control of light and radiaon - École polytechniqueweb.luli.polytechnique.fr/it_elli/12 wednesday n...

51
Training Course C2 : Dispersion/Stretcher/Compressor Characterisa7on for Ultra-Intense Lasers 28 May- June 1 - 2018 Ecole Polytechnique, Palaiseau, FRANCE

Upload: others

Post on 27-Jan-2021

0 views

Category:

Documents


0 download

TRANSCRIPT

  • TrainingCourseC2:Dispersion/Stretcher/Compressor

    Characterisa7onforUltra-IntenseLasers28May-June1-2018

    EcolePolytechnique,Palaiseau,FRANCE

  • Marseille

    CLARTÉteam:Controloflightandradia7onanalysis:Electromagne7ctreatment

    DeputyEditor

  • Contents

    •  Diffraction gratings: history, principles, models •  Classification

    –  Metal gratings

    –  Multilayer dielectric grating

    –  Hybrid metallo-dielectric gratings

    –  Gratings exhibiting wide spectral tolerance

  • Whatisadiffrac7ongra7ng?

    z

    ε (x) : modulated area

    x

    y

    M ε : superstrate

    ε 0 : substrate

    Periodicmodula7onofamedium: i.e.periodicmodula7onoftherefrac7veindex

  • That’sall?

    Yes…butthat’salot!!

  • 6

    Reflection of a Plane wave on a flat interface

    θrθi

    θt

    x

    y

    1

    2

    Hk

    E

    θrθi

    θt

    x

    y

    1

    2

    Ek

    H

    .0

    xy

    z

    α

    β

    γ

    =

    =

    k r

    In TE polarization In TM polarization

    αi=2πnisinθi/λαr=2πnisinθr/λ

    αr=αi

  • Reflec7onoflightbyadiffrac7ongra7ng

  • Gra7ng’slaw

    αm=αi+2πm/dαi=2πnisinθi/λαm=2πnmsinθi/λ

  • Firstdiffrac7ongra7ngobserva7on:withabirdfeather

    JamesGregory:«Letinthesun’slightbyasmallholetoadarkenedhouse,andattheholeplaceafeather,(themoredelicateandwhitethebe;erforthispurpose,)anditshalldirecttoawhitewallorpaperoppositetoitanumberofsmallcirclesandovals,(ifImistakethemnot,)whereofoneissomewhatwhite,(towit,themiddle,whichisoppositetothesun,)andalltherestseverallycoloured.Iwouldgladlyhearhisthoughtsofit.»

    13May1673

  • Observa7ons

    •  Strangeandveryinteres7ngeffect:producingsepara7onofcolorsinsunlight.

    •  JustayearbeforeNewtonmadethesameobserva7onwithaprism.

    •  Whatisthemain≠gra7ngs&prisms?->Gregoryproducedmul7plespectraandunseparated/undeviatedspotinplaceofNewton’ssinglespectrum.

  • D.Rieenhouse

    •  1785:observa7onofdiffrac7oneffectthroughasilkhandkerchiefbyF.Hopkinson

    •  CorrespondencewithD.Rieenhouse•  In1785Rieenhousemadeperhapsthefirstdiffrac7ongra7ngusing50hairsbetweentwofinelythreadedscrews,withanapproximatespacingofabout100linesperinch

  • Discoveryofthediffrac7ongra7ngeffect:F.Hopkinson,1786.

  • Firstman-madediffrac7ongra7ng?

  • Diffrac7ongra7ngs:perfecttooltotunetheop7calproper7esof

    materials

    BirthofMETAMATERIALS

    Howtomakegold(goodlightreflector)black?

  • Metallicgra7ngsTheWood’sanomalies(1902)

    •  Periodicand//groovesetchedinametallicsubstrate

    •  Illumina7onbyawhitelampinTMpolariza7on

    Au

    Robert W. Wood

    R. W. Wood, Philos. Mag. 4, 396-402 (1902)

  • Metallicgra7ngs:theWood’sanomalies(1902)

    Robert W. Wood

    R. W. Wood, Philos. Mag. 4, 396-402 (1902)

    Only in TM polarization:

    The scalar theory of gratings fails:

  • Firstaccuratenumericalmethods(1970’s)

    M. C. Hutley, D. Maystre., Opt. Commun. 19 (1976)

    Experimental data: d=555.5 nm, For h=37 nm and θ=6.6°, R

  • Demonstra7onofthegra7ng’slaw

    z

    ε (x) : modulated area

    x

    y

    M ε : superstrate

    ε 0 : substrate

    Periodicmodula7on:

    Gra7ngoperatorR(x):Linear Periodic

    ε(x,y)=ε(x+d,y)

