overman, KStr"ct"ral steel $or.-3imit state design, :'a!man and5all, 3ondon, *H

    6 Martin 35 and J"r.iss FA, KStr"ct"ral design o# steel $or. to BS , Ed$ardArnold, */

    7 Tra'air NS, KT'e be'avio"r and design o# steel str"ct"res, :'a!man and 5all

    3ondon, *

    Oirby JA and Net'ercot DA,Design #or str"ct"ral stability, Granada J"blis'ing,

    3ondon, *

    Version II 11-""

  • 8/21/2019 Copy of Chapter11

    23/32

    UNRESTRAINED BEAM DESIGN-I

    Strtra3 Stee3

    Design *ro:et

    Ca33ation s4eet

    Fob No S'eet 5 o# ;  Rev

    Fob titleN U>I-S&I$.>-D B-$' D-S.0> 

    =or.ed e)am!leN 5

    Made by  SSI Date57F74

  • 8/21/2019 Copy of Chapter11

    24/32

    UNRESTRAINED BEAM DESIGN-I

     

  • 8/21/2019 Copy of Chapter11

    25/32

    UNRESTRAINED BEAM DESIGN-I

    Strtra3 Stee3

    Design *ro:et

    Ca33ation s4eet

    Fob No S'eet 4 o# ;  Rev

    Fob title  U>I-S&I$.>-D B-$' D-S.0> 

    =or.ed e)am!leN 5Made by SSI Date57F74

  • 8/21/2019 Copy of Chapter11

    26/32

    UNRESTRAINED BEAM DESIGN-I

    Strtra3 Stee3

    Design *ro:et

    Ca33ation s4eet

    Fob No S'eet  F o# ; Rev

    Fob titleN U>I-S&I$.>-D B-$' D-S.0> 

    =or.ed e)am!leN 5

    Made by SSI Date57F74

  • 8/21/2019 Copy of Chapter11

    27/32

    UNRESTRAINED BEAM DESIGN-I

    Strtra3 Stee3

    Design *ro:et

    Ca33ation s4eet

    Fob No S'eet ; o# ; Rev

    Fob title  U>I-S&I$.>-D B-$' D-S.0> 

    =or.ed e)am!leN 5Made by  SSI Date*>6>/

    :'ec.ed by  S$1  Date 7F7 47"

    @

    ? Q4;

    @

    w ' 

    44

    "ax   == 

      8 5 " H 54E "

      ence ' b  / ' "ax 

     .S'B ;< is adeGuate against lateral torsional buckling

    Version II 11-"

  • 8/21/2019 Copy of Chapter11

    28/32

    UNRESTRAINED BEAM DESIGN-I

    Strtra3 Stee3

    Design *ro:et

    Ca33ation s4eet

    Fob No S'eet 5 o# Rev

    Fob title  U>I-S&I$.>-D B-$' D-S.0> 

    =or.ed e)am!leN 4

    Made by  SSI Date4F7F74

  • 8/21/2019 Copy of Chapter11

    29/32

    UNRESTRAINED BEAM DESIGN-I

    Strtra3 Stee3

    Design *ro:et

    Ca33ation s4eet

    Fob No S'eet  4 o#   Rev

    Fob title  U>I-S&I$.>-D B-$' D-S.0> 

    =or.ed e)am!leN 4

    Made by  SSI Date4F7F;74

  • 8/21/2019 Copy of Chapter11

    30/32

    UNRESTRAINED BEAM DESIGN-I

    Strtra3 Stee3

    Design *ro:et

    Ca33ation s4eet

    Fob No S'eet F o# Rev

    Fob title  U>I-S&I$.>-D B-$' D-S.0> 

    =or.ed e)am!leN 4

    Made by  SSI Date4F7F74

  • 8/21/2019 Copy of Chapter11

    31/32

    UNRESTRAINED BEAM DESIGN-I

    Strtra3 Stee3

    Design *ro:et

    Ca33ation s4eet

    Fob No S'eet ; o# Rev

    Fob title  U>I-S&I$.>-D B-$' D-S.0> 

    =or.ed e)am!leN 4

    Made by  SSI Date4F7F74 

    ; "5 k> "

     B' Diagra"

  • 8/21/2019 Copy of Chapter11

    32/32

    UNRESTRAINED BEAM DESIGN-I

    Strtra3 Stee3

    Design *ro:et

    Ca33ation s4eet

    Fob No S'eet   o# Rev

    Fob title  U>I-S&I$.>-D B-$' D-S.0> 

    =or.ed e)am!leN 4

    Made by  SSI Date4F7F74