control of quantum two-level systems · changes 𝜑 on bloch sphere oscillating fields...

28
Control of quantum two-level systems

Upload: dangnhi

Post on 03-Apr-2018

220 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: Control of quantum two-level systems · changes 𝜑 on Bloch sphere Oscillating fields perpendicular to quantization axis ... 10.3 Control of quantum two-level systems

Control of quantum two-level systems

Page 2: Control of quantum two-level systems · changes 𝜑 on Bloch sphere Oscillating fields perpendicular to quantization axis ... 10.3 Control of quantum two-level systems

AS-Chap. 10 - 2

R. G

ross

, A

. Mar

x &

F. D

ep

pe

, © W

alth

er-

Me

ißn

er-

Inst

itu

t (2

00

1 -

20

13

)

How to control a qubit?

10.3 Control of quantum two-level systems ….. General concept

Does the answer depend on specific realization? No, only its implementation

Qubit is pseudo spin General concept exists Independent of qubit realization Methods from nuclear magnetic resonance (NMR)

Nuclear magnetic resonance Method to explore the magnetism of nuclear spins Important application Magnetic resonance imaging (MRI) in medicine MRI exploits the different nuclear magnetic signatures of different tissues

Page 3: Control of quantum two-level systems · changes 𝜑 on Bloch sphere Oscillating fields perpendicular to quantization axis ... 10.3 Control of quantum two-level systems

AS-Chap. 10 - 3

R. G

ross

, A

. Mar

x &

F. D

ep

pe

, © W

alth

er-

Me

ißn

er-

Inst

itu

t (2

00

1 -

20

13

)

10.3 Control of quantum two-level systems ….. General concept

early suggestions H. Carr (1950) and V. Ivanov (1960)

Brief MRI history

1972 MRI imaging machine proposed by R. Damadian (SUNY)

1973 1st MRI image by P. Lauterbur (Urbana-Champaign)

Late 1970ies Fast scanning technique proposed by P. Mansfield (Nottingham)

2003 Nobel Prize in Medicine for P. Lauterbur and P. Mansfield

Page 4: Control of quantum two-level systems · changes 𝜑 on Bloch sphere Oscillating fields perpendicular to quantization axis ... 10.3 Control of quantum two-level systems

AS-Chap. 10 - 4

R. G

ross

, A

. Mar

x &

F. D

ep

pe

, © W

alth

er-

Me

ißn

er-

Inst

itu

t (2

00

1 -

20

13

)

10.3 Control of quantum two-level systems ….. NMR techniques

Overview: Important NMR techniques

Basic idea Rotate spins by static or oscillating magnetic fields

Static fields parallel to quantization axis free precession changes 𝜑 on Bloch sphere Oscillating fields perpendicular to quantization axis change population changes 𝜃 on Bloch sphere

Important protocols Rabi population oscillations Relaxation measurement 𝑇1 Ramsey fringes 𝑇2

⋆ Spin echo (Hanh echo) 𝑇2

⋆ corrected for reversible dephasing

Page 5: Control of quantum two-level systems · changes 𝜑 on Bloch sphere Oscillating fields perpendicular to quantization axis ... 10.3 Control of quantum two-level systems

AS-Chap. 10 - 5

R. G

ross

, A

. Mar

x &

F. D

ep

pe

, © W

alth

er-

Me

ißn

er-

Inst

itu

t (2

00

1 -

20

13

)

10.3. Control of quantum two-level systems ….. Quantum two-level system

Arbitrary TLS 𝐻 =1

2

𝐻11 𝐻12𝐻21 𝐻22

is Hermitian matrix

𝐻11, 𝐻22 ∈ ℝ and 𝐻21 = 𝐻12⋆

we choose 𝐻11 > 𝐻22

Hamiltonian of a quantum two-level system (TLS)

Symmetrize Subtract global energy offset 𝐻11+𝐻22

4× 1

𝐻 =1

2

𝜖 Δ − 𝑖Δ

Δ + 𝑖Δ −𝜖=

𝜖

2𝜎 𝑧 +

Δ

2𝜎 𝑦 +

Δ

2𝜎 𝑥

𝜖 ≡𝐻11 − 𝐻22

2> 0 Δ, Δ ∈ ℝ

Natural or physical basis 𝜑+ , |𝜑−⟩

𝐻 0 =1

2

𝜖 00 −𝜖

=𝜖

2𝜎 𝑧

𝐻 𝜑± = ±𝜖

2

Page 6: Control of quantum two-level systems · changes 𝜑 on Bloch sphere Oscillating fields perpendicular to quantization axis ... 10.3 Control of quantum two-level systems

AS-Chap. 10 - 6

R. G

ross

, A

. Mar

x &

F. D

ep

pe

, © W

alth

er-

Me

ißn

er-

Inst

itu

t (2

00

1 -

20

13

)

