contents

47
B.-M. Sinnhuber, Remote Sensing I, University of Bremen, Summer 2007 Remote Sensing I Summer 2007 Björn-Martin Sinnhuber Room NW1 - U3215 Tel. 8958 [email protected] www.iup.uni-bremen.de/~bms

Upload: jerry-mccormick

Post on 02-Jan-2016

27 views

Category:

Documents


1 download

DESCRIPTION

Remote Sensing I Summer 2007 Björn-Martin Sinnhuber Room NW1 - U3215 Tel. 8958 [email protected] www.iup.uni-bremen.de/~bms. Contents. Lecture 1 Introduction to R emote S ensing Lecture 2 Electromagnetic R adiation - PowerPoint PPT Presentation

TRANSCRIPT

Page 1: Contents

B.-M. Sinnhuber, Remote Sensing I, University of Bremen, Summer 2007

Remote Sensing I

Summer 2007

Björn-Martin SinnhuberRoom NW1 - U3215Tel. [email protected]/~bms

Page 2: Contents

B.-M. Sinnhuber, Remote Sensing I, University of Bremen, Summer 2007

Lecture 1 Introduction to Remote Sensing

Lecture 2 Electromagnetic Radiation

Lecture 3 Interaction of Radiation with Gases and Matter: Spectroscopy

Lecture 4 Atmospheric Radiative Transfer

Lecture 5 Retrieval Techniques / Inverse Methods

Remote Sensing of the Atmosphere:

Lecture 6 Passive Microwave Remote Sensing

Lecture 7 Infra-Red Techniques

Lecture 8 Optical (UV / Visible) Remote Sensing 

Lecture 9 Active Remote Sensing: Radar and Lidar

Remote Sensing of the Earth Surface:  

Lecture 10 Sea Ice Remote Sensing

Lecture 11 Remote Sensing of the Ocean with Satellite Altimeters

Lecture 12 Summary

Contents

Page 3: Contents

B.-M. Sinnhuber, Remote Sensing I, University of Bremen, Summer 2007

Lecture 1 Introduction

• General Introduction

• Examples of Remote Sensing Applications

• Introduction to Satellite Orbits

Page 4: Contents

B.-M. Sinnhuber, Remote Sensing I, University of Bremen, Summer 2007

Photo taken

by crew of

Apollo 17

7 Dec 1972

Page 5: Contents

B.-M. Sinnhuber, Remote Sensing I, University of Bremen, Summer 2007

from maps.google.com

Page 6: Contents

B.-M. Sinnhuber, Remote Sensing I, University of Bremen, Summer 2007

A Note on Spatial Resolution

The maximum achievable resolution with an optical systemis given by

with α: opening angle, D: diameter of the optical aperture,λ: wavelength.

Because

with x: object size and h: sensor height we get

D

sin

h

xsin

D

hx

α

x

h

(Rayleigh criterion)

Page 7: Contents

B.-M. Sinnhuber, Remote Sensing I, University of Bremen, Summer 2007

Resolution: An example

D

hx

Assume some typical values: h: 800 km, D: 4m (huge!),λ: 500 nm:

cm10m1.0m4

m10500m10800 93

Page 8: Contents

B.-M. Sinnhuber, Remote Sensing I, University of Bremen, Summer 2007

ENVISAT: Launched 1 March 2002

Page 9: Contents

B.-M. Sinnhuber, Remote Sensing I, University of Bremen, Summer 2007

MERIS/ENVISAT

Page 10: Contents

B.-M. Sinnhuber, Remote Sensing I, University of Bremen, Summer 2007

SeaWIFS, 26. Feb. 2000

Page 11: Contents

B.-M. Sinnhuber, Remote Sensing I, University of Bremen, Summer 2007MERIS/ENVISAT, Cloud Top Pressure