    Ei(x,y)=Ei(y)exp(iαix)

    Ed(x+d,y)=R(x+d)Ei(x+d,y)=R(x)Ei(x+d,y)

    Incidentplanewave:

    Ed(x,y)=R(x)Ei(x,y)R(x)=R(x+d)

    Ed(x+d,y)=R(x)Ei(x,y)exp(iαid)=Ed(x,y)exp(iαid)

  • Let us define the function:

    Demonstra7onofthegra7ng’slaw

    v(x,y)=Ed(x,y)/exp(iαix)

    Let us calculate v(x+d,y): v(x+d,y)=Ed(x+d,y)/[exp(iaix) exp(iaid]) v(x+d,y)=R(x+d,y)Ei(x+d,y)/[exp(iαix)exp(iαid]) v(x+d,y)=R(x,y)/exp(iαix)=v(x,y)

    Function v(x,y) is periodic, it can expanded onto Fourier series

    αm=αi+2πm/d

    Pseudo-periodic field:

  • Periodicallymodulatedinterface:gra7ng’slaw

    θrθi

    x

    y

    1

    2

    k

    Planeinterface:Descartes’slaw

    αm=αi+2πm/dαm=αi

  • Periodicallymodulatedinterface:gra7ng’slaw

    θrθi

    x

    y

    1

    2

    k

    Planeinterface:Descartes’slaw

    αm=αi+2πm/dαm=αi

    Howtopredictthereflectedefficiency?

  • Howtopredictthereflectedefficiency?

    θrθi

    x

    y

    1

    2

    k

    αm=αi+2πm/dαm=αi

    1 2

    1 2

    1 2

    1 2

    r

    β βµ µβ βµ µ

    −=

    +

    1 2

    1 2

    1 2

    1 2

    r

    β βε εβ βε ε

    −=

    +

    Fresnelcoefficients,dependonthepolariza7on

    InTE InTM

    Nosimpleruleforgra7ng.Theefficiencydepndsonahighnumberofparameters:h,d,op7calcontrast,shapeofgrooves,lambda,…

  • Electromagnetic model

    Reduction of the Maxwell equations into a set of first order differential equations. Integration of this set of equation from the substrate to the superstrate along the y coordinate. Boundary conditions: calculation of the electromagnetic field in the homogeneous media. A second integration permits the calculation of the EM field inside the grating.

    z

    ε (x) : modulated area

    x

    y

    M ε : superstrate

    ε 0 : substrate

    Analytic resolution of Maxwell equations

    Analytic resolution of Maxwell equations

    Numerical resolution of Maxwell equations

    M.NevièreandE.Popov,LightPropagaBoninPeriodicMedia:DiffracBonTheoryandDesign(MarcelDekker,NewYork,2003)

  • Electric field distribution inside metallic gratings

    0 1 2 3 4 50

    1

    2

    3

    4

    5

    0.100.140.200.250.400.500.771.21.42.02.73.75.27.210142027375272100

    x (µm)

    y (µ

    m)

    0 100 200 300 400 500 6000

    100

    200

    300

    400

    500

    600

    H

    Normal incidence

    Au

    Air

    SiO2

    Au

    0.10000.13410.18000.24140.32390.43440.58280.78181.0491.4071.8872.5323.3974.5576.1128.20011.00

    X in nm

    Y in

    nm

    N.Bonodetal.,Opt.Express15,11427-11432(2007)N.Bonod,E.Popov,Opt.Lee.33,2398-2400(2008)N.Bonodetal.,Opt.Express16,15431-15438(2008)

  • Diffrac7ongra7ngsinpulsecompressorsystems

  • Classifica7onofdiffrac7ongra7ngsinpulsecompressorsystems

    N.Bonod,J.Néauport,Adv.Opt.Photonics8,156-199(2016)

  • Howtodesignhigheffiencyreflec?ongra?ng?

    1ststep:designingahighreflec7vecomponent.Metals,totalinternalreflec7on,mul7layermirror.2ndstep:etchingaperiodicstructureQues?on:Onlythe0-thorderpropagatesinreflec7onwhenillumina7ngthegra7nginnormalincidence.When7l7ngtheincidenceandincreasingtheangleofincidence,whatorderwillfirstappear?

  • Howtodesignhigheffiencyreflec?ongra?ng?