10.3 Control of quantum two-level systems ….. Quantum two-level system

Diagonalization of 𝑯 𝐻 =

1

2

𝜖 Δ − 𝑖Δ

Δ + 𝑖Δ −𝜖

tan 𝜃 ≡Δ2+Δ 2

𝜖 with 0 ≤ 𝜃 ≤ 𝜋

tan𝜑 ≡Δ

Δ with 0 ≤ 𝜑 ≤ 2𝜋

Eigenvalues det𝜖 − 2𝐸± Δ − 𝑖Δ

Δ + 𝑖Δ −𝜖 − 2𝐸±= 0

𝜖 − 2𝐸± −𝜖 − 2𝐸± − Δ − 𝑖Δ Δ + 𝑖Δ = 0

𝐸± = ±1

2𝜖2 + Δ2 + Δ 2 ≡ ±

1

2ℏ𝜔q

Eigenvectors |Ψ+⟩ = +𝑒−𝑖𝜑 2 cos𝜃

2𝜑+ + 𝑒+𝑖𝜑 2 sin

𝜃

2|𝜑−⟩

|Ψ−⟩ = −𝑒−𝑖𝜑 2 sin𝜃

2𝜑+ + 𝑒+𝑖𝜑 2 cos

𝜃

2|𝜑−⟩

𝐻 Ψ± = E±|Ψ±⟩

C. Cohen-Tannoudji, B. Diu, and F. Laloë, Quantum Mechanics Volume One, Wiley-VCH

Basis Ψ+ , |Ψ−⟩ energy eigenbasis (because 𝐻 has energy units)

transition energy

conveniently expressed in

frequency units

Page 7: Control of quantum two-level systems · changes 𝜑 on Bloch sphere Oscillating fields perpendicular to quantization axis ... 10.3 Control of quantum two-level systems

AS-Chap. 10 - 7

R. G

ross

, A

. Mar

x &

F. D

ep

pe

, © W

alth

er-

Me

ißn

er-

Inst

itu

t (2

00

1 -

20

13

)

10.3 Control of quantum two-level systems ….. Quantum two-level system

Visualization on Bloch sphere

tan 𝜃 ≡Δ2+Δ 2

𝜖 with 0 ≤ 𝜃 ≤ 𝜋

tan𝜑 ≡Δ

Δ with 0 ≤ 𝜑 ≤ 2𝜋

|𝛹+⟩ = +𝑒−𝑖𝜑 2 cos𝜃

2𝜑+ + 𝑒𝑖𝜑 2 sin

𝜃

2|𝜑−⟩

Basis rotation on Bloch sphere!

𝒙

𝒛

|𝝋−⟩

|𝝋+⟩

|𝜳+⟩

|𝜳−⟩

𝝋

𝜽

Vectors |𝛹−⟩ and |𝛹+⟩ define new quantization axis

𝐻 =𝜖2+Δ2+Δ 2

2𝜎 𝑧 in basis 𝛹− , |𝛹+⟩

|𝛹−⟩ and |𝛹+⟩ become new poles

|𝛹−⟩ = −𝑒−𝑖𝜑 2 sin𝜃

2𝜑+ + 𝑒𝑖𝜑 2 cos

𝜃

2|𝜑−⟩

𝒚

Page 8: Control of quantum two-level systems · changes 𝜑 on Bloch sphere Oscillating fields perpendicular to quantization axis ... 10.3 Control of quantum two-level systems

AS-Chap. 10 - 8

R. G

ross

, A

. Mar

x &

F. D

ep

pe

, © W

alth

er-

Me

ißn

er-

Inst

itu

t (2

00

1 -

20

13

)

10.3 Control of quantum two-level systems ….. Qubit Control: Fictitious spin ½

Fictitious spin ½ in fictitious magnetic field 𝑩

𝐻 ↑ = −𝛾ℏ 𝑩 ⋅ 𝑺 = −𝛾ℏ

2

𝐵𝑧 𝐵𝑥 − 𝑖𝐵𝑦𝐵𝑥 + 𝑖𝐵𝑦 −𝐵𝑧

𝛾 is the gyromagnetic ratio

𝐵 = 𝐵𝑥 , 𝐵𝑦 , 𝐵𝑧𝑇

is the magnetic field vector

Analogy to spin ½ in static magnetic field

Fictitous spin in fictitious 𝑩-field quantum TLS ↑ 𝜑+ ↓ 𝜑− ↑ 𝒖 Ψ+ ↓ 𝒖 Ψ− (𝒖 denotes the quantization axis along which 𝐻 ↑ is diagonal) ℏ 𝛾 𝑩 E+ − E− = ℏ𝜔𝑞

Polar angles of 𝑩 𝜃, 𝜑 −𝛾ℏ𝐵𝑧 𝜖 −𝛾ℏ𝐵𝑥 Δ −𝛾ℏ𝐵𝑦 Δ

Any quantum TLS has a “built-

in” static magnetic field

↓ NMR situation!