Page 12: Contents

B.-M. Sinnhuber, Remote Sensing I, University of Bremen, Summer 2007

Ocean colour: MERIS/ENVISAT, 443 nm

Page 13: Contents

B.-M. Sinnhuber, Remote Sensing I, University of Bremen, Summer 2007

Ocean colour: MERIS/ENVISAT, 560 nm

Page 14: Contents

B.-M. Sinnhuber, Remote Sensing I, University of Bremen, Summer 2007

Ocean colour: MERIS/ENVISAT, Chlorophyll

Page 15: Contents

B.-M. Sinnhuber, Remote Sensing I, University of Bremen, Summer 2007

Absorption windows of atmospheric constituents

Page 16: Contents

B.-M. Sinnhuber, Remote Sensing I, University of Bremen, Summer 2007

Observing the Ozone Layer

http://ww

w.iu

p.physik.uni-b

reme

n.de/g

ome

nrt/

Global measurements of total ozone columns

Measurement type: Satellite-based passive remote sensing

Instrument: Global Ozone Monitoring Experiment (GOME) / ERS-2

Measured quantity: Total ozone columns(from backscattered solar radiation)

Antarctic Ozone Hole

Page 17: Contents

B.-M. Sinnhuber, Remote Sensing I, University of Bremen, Summer 2007

The Arctic Ozone Layer

Ten years of GOME observtions

Page 18: Contents

B.-M. Sinnhuber, Remote Sensing I, University of Bremen, Summer 2007

The Electromagnetic Spectrum

100 m 10-4 cm-1

10 MHz

10 m 10-3 cm-1 Radio

100 MHz

1 m 10-2 cm-1

1 GHz

10 cm 0.1 cm-1

10 GHz Microwave 1 cm 1 cm-1

100 GHz

1 mm 10 cm-1

1 THz sub-mm – Far IR 0.1 mm 100 cm-1

10 THz

10 μm 1000 cm-1 Thermal IR

al IR 100 THz

Near IR 1 μm 104 cm-1

1000 THz Ultraviolet

100 nm 105 cm-1

Wavelength Frequency Wave number

Visible 400-700 nm

Page 19: Contents

B.-M. Sinnhuber, Remote Sensing I, University of Bremen, Summer 2007

Solar Spectrum and Terrestrial Spectrum

Sun Earth

Short Wave Long Wave

Page 20: Contents

B.-M. Sinnhuber, Remote Sensing I, University of Bremen, Summer 2007

MODIS / Terra, Gulfstream Temperature

Page 21: Contents

B.-M. Sinnhuber, Remote Sensing I, University of Bremen, Summer 2007

Page 22: Contents

B.-M. Sinnhuber, Remote Sensing I, University of Bremen, Summer 2007

AMSU-B Data (183 ±1 GHz)

Dry areas in the UT

(NOAA 16, Channel 18,

15.6.2004.

Figure: Oliver Lemke)

Microwave Remote Sensing

Page 23: Contents

B.-M. Sinnhuber, Remote Sensing I, University of Bremen, Summer 2007

Satellite Limb Sounding

(Figure: Oliver Lemke)

Page 24: Contents

B.-M. Sinnhuber, Remote Sensing I, University of Bremen, Summer 2007

Microwave Limb Sonder (MLS) onboard UARS

Page 25: Contents

B.-M. Sinnhuber, Remote Sensing I, University of Bremen, Summer 2007

Airborne Microwave Remote Sensing

Page 26: Contents

B.-M. Sinnhuber, Remote Sensing I, University of Bremen, Summer 2007

ASUR frequency range and primary species

Page 27: Contents

B.-M. Sinnhuber, Remote Sensing I, University of Bremen, Summer 2007

A picture from the SOLVE campaignin Kiruna, Sweden, January 2000

Page 28: Contents

B.-M. Sinnhuber, Remote Sensing I, University of Bremen, Summer 2007

Validation of satellite data is important ...

Page 29: Contents

B.-M. Sinnhuber, Remote Sensing I, University of Bremen, Summer 2007

Ground-based Radiometer for Atmospheric Measurements (RAM)

Page 30: Contents

B.-M. Sinnhuber, Remote Sensing I, University of Bremen, Summer 2007

Measured Microwave Spectrum by the RAM

Page 31: Contents

B.-M. Sinnhuber, Remote Sensing I, University of Bremen, Summer 2007

Pressure Broadening of Spectral Lines

50km / 0.5 hPa

20km / 50 hPa

10km / 200 hPa

Page 32: Contents

B.-M. Sinnhuber, Remote Sensing I, University of Bremen, Summer 2007

A Note on Profile Retrieval

Often we can describe the relation between the (unknown)atmospheric profile x and the measured spectrum y by alinear equation: Axy