    3rdstep:op7mizingtheshapeofthemodula7ontoachieveahighefficiency.Thissteprequirescomputa7onalmethods.•  InmostCPAapplica7ons,diffrac7ongra7ngsfeature2propaga7ngorders(−1stand0thorder),alltheotherordersbeingevanescent

  • Metalgra7ngs

    Goldisusuallypreferredformetallicreflec7vegra7ngsduetoitshighreflec7vityoverthespectralrangeofinterest(from700to1200nm)Noblemetal:doesnotrequireaprotec7vetransparentoxidelayerlikesilveroraluminumSincethepioneeringworksofWood,ithasbeenwellknownthatmetallicgra7ngsarehighlysensi7vetoincidentpolariza7on.So-calledWood’sanomaliesareobservedonlyinTMpolariza7on

  • Metalgra7ngs

    R.Boydetal.,Appl.Opt.34,1697-1706(1995)

    1stmaximumachievedinthecaseofTMpolariza7onTEpolariza7on:highdiffractedefficienciesbutfordeepergrooves:metallicgra7ngswillbeeasiertomanufactureinTMpolariza7on:metallicgra7ngsusedinCPAsystemsoperateinTMpolariza7onBothpolariza7onsofferdiffractedlargerthanthereflectedefficiencyoflightinthebarecorrespondingmetal

  • Metalgra7ngs

    Largespectraltoleranceoftheirreflectedefficiency:crucialimportancetorecompressshortpulsesthatfeatureabroadspectrum.Typicaldiffrac7onefficienciesof92%inTMandbroadbandwidth

    J.Brieenetal.,Opt.Lee.21,540-542(1996)

  • MultiLayer Dielectric gratings

    TwoadvantagesforCPAapplica7onscomparedwithnoblemetals:(i)  theycanfeaturenegligiblelosses,whichcanbeofhigh

    importancetoachievingalmostperfectop7calperformance,nearly100%ofdiffrac7onefficiency

    (ii)theyfeaturemuchhigherLIDTsthanmetals(iii)Proposedin1995asanalterna7vetometallicgra7ngs

    M.D.Perry,R.D.Boyd,J.A.Brieen,D.Decker,B.W.Shore,C.Shannon,andE.Shults,“High-efficiencymul7layerdielectricdiffrac7ongra7ngs,”Opt.Lee.20,940–942(1995).

  • MultiLayer Dielectric gratings

  • Multilayer dielectric gratings (1995)

    M.D.Perryetal.,Opt.Lee.20,940-942(1995)

    MLDgra7ngs: -operateinTEpolariza7on -almostperfectreflec7on

  • Role of electric field on LIDT

    Bri;enSPIE52732003Bri;enSPIE27141996

    Increasing the angle of incidence permits to decrease the electric field inside the pillars

    Gratings should be illuminated with high angles of incidence !

    0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.01.0

    1.2

    1.4

    1.6

    1.8

    2.0

    2.2

    2.4

    2.6

    2.8

    3.0

    Max

    imum

    of E

    nhan

    cem

    ent |

    E|2

    Reflected efficiency -1 order

    MLD 1780 l/mm, 77.2° MLD 1740 l/mm, 62°

    0.0 0.2 0.4 0.6 0.8 1.0

    1.5

    2.0

    2.5

    3.0

    3.5

    4.0

    4.5

    5.0

    Max

    imum

    of e

    nhan

    cmee

    nt o

    f |E

    |2

    Reflected effiicency in -1 order

  • Influence of the grating profile on LIDT

    Identical period and reflected eficiencies but different near field enhancement N. Bonod et al., Opt. Commun. 260, 649-655 (2006)

    α

    h

    e

    c

    Dielectric multilayers

    H

    d

  • HoribaJobin-Yvon

    CEACESTAIns7tutFresnel

    0

    0,1

    0,2

    0,3

    0,4

    0,5

    0,6

    0,7

    0,8

    0,9

    1

    2,0 2,5 3,0 3,5 4,0 4,5 5,0 5,5 6,0 6,5 7,0 7,5 8,0

    Fluence (J/cm²)Pr

    obab

    ility

    PW01PW04PW08PW10

    Influenceofthegra?ngprofileonLIDT

    J.Neauportetal.,Opt.Express15,12508-12522(2007).

    R=96%

  • LIDT vs max |E|2

    LIDT>4.5 J/cm2

    S/1 mode 1.057µm

    Gaussian beam 200µm @ 1/e² ∼ 200 sites, 100 shots per site

    10 Hz, 500 fs RH

  • Localisation of the damage at a sub-micrometer scale

    S.Hocquet,J.Néauport,N.Bonod,Appl.Phys.Lee.99,061101(2011)

    Damagesini7ateattheoppositetoincomingwaveGoodconcordancewithEfieldcomputa7ons.SEMmeasurementsshowthatripplesreducedamagethresholdofMLDgra7ngs.