Orientation with respect to the quantization axis

depends on 𝜖, Δ, Δ

Page 9: Control of quantum two-level systems · changes 𝜑 on Bloch sphere Oscillating fields perpendicular to quantization axis ... 10.3 Control of quantum two-level systems

AS-Chap. 10 - 9

R. G

ross

, A

. Mar

x &

F. D

ep

pe

, © W

alth

er-

Me

ißn

er-

Inst

itu

t (2

00

1 -

20

13

)

10.3 Control of quantum two-level systems

….. Qubit Control: Free precession

Free precession

free evolution corresponds to free

precession about the 𝒛-axis

Also called Larmor precession

In absence of decoherence, only 𝝋 𝒕 evolves linearly with time 𝑡

In the energy eigenbasis g , |e⟩ , the qubit state vector |𝛹0⟩ is parallel to built-in field for 𝛹0 = |g⟩ antiparallel to the built-in field for 𝛹0 = |e⟩ Built-in field points along 𝑧-axis on Bloch sphere

𝒙

𝒛

|𝐠⟩

|𝐞⟩

𝝋𝟎

|𝜳𝟎⟩

When qubit state vector |𝛹0⟩ is not parallel or antiparallel to built-in field

|𝜳(𝒕)⟩

𝝋(𝒕)

𝛹 = cos𝜃

2e + 𝑒𝑖𝜑 sin

𝜃

2g

𝜽𝟎

𝒚

Page 10: Control of quantum two-level systems · changes 𝜑 on Bloch sphere Oscillating fields perpendicular to quantization axis ... 10.3 Control of quantum two-level systems

AS-Chap. 10 - 10

R. G

ross

, A

. Mar

x &

F. D

ep

pe

, © W

alth

er-

Me

ißn

er-

Inst

itu

t (2

00

1 -

20

13

)

10.3 Control of quantum two-level systems

….. Qubit Control: Free precession

Larmor precession – formal calcualtion

Energy eigenbasis 𝐻 =ℏ𝜔𝑞

2𝜎 𝑧 fictitious field aligned along quantization axis

𝒙

𝒛

|𝐠⟩

|𝐞⟩

𝝋𝟎

𝜽𝟎

|𝜳𝟎⟩

|𝜳(𝒕)⟩

𝝋(𝒕)

Time-independent problem Develop into stationary states

𝛹 𝑡 = e 𝛹0 𝑒−𝑖𝜔q𝑡/2|e⟩ + g 𝛹0 𝑒𝑖𝜔q𝑡/2|g⟩

𝛹0 = cos𝜃02

e + 𝑒𝑖𝜑0 sin𝜃02

g

𝛹 𝑡 = 𝑒−𝑖𝜔q𝑡/2 cos𝜃02|e⟩ + 𝑒𝑖𝜑0𝑒𝑖𝜔q𝑡/2 sin

𝜃02|g⟩

= cos𝜃02|e⟩ + 𝑒𝑖(𝜑0+𝜔q𝑡) sin

𝜃02|g⟩

𝝋(𝒕)

𝛹 = cos𝜃

2e + 𝑒𝑖𝜑 sin

𝜃

2g

𝒚

Page 11: Control of quantum two-level systems · changes 𝜑 on Bloch sphere Oscillating fields perpendicular to quantization axis ... 10.3 Control of quantum two-level systems

AS-Chap. 10 - 11

R. G

ross

, A

. Mar

x &

F. D

ep

pe

, © W

alth

er-

Me

ißn

er-

Inst

itu

t (2

00

1 -

20

13

)

10.3 Control of quantum two-level systems ….. Qubit Control: Rabi Oscillations

Rotating drive field

Consider the qubit state vector |𝛹⟩ expressed in energy eigenbasis g , |e⟩

Apply a drive field with amplitude ℏ𝜔d rotating about the 𝒛-axis at frequency 𝜔

𝐻 𝑡 =ℏ

2

𝜔q 𝜔d𝑒−𝑖𝜔𝑡

𝜔d𝑒𝑖𝜔𝑡 −𝜔q

𝒙

𝒛

𝐻 ↑ = −𝛾ℏ

2

𝐵𝑧 𝐵𝑥 − 𝑖𝐵𝑦𝐵𝑥 + 𝑖𝐵𝑦 −𝐵𝑧

𝑩𝒛 = ℏ𝝎𝐪

𝝎𝒕 𝑩𝒙 𝑩𝒚

0 𝜔d 0

𝜋 4 𝜔d 2 𝜔d 2

𝜋 2 0 𝜔d

3𝜋 4 −𝜔d 2 𝜔d 2

𝜋 −𝜔d 0

5𝜋 4 −𝜔d 2 −𝜔d 2

3𝜋 2 0 −𝜔d

7𝜋 4 𝜔d 2 −𝜔d 2

𝒚

Page 12: Control of quantum two-level systems · changes 𝜑 on Bloch sphere Oscillating fields perpendicular to quantization axis ... 10.3 Control of quantum two-level systems