The matrix A is also called as the weighting function matrix.Finding x from measured y would require inversion of A:

yAx 1

yAx g

However, this is generally not possible (inverse of A does not exist).Therefore one has to find some „generallized“ inverse of A:

Page 33: Contents

B.-M. Sinnhuber, Remote Sensing I, University of Bremen, Summer 2007

Lidar In-space Technology Experiment (LITE)

on Discovery in September 1994 as part of the STS-64 mission

http://www-lite.larc.nasa.gov/index.html

Page 34: Contents

B.-M. Sinnhuber, Remote Sensing I, University of Bremen, Summer 2007

Radar Image

ENVISAT ASAR

15 April 2005

Page 35: Contents

B.-M. Sinnhuber, Remote Sensing I, University of Bremen, Summer 2007

Sea ice concentration fromAMSR-E 89 GHz

15 April 2007

www.seaice.de

courtesy of Lars Kaleschke

Page 36: Contents

B.-M. Sinnhuber, Remote Sensing I, University of Bremen, Summer 2007

Sea ice concentration fromAMSR-E 89 GHz

15 April 2007

www.seaice.de

False colour image

courtesy of Lars Kaleschke

Page 37: Contents

B.-M. Sinnhuber, Remote Sensing I, University of Bremen, Summer 2007

Example: SCIAMACHY Tropospheric NO2

biomass burningpollution

Courtesy of Andreas Richter

Page 38: Contents

B.-M. Sinnhuber, Remote Sensing I, University of Bremen, Summer 2007

• NO2 reductions in Europe and parts of the US

• strong increase over China

• consistent with significant NOx emission changes

• 7 years of GOME data

• DOAS retrieval + CTM-stratospheric correction

• seasonal and local AMF based on 1997 MOART-2 run

• cloud screening

1996 - 2002

GOME annual changes in tropospheric NO2

GOME NO2: Temporal Evolution

A. Richter et al., Increase in tropospheric nitrogen dioxide over China observed from space, Nature, 437 2005

Page 39: Contents

B.-M. Sinnhuber, Remote Sensing I, University of Bremen, Summer 2007

Lightning Flashes, Optical Transient Detector (OTD)

Page 40: Contents

B.-M. Sinnhuber, Remote Sensing I, University of Bremen, Summer 2007

Lecture 1 Introduction

• General Introduction

• Examples of Remote Seinsing Applications

• Introduction to Satellite Orbits

Page 41: Contents

B.-M. Sinnhuber, Remote Sensing I, University of Bremen, Summer 2007

Satellite Orbits

21 ea

a

satellite

r

Earth

apogee

perigee

a: major axis

e: excentricity

cos1

)1( 2

e

ear

Page 42: Contents

B.-M. Sinnhuber, Remote Sensing I, University of Bremen, Summer 2007

For a circular satellite orbit around a spherically homogenous planet the gravitational force Fg and the centrifugal force Fc are in balance:

2

r

RmgFg

rmr

mvFc

22

For the Earth g=9.81 m/s2 and R=6380 km.

Page 43: Contents

B.-M. Sinnhuber, Remote Sensing I, University of Bremen, Summer 2007

r

v

r

RgFF cg

22

r

gRv

2

22

2

gR

rr

v

rT

Orbital period given by:

Page 44: Contents

B.-M. Sinnhuber, Remote Sensing I, University of Bremen, Summer 2007 From Elachi

Rrh

Page 45: Contents

B.-M. Sinnhuber, Remote Sensing I, University of Bremen, Summer 2007 From Elachi

Page 46: Contents

B.-M. Sinnhuber, Remote Sensing I, University of Bremen, Summer 2007

2/73

2

cos

2

3

r

IgRJ

dt

d

The orbital node changes due to precession, primarily due to theoblateness of the Earth. The rate of change for the orbital nodeis approximately given by:

Here J2=0.00108 is the second harmonic of the Earth geopotential.I is the inclination angle.

Page 47: Contents

B.-M. Sinnhuber, Remote Sensing I, University of Bremen, Summer 2007 From Elachi