  • Metal-MultiLayer Dielectric gratings

  • Hybrid metal-dielectric grating

    ‘A metal layer is inserted between the substrate and the dielectric stack to reduce the number of dielectric bilayers and thus the mechanical stress within the

    stack’

    Reduced numbers of dielectric layers

    3 to 4 pairs are sufficient

    Gold layer

    Grating

    HfO2

    SiO2 h c

    HfO2 SiO2

    Substrate

    Au SiO2

    HfO2

    HfO2 SiO2

    SiO2

    First proposed to decrease the number of dielectric layers for decresing the stress indside the stack

    N.Bonodetal.,Opt.Commun.260,649-655(2006)

  • 2010: First hybrid metal-dielectric grating

    HfO2

    SiO2 h c

    HfO2

    SiO2

    Substrate

    Au SiO2

    HfO2

    HfO2 SiO2

    SiO2

    Sensitivity to crazings: Two samples of MLD and MMLD stacks (EBPVD) 120×140 mm2 have been exposed to a few air/vacuum cycles. Samples were observed using an intense fiber lamp: a few fractures were observed on the MLD stack only.

    J.Neauportetal.,Opt.Express18,23776-23783(2010)

  • Hybrid metal-dielectric gratings

    α e (nm) h (nm) DC (-1) reflected order diffraction efficiency, measured / calculated |E/E0|²

    80° 164 394 0.346 96.7% / 99.2% 1.71

    81° 180 400 0.365 96.3% / 95.5% 1.97

    78° 124 456 0.357 96.9% / 97.2% 1.59

    Hybrid metal-dielectric gratings: high efficiency

    J.Neauportetal.,Opt.Express18,23776-23783(2010)

  • Hybridmetallo-dielectricgra7ng:LIDT

    Hybrid metal-dielectric grating: LIDT>3 J/cm2 (500 fs)

    J.Neauportetal.,Opt.Express18,23776-23783(2010)

  • Wide spectral tolerance

  • Wide spectral tolerance High reflectivity over a wide spectral range centered around 800 nm

    1740lines/mm

    Full dielectric grating

    Etching in low and high refractive index

    H.Guanetal.,Opt.Lee.39,170-173(2014)

    D.H.Martzetal.,Opt.Express17,23809-23816(2009)

  • Etching in the low refractive index, TE polarization

    2op?miza?onsteps:Op7miza7onofthereflec7vityofthedielectricstackbymodula7ngthethicknessofthelayersOp7miza7onofthereflectedefficiency(-1storder)bymodula7ngthegrooveprofile

    Thereflectedefficiencymustbeop7mizedwithrespecttothegra7ngprofileandthedielectricstacksimultaneously.

    HfO2

    SiO2 hc

    HfO2 SiO2

    Substrate Au SiO2 HfO2

    HfO2 SiO2

    SiO2

    NOSOLUTION!!!

  • Solutions can be found

    Thereflectedefficiencyaveragedoverthespectrumishigherthan95%

    7 dielectric layers (HfO2/SiO2) are needed

    The grating is etched in the silica layer, the groove depth= 700 nm

    700 720 740 760 780 800 820 840 860 880 9000.0

    0.1

    0.2

    0.3

    0.4

    0.5

    0.6

    0.7

    0.8

    0.9

    1.0

    Ref

    lect

    ed e

    ffici

    ency

    Wavelength in nm

    ordre -1 totale

    HfO2

    SiO2 h c

    HfO2 SiO2

    Substrate

    Au SiO2

    HfO2

    HfO2 SiO2

    SiO2

  • FirstorderMeasurementat785nm,55.5°:95%

    120x140

    *HORIBAJobinYvonSASmanufacturesMMLDgra7ngsunderaworldwideexclusivelicenseofthepatent,Op7mizeddielectricreflec7vediffrac7ongra7ng-PCT/FR2010/052684-US20120300302”.

    FirstwidespectralMMLDmanufactured(2014)

  • Conclusions

    1780s:discoveryofdiffrac7ongra7ngs1960s:discoveryoflasers60s-70s:discoveryofop7callithographythankstolasers.Op7callithographyrevolu7onizedthefabrica7onofgra7ngs1980s:Diffrac7ongra7ngsrevolu7onizedhighenergylasersHighpowerlaserspushdiffrac7ongra7ngstowardstheirextremelimits:highdiffrac7onefficiency,largesize(hugesizecomparedtothewavelength),highLIDT,widespectraltolerance,wavefrontquality,…

    N.Bonod,J.Néauport,“Diffrac7ongra7ngs:fromprinciplestoapplica7onsinhighintensitylasers,”Adv.Opt.Photonics8,156-199(2016)