AS-Chap. 10 - 12

R. G

ross

, A

. Mar

x &

F. D

ep

pe

, © W

alth

er-

Me

ißn

er-

Inst

itu

t (2

00

1 -

20

13

)

10.3 Control of quantum two-level systems ….. Qubit Control: Rabi Oscillations

Driven quantum TLS

𝐻 𝑡 =ℏ

2

𝜔q 𝜔d𝑒−𝑖𝜔𝑡

𝜔d𝑒𝑖𝜔𝑡 −𝜔q

=ℏ𝜔q

2𝜎 𝑧 +

ℏ𝜔d

2𝜎 +𝑒

+𝑖𝜔𝑡 + 𝜎 −𝑒−𝑖𝜔𝑡

Drive rotating about arbitrary equatorial axis on the Bloch sphere

𝐻 d =ℏ𝜔d

2𝜎 +𝑒

+𝑖 𝜔𝑡+𝜑 + 𝜎 −𝑒−𝑖 𝜔𝑡+𝜑

without loss of generality we choose 𝜑 = 0

≡ 𝐻 0 ≡ 𝐻 d

Operators 𝜎 − ≡ e g and 𝜎 + ≡ e g create or annihilate an excitation in the TLS

Here, our physics convention is not very intuitive, but consistent!

𝜎+ =0 01 0

𝜎− =0 10 0

Matrix representation and

Page 13: Control of quantum two-level systems · changes 𝜑 on Bloch sphere Oscillating fields perpendicular to quantization axis ... 10.3 Control of quantum two-level systems

AS-Chap. 10 - 13

R. G

ross

, A

. Mar

x &

F. D

ep

pe

, © W

alth

er-

Me

ißn

er-

Inst

itu

t (2

00

1 -

20

13

)

10.3 Control of quantum two-level systems ….. Qubit Control: Rabi Oscillations

Time evolution of driven quantum TLS 𝐻 𝑡 =

2

𝜔q 𝜔d𝑒−𝑖𝜔𝑡

𝜔d𝑒𝑖𝜔𝑡 −𝜔q

Qubit state 𝛹 𝑡 = 𝑎e 𝑡 e + 𝑎g 𝑡 g

obeys Schrödinger equation

𝑖d

d𝑡𝑎e 𝑡 =

𝜔q

2𝑎e(𝑡) +

𝜔d

2𝑒−𝑖𝜔𝑡𝑎g(𝑡)

𝑖d

d𝑡𝑎g 𝑡 =

𝜔d

2𝑒𝑖𝜔𝑡𝑎e(𝑡) −

𝜔q

2𝑎g(𝑡)

𝑖ℏd

d𝑡𝛹 𝑡 = 𝐻 𝛹 𝑡

Time-dependent Difficult to solve Move to rotating frame!

Schrödinger equation looses explicit time dependence

𝑖d

d𝑡𝑏e 𝑡 =

𝜔q − 𝜔

2𝑏e(𝑡) +

𝜔d

2𝑏g(𝑡)

𝑖d

d𝑡𝑏g 𝑡 =

𝜔d

2𝑏e(𝑡) −

𝜔q − 𝜔

2𝑏g(𝑡)

𝑏e 𝑡 ≡ 𝑒𝑖𝜔𝑡 2 𝑎e 𝑡

𝑏g 𝑡 ≡ 𝑒−𝑖𝜔𝑡 2 𝑎g 𝑡

Page 14: Control of quantum two-level systems · changes 𝜑 on Bloch sphere Oscillating fields perpendicular to quantization axis ... 10.3 Control of quantum two-level systems

AS-Chap. 10 - 14

R. G

ross

, A

. Mar

x &

F. D

ep

pe

, © W

alth

er-

Me

ißn

er-

Inst

itu

t (2

00

1 -

20

13

)

10.3 Control of quantum two-level systems

….. Qubit Control: Rabi Oscillations

Formal treatment Effective Hamiltonian 𝐻 describing the same dynamics as 𝐻 (𝑡)

𝑖ℏd

d𝑡𝛹 𝑡 = 𝐻 𝛹 𝑡

𝛹 𝑡 ≡ 𝑏e 𝑡 e + 𝑏g 𝑡 g

𝑖d

d𝑡𝑏e 𝑡 =

𝜔q − 𝜔

2𝑏e(𝑡) +

𝜔d

2𝑏g(𝑡)

𝑖d

d𝑡𝑏g 𝑡 =

𝜔d

2𝑏e(𝑡) −

𝜔q − 𝜔

2𝑏g(𝑡)

Interpretation of the rotating frame 𝐻 𝑡 =

2

𝜔q 𝜔d𝑒−𝑖𝜔𝑡

𝜔d𝑒𝑖𝜔𝑡 −𝜔q

The frame rotates at the angular speed 𝝎 of the drive Driving field appears at rest Drive can be in resonance with Larmor precession frequency 𝜔q

Away from resonance |𝜔 − 𝜔q| ≫ 0

red terms dominate no 𝐠 ↔ |𝐞⟩ transitions induced by drive Near resonance 𝜔 ≈ 𝜔q

blue terms dominate 𝐠 ↔ |𝐞⟩ transitions induced by drive

H =ℏ

2

−Δ𝜔 𝜔d

𝜔d Δ𝜔

with Δ𝜔 ≡ 𝜔 − 𝜔q

Page 15: Control of quantum two-level systems · changes 𝜑 on Bloch sphere Oscillating fields perpendicular to quantization axis ... 10.3 Control of quantum two-level systems

AS-Chap. 10 - 15

R. G

ross

, A

. Mar

x &

F. D

ep

pe

, © W

alth

er-

Me

ißn

er-

Inst

itu

t (2

00

1 -

20

13

)

10.3 Control of quantum two-level systems

….. Qubit Control: Rabi Oscillations

Expand into stationary states

Dynamics of the effective Hamiltonian

H =ℏ

2

−Δ𝜔 𝜔d

𝜔d Δ𝜔

Δ𝜔 ≡ 𝜔 − 𝜔q

Diagonalize H =−ℏ Δ𝜔2 + 𝜔d

2

2𝜎 𝑧

Initial state 𝜳𝟎 = 𝐠 (energy ground state)

𝛹 𝑡 = 𝛹 − 𝛹 0 𝑒+𝑖𝑡2 Δ𝜔2+𝜔d

2

𝛹 − + 𝛹 + 𝛹 0 𝑒−𝑖𝑡2 Δ𝜔2+𝜔d

2

𝛹 +

tan 𝜃 = −𝜔d

Δ𝜔

tan𝜑 = 0

|𝛹 +⟩ = + cos𝜃

2e + sin

𝜃

2|g⟩

|𝛹 −⟩ = − sin𝜃

2e + cos

𝜃

2|g⟩

|Ψ+⟩ = +𝑒−𝑖𝜑 2 cos𝜃

2𝜑+ + 𝑒+𝑖𝜑 2 sin

𝜃

2|𝜑−⟩

|Ψ−⟩ = −𝑒−𝑖𝜑 2 sin𝜃

2𝜑+ + 𝑒+𝑖𝜑 2 cos

𝜃

2|𝜑−⟩

New eigenstates

𝛹 𝑡 = cos𝜃

2𝑒+𝑖𝑡2 Δ𝜔2+𝜔d

2

𝛹 − + sin𝜃

2𝑒−𝑖𝑡2 Δ𝜔2+𝜔d

2

𝛹 +

Page 16: Control of quantum two-level systems · changes 𝜑 on Bloch sphere Oscillating fields perpendicular to quantization axis ... 10.3 Control of quantum two-level systems

AS-Chap. 10 - 16

R. G

ross

, A

. Mar

x &

F. D

ep

pe

, © W

alth

er-

Me

ißn

er-

Inst

itu

t (2

00

1 -

20

13

)

10.3 Control of quantum two-level systems

….. Qubit Control: Rabi Oscillations

Probability 𝑷𝐞 to find TLS in |𝐞⟩

Δ𝜔 ≡ 𝜔 − 𝜔q

𝑃e ≡ e 𝛹 𝑡 2 = e 𝛹 𝑡2=

|𝛹 +⟩ = + cos𝜃

2e + sin

𝜃

2|g⟩

|𝛹 −⟩ = − sin𝜃

2e + cos

𝜃

2|g⟩

= sin𝜃

2cos

𝜃

2𝑒−𝑖𝑡2 Δ𝜔2+𝜔d

2

− 𝑒+𝑖𝑡2 Δ𝜔2+𝜔d

22

𝛹 𝑡 = cos𝜃

2𝑒+𝑖𝑡2

Δ𝜔2+𝜔d2

𝛹 − + sin𝜃

2𝑒−𝑖𝑡2

Δ𝜔2+𝜔d2

𝛹 +

= sin 𝜃 sin𝑡 Δ𝜔2 +𝜔d

2

2

2

𝑃e =𝜔d2

Δ𝜔2 + 𝜔d2 sin

2𝑡 Δ𝜔2 + 𝜔d

2

2

tan 𝜃 = −𝜔d

Δ𝜔

Driven Rabi oscillations TLS population oscillates under transversal drive

Page 17: Control of quantum two-level systems · changes 𝜑 on Bloch sphere Oscillating fields perpendicular to quantization axis ... 10.3 Control of quantum two-level systems

AS-Chap. 10 - 17

R. G

ross

, A

. Mar

x &

F. D

ep

pe

, © W

alth

er-

Me

ißn

er-

Inst

itu

t (2

00

1 -

20

13

)

10.3 Control of quantum two-level systems

….. Qubit Control: Rabi Oscillations

Rabi Oscillations on the Bloch sphere

Δ𝜔 ≡ 𝜔 − 𝜔q

𝛹 𝑡 = cos𝜃

2𝑒+𝑖𝑡2

Δ𝜔2+𝜔d2

𝛹 − + sin𝜃

2𝑒−𝑖𝑡2

Δ𝜔2+𝜔d2

𝛹 +

𝑃e =𝜔d2

Δ𝜔2 + 𝜔d2 sin

2𝑡 Δ𝜔2 + 𝜔d

2

2

tan 𝜃 = −𝜔d

Δ𝜔

On resonance 𝝎 = 𝝎𝐪

Rotating frame cancels Larmor precession

State vector 𝛹 𝑡 has no 𝜑-evolution

𝛹 𝑡 = cos𝜔d𝑡

2g + 𝑖 sin

𝜔d𝑡

2e

Rotation about 𝑥-axis

𝒙

𝒛

𝜳 𝟎 = |𝐠⟩

|𝜳 (𝒕)⟩

𝒚 𝝎𝐝𝒕

Finite detuning 𝚫𝝎 > 𝟎 Additional precession at 𝛥𝜔

Population oscillates faster Reduced oscillation amplitude

Page 18: Control of quantum two-level systems · changes 𝜑 on Bloch sphere Oscillating fields perpendicular to quantization axis ... 10.3 Control of quantum two-level systems

AS-Chap. 10 - 18

R. G

ross

, A

. Mar

x &

F. D

ep

pe

, © W

alth

er-

Me

ißn

er-

Inst

itu

t (2

00

1 -

20

13

)

10.3 Control of quantum two-level systems

….. Qubit Control: Rabi Oscillations

Rabi Oscillations – Graphical representation 𝑃e =

𝜔d2

Δ𝜔2 + 𝜔d2 sin

2𝑡 Δ𝜔2 + 𝜔d

2

2

On resonance 𝝎 = 𝝎𝐪

Detuning 𝚫𝝎 = 𝟑𝝎𝐝

First experimental demonstration with superconducting qubit Y. Nakamura et al., Nature 398, 786 (1999)

𝑷𝐞

𝒕

𝟏

𝑷𝐞

𝒕

𝟏

𝟎. 𝟏

Page 19: Control of quantum two-level systems · changes 𝜑 on Bloch sphere Oscillating fields perpendicular to quantization axis ... 10.3 Control of quantum two-level systems

AS-Chap. 10 - 19

R. G

ross

, A

. Mar

x &

F. D

ep

pe

, © W

alth

er-

Me

ißn

er-

Inst

itu

t (2

00

1 -

20

13

)

10.3 Control of quantum two-level systems

….. Qubit Control: Rabi Oscillations

Oscillating vs. rotating drive – Microwave pulses 𝑃e =

𝜔d2

Δ𝜔2 + 𝜔d2 sin

2𝑡 Δ𝜔2 + 𝜔d

2

2

On resonance (𝝎 = 𝝎𝐪) 𝑷𝐞

𝒕

𝟏

2𝜋/𝜔

2𝜔d

Oscillating drive 2ℏ𝜔d cos𝜔𝑡 = ℏ𝜔d 𝑒+i𝜔𝑡 + 𝑒−i𝜔𝑡

in frame rotating with +𝜔 the 𝑒−i𝜔𝑡 -component rotates fast with −2𝜔 For 𝜔d ≪ 𝜔 this fast contribtion averages out on the timescale of the slowly rotating component Rotating wave approximation

Page 20: Control of quantum two-level systems · changes 𝜑 on Bloch sphere Oscillating fields perpendicular to quantization axis ... 10.3 Control of quantum two-level systems

AS-Chap. 10 - 20

R. G

ross

, A

. Mar

x &

F. D

ep

pe

, © W

alth

er-

Me

ißn

er-

Inst

itu

t (2

00

1 -

20

13

)

10.3 Control of quantum two-level systems

….. Qubit Control: Rabi Oscillations

Important drive pulses on the Bloch sphere

𝒙

𝒛

𝐠

𝒚

𝒙

𝒛

|𝐠⟩

𝒚

𝝅-pulse (𝜔dΔ𝑡 = 𝜋) g ↔ |e⟩ flips, refocus phase evolution

𝝅/𝟐-pulse (𝜔dΔ𝑡 = 𝜋/2) Rotates into equatorial plane and back

𝐞

𝒆 − 𝒊 𝒈

𝟐

2𝜋/𝜔

2ℏ𝜔d

Δ𝑡

𝒆 + 𝒊 𝒈

𝟐

Page 21: Control of quantum two-level systems · changes 𝜑 on Bloch sphere Oscillating fields perpendicular to quantization axis ... 10.3 Control of quantum two-level systems

AS-Chap. 10 - 21

R. G

ross

, A

. Mar

x &

F. D

ep

pe

, © W

alth

er-

Me

ißn

er-

Inst

itu

t (2

00

1 -

20

13

)

10.3 Control of quantum two-level systems

….. Qubit Control: Rabi Oscillations

Rabi Oscillations in presence of decoherence 𝑃e =

𝜔d2

Δ𝜔2 + 𝜔d2 sin

2𝑡 Δ𝜔2 + 𝜔d

2

2

𝚫𝝎 =0 𝑷𝐞

𝒕

𝟏

Effect of decoherence (qualitative approach) Loss of coherent properties to environment at a constant rate Γdec = 2𝜋/𝑇dec “Change of coherence” (time derivative) proportional to “amount of coherence”

Exponential decay of coherent property with factor 𝒆−𝚪𝐝𝐞𝐜𝒕

𝟐𝝅 = 𝒆−

𝒕

𝑻𝐝𝐞𝐜 Argument holds well for population decay (energy relaxation, 𝑇1) Loss of phase coherence more diverse depending on environment (exponential, Gaussian, or power law) Experimental timescales range from few ns to 100 μs

𝟎. 𝟓 𝟎. 𝟓 𝟏 + 𝒆−𝟏

𝑻𝐝𝐞𝐜

Decay envelope

Page 22: Control of quantum two-level systems · changes 𝜑 on Bloch sphere Oscillating fields perpendicular to quantization axis ... 10.3 Control of quantum two-level systems

AS-Chap. 10 - 22

R. G

ross

, A

. Mar

x &

F. D

ep

pe

, © W

alth

er-

Me

ißn

er-

Inst

itu

t (2

00

1 -

20

13

)

10.3 Control of quantum two-level systems

….. Qubit Control: Rabi Oscillations

Rabi decay time 𝑃e =

𝜔d2

Δ𝜔2 + 𝜔d2 sin

2𝑡 Δ𝜔2 + 𝜔d

2

2

𝚫𝝎 =0 𝑷𝐞

𝒕

𝟏

𝟎. 𝟓 𝟎. 𝟓 𝟏 + 𝒆−𝟏

𝑻𝐝𝐞𝐜

Complicated interplay between 𝑇1, 𝑇2∗, and the drive

At long times, small oscillations persist Nevertheless useful order-of-magnitude check for 𝑇dec Important tool for single-qubit gates To determine 𝑇1, 𝑇2

∗, 𝑇2 correctly, more sophisticated protocols are required energy relaxation measurements, Ramsey fringes, spin echo

Page 23: Control of quantum two-level systems · changes 𝜑 on Bloch sphere Oscillating fields perpendicular to quantization axis ... 10.3 Control of quantum two-level systems

AS-Chap. 10 - 23

R. G

ross

, A

. Mar

x &

F. D

ep

pe

, © W

alth

er-

Me

ißn

er-

Inst

itu

t (2

00

1 -

20

13

)

10.3 Control of quantum two-level systems

….. Qubit Control: Rabi Oscillations

Energy relaxation on the Bloch sphere

𝒙

𝒛

|𝐠⟩

𝝋

𝜽

𝜳 𝜽,𝝋

𝒚

Environment induces energy loss

State vector collapses to g Implies also loss of phase information Intrinsically irreversible

𝑇1-time rate Γ1 =2𝜋

𝑇1

Golden Rule argument

Γ1 ∝ 𝑆 𝜔q

𝑆 𝜔 is noise spectral density High frequency noise Intuition: Noise induces transitions

Quantum jumps

Single-shot, quantum nondemotiton measurement yields a discrete jump to g at a random time

Probability is equal for each point of time

Exponential decay with 𝑒−

𝑡

𝑇1

Page 24: Control of quantum two-level systems · changes 𝜑 on Bloch sphere Oscillating fields perpendicular to quantization axis ... 10.3 Control of quantum two-level systems

AS-Chap. 10 - 24

R. G

ross

, A

. Mar

x &

F. D

ep

pe

, © W

alth

er-

Me

ißn

er-

Inst

itu

t (2

00

1 -

20

13

)

10.3 Control of quantum two-level systems

….. Qubit Control: Rabi Oscillations

Dephasing on the Bloch sphere Environment induces random phase changes

Γ2 ∝ 𝑆 𝜔 → 0 , 𝑇2 =2𝜋

Γ2

Low-frequency noise is detuned No energy transfer

1/𝑓-noise 𝑆 𝜔 ∝1

𝜔

Example: Two-level fluctuator bath To some extent reversible

Decay laws 𝑒−

𝑡

𝑇2, 𝑒−

𝑡

𝑇2

2 ,

𝑡

𝑇2

𝛽

𝒙

𝒛

|𝐠⟩

|𝐞⟩

𝝋𝟎 𝒚

𝜳 𝜽𝟎, 𝝋𝟎

|𝜳(𝒕)⟩

𝒙

𝒚

𝜽𝟎

Visualization Phase 𝜑 becomes

more and more unknown with time

Classical probility, no superposition!

Phase coherence lost when arrows are distributed over whole equatorial plane

Page 25: Control of quantum two-level systems · changes 𝜑 on Bloch sphere Oscillating fields perpendicular to quantization axis ... 10.3 Control of quantum two-level systems

AS-Chap. 10 - 25

R. G

ross

, A

. Mar

x &

F. D

ep

pe

, © W

alth

er-

Me

ißn

er-

Inst

itu

t (2

00

1 -

20

13

)

Rotating frame & no detuning (Δ𝜔 = 𝜔 − 𝜔q = 0) → no 𝑥𝑦-evolution

x

y 1

0

x

y 1

0

x

y 1

0

x

y 1

0

x

y 1

0

Qubit dynamics – Relaxation

10.3 Control of quantum two-level systems

….. Qubit Control: Energy Relaxation

𝚫𝒕

𝝅 Measurement Init

𝑻𝟏

𝑷𝐞

𝚫𝒕

𝟏

𝒆−𝟏

Page 26: Control of quantum two-level systems · changes 𝜑 on Bloch sphere Oscillating fields perpendicular to quantization axis ... 10.3 Control of quantum two-level systems

AS-Chap. 10 - 26

R. G

ross

, A

. Mar

x &

F. D

ep

pe

, © W

alth

er-

Me

ißn

er-

Inst

itu

t (2

00

1 -

20

13

)

x

y y y y

free evolution time

x

y 1

0

x

y 1

0

x

y 1

0

10.3 Control of quantum two-level systems

….. Qubit Control: Ramsey fringes

Qubit dynamics – Ramsey fringes (𝑻𝟐⋆ )

x

y

𝚫𝒕𝒙𝒚

𝝅/𝟐 Measurement Init

𝝅/𝟐

𝚫𝒕𝒙𝒚 𝑻𝟐⋆

𝚫𝝎 = 𝟎

𝑷𝐞

𝟏

𝟎. 𝟓 𝟎. 𝟓 𝟏 + 𝒆−𝟏

𝚫𝝎 > 𝟎 Beating Δ𝑇 = 2𝜋/Δ𝜔 𝑻𝟐

⋆ −𝟏 = 𝟐𝑻𝟏−𝟏 + 𝑻𝟐

−𝟏 Energy decay always present!

Page 27: Control of quantum two-level systems · changes 𝜑 on Bloch sphere Oscillating fields perpendicular to quantization axis ... 10.3 Control of quantum two-level systems

AS-Chap. 10 - 27

R. G

ross

, A

. Mar

x &

F. D

ep

pe

, © W

alth

er-

Me

ißn

er-

Inst

itu

t (2

00

1 -

20

13

)

free evolution time

x

y 1

0

x

y 1

0

10.3 Control of quantum two-level systems

….. Qubit Control: Spin echo

Qubit dynamics – Spin echo (𝑻𝟐𝑬⋆ )

𝚫𝒕𝒙𝒚/𝟐

𝝅/𝟐 Measurement Init

𝝅/𝟐

𝚫𝒕𝒙𝒚 𝑻𝟐𝑬⋆

𝚫𝝎 = 𝟎 𝑷𝐞

𝟎. 𝟓 𝟎. 𝟓 𝟏 − 𝒆−𝟏

𝝅

Refocussing time

𝚫𝒕𝒙𝒚/𝟐

x

y

x x x x

y

x x x x

y x

y 1

0

Refocussing pulse reverses low-frequency phase dynamics 𝑻𝟐𝑬

⋆ > 𝑻𝟐⋆

Page 28: Control of quantum two-level systems · changes 𝜑 on Bloch sphere Oscillating fields perpendicular to quantization axis ... 10.3 Control of quantum two-level systems

AS-Chap. 10 - 28

R. G

ross

, A

. Mar

x &

F. D

ep

pe

, © W

alth

er-

Me

ißn

er-

Inst

itu

t (2

00

1 -

20

13

)

10.3 Control of quantum two-level systems

….. Qubit Control: Ramsey vs. Spin echo sequence

Ramsey vs. spin echo sequence

0

0.2

0.4

0.6

0.8

1

0 2 4 6 8 10

F(ω

t/2)

ωt/2

Ramsey filter FR

spin echo filter FE

Spin echo cancels the effect of low-frequency noise in the environment

Pulse sequences act as filters! Environment described by noise spectral density 𝑆(𝜔)

𝑭𝐑 𝜔𝑡 =sin2

𝜔𝑡2

𝜔𝑡2

2

𝑭𝐄 𝜔𝑡 =sin4

𝜔𝑡4

𝜔𝑡4

2

Decay envelope ∝ 𝑒−𝑡2 S 𝜔 𝐹R,E

𝜔𝑡

2𝑑𝜔

+∞−∞

Spin echo sequence

Filters low-frequency noise for 𝜔𝑡 → 0 𝜔𝑡 ≈ 2 Noise field fluctuates synchronously with 𝜋-pulse No effect

Sequence length 𝑡 is important!