contact tech

Upload: christopher-garcia

Post on 01-Jun-2018

218 views

Category:

Documents


0 download

TRANSCRIPT

  • 8/9/2019 Contact Tech

    1/228

    Nonlinear Contact

    Analysis Techniques

    using ANSYS

    Mechanics Development Group

  • 8/9/2019 Contact Tech

    2/228

    Outl ine of Presentat ion 

    • General considerations

    • Contact applications

    • Contact kinematics• Node-to-node element CONTA178

    • Node-to-surface element CONTA175

    • Surface-to-surface elements CONTA171-174• Multi-physics contact

    • Bolt Pretension Element PRETS179

    • Troubleshooting• Conclusions

    • Future developments

  • 8/9/2019 Contact Tech

    3/228

    General Cons iderat ions in Con tact

    Analys is • The general goal for contact analysis is to

    determine

     – Contact stresses transmitted across contacting interface – Contacting area

    • Contact problems present significant difficulties

     – Unknown contacting zone prior to the analysis – Contact constraint is either active or inactive

     – Friction introduces another kind of nonlinearities

    • A small amount of positive or negative relative sliding can

    change the sign of frictional forces/stresses completely.

  • 8/9/2019 Contact Tech

    4/228

    General Cons iderat ions in Con tact

    Analys is • Contact finite element development covers

     – Kinematics, discretization, Inequality

     – Accuracy, robustness and computational overhead

    • The numerical treatment of contact problems

    involves

     – Formulation of geometry – Integration of interface laws

     – Variational formulation

     – Development of algorithms

  • 8/9/2019 Contact Tech

    5/228

    Contact Kinemat ics 

    • Contact problem involves a variety of geometric andkinematic situations

    • Contact surface discretization – Contact surface must be discretized because the

    underlying bodies are discretized.

     – Node-node, node-surface, surface-surface

     – Smoothing provides a significant improvement inconvergence behavior.

    • Contact detection and searching

     – Global search, local search

    • Penetration/gap calculation

     – Numerical iterations for higher order

  • 8/9/2019 Contact Tech

    6/228

    General Considerat ions 

    • The resulting elements should be able to

     – Pass patch test

    • Mesh discretization effects

     – Satisfy Ladyshenskaja-Babuska-Brezzi (LBB) condition

    • Overconstraint criterion

     – Support contact with quadratic order element

     – Solve multi-field contact problems

    undeformeddeformed

    Uniform pressure

    Constant pressure over one face fails LBB

  • 8/9/2019 Contact Tech

    7/228

    Solv ing Larger Assembly Models 

    • In the early days of FE technology only the separate

    structural components of a structure were analyzed.

    • It is now recognized that the interaction betweenstructural parts can have a great influence on the

    results.

    • Increased computer performance in combinationwith efficient solver technology and parallel

    computing techniques has resulted in FE models

    which may exceed 1,000,000 elements not only for

    linear but also for nonlinear analysis.

  • 8/9/2019 Contact Tech

    8/228

  • 8/9/2019 Contact Tech

    9/228

    App l icat ion : 2D Gear Model 

  • 8/9/2019 Contact Tech

    10/228

    App l icat ion : Wir ing 

  • 8/9/2019 Contact Tech

    11/228

    App l icat ion: 3D Rope Form ing 

  • 8/9/2019 Contact Tech

    12/228

    App l icat ion : 3D Gear Model 

    Contact status

    SOLID45

    PCG Solver 

  • 8/9/2019 Contact Tech

    13/228

    Appl icat ion: Suspension Model 

  • 8/9/2019 Contact Tech

    14/228

    App l icat ion: Rubber Boo t Seal 

    HYPER58

    Self-contact

    3D rubber material

    Steering

    shaft

    Rubber boot

    Self contact

    Self contact

    Rigid-deformable contact

  • 8/9/2019 Contact Tech

    15/228

    Pressure stress ongasket material

    gasket

    material

    ∆ (mm)

    0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8

       P  r  e  s  s  u  r

      e

       (   P  a   )

    0

    2e+7

    4e+7

    6e+7

    8e+7

    1e+8

    1e+8

    1e+8

    2e+8

    2e+8

    2e+8

    FEA prediction

    Gasket Element/Material Simu lat ion 

  • 8/9/2019 Contact Tech

    16/228

    Electr ical Connecto r 

    14 symmetric contact pairs

  • 8/9/2019 Contact Tech

    17/228

    App l icat ion: Impact of Two Cyl inders 

    SHELL181

    PlasticityLarge strain

  • 8/9/2019 Contact Tech

    18/228

    ANSYS Contact Background 

      CONTAC12CONTAC52

    CONTA178 CONTAC48CONTAC49

    CONTA175 CONTA171-CONTA174

    Type Node-Node Node-Node Node-Surface

    Node-Surface

    Surf-Surf

    Sliding Small Small Large Large Large

    High order Yes

    AugmentedLagrange

    Yes Yes Yes Yes

    PureLagrange

    Yes Development Development

    Contactstiffness

    Userdefined

    Semi-automatic

    Userdefined

    Semi-automatic

    Semi-automatic

    ThermalElectric

    Yes YesYes YesYes

    Mesh tool EINTF EINTF GCGEN ESURF ESURF

  • 8/9/2019 Contact Tech

    19/228

    Contact26Contact26

    PointPoint--SurfaceSurface

    Contact48Contact48

    PointPoint--SurfaceSurface

    Contact48Contact48

    PointPoint--SurfaceSurfaceRigidRigid

    FlexibleFlexible

    FlexibleFlexible

    GroundGroundContact12Contact12PointPoint--PointPoint

    ANSYS Contact Background 

  • 8/9/2019 Contact Tech

    20/228

    ANSYS Contact Background 

    • CONTA12,52,26,48,49 exist only because of the historical reason• These elements are not under continue development

    • All the new nonlinear tools, like solution control options are not applied to

    these elements.

    • If you use these elements and at the same time uses SOLCON,ON, thesolution could be very inefficient.

    • If you would like to use elements mentioned above, the following options

    might help:

    SOLCON,OFF !uses the old nonlinear tools

    CNVT,U !Node-to-Node contact converges much fast with U

    MP,MU,1,0 !Friction make the convergence difficult

    R,1,1E6 !for E-Modules 2.1e5

    For the efficient reason, the above elements should be replaced with

    Contact171-175,178, Target169,170

  • 8/9/2019 Contact Tech

    21/228

    ANSYS Contact Background 

    • Node-node contact element 178

     – Model point-to-point contact

    • Pipe whip - contact point is always located between the pipe

    tip and the restraint

    • Node-surface contact element 175

     – Model point/edge contact

    • Snap-fit - contact can occur around corners

    • Surface-surface contact elements 171-174

     – Model surface contact

    • interference fit

    • metal forming

    • Mixed contact element types

  • 8/9/2019 Contact Tech

    22/228

    ANSYS Contact Background 

    • If you have a problem which includes contact at a

    sharp corner, the surface-to-surface elements,

    which use the Gauss point as the contact detection

    point, can experience an over penetration at thecorner.

    • In such cases, you can mix the surface-to-surface

    contact elements with node-to-surface elements.

    Surface-to-Surface

    Elements

    Node-to-Surface Elements

    used to model the contact

    at the corner 

  • 8/9/2019 Contact Tech

    23/228

    Patch Test 

    • A uniform pressure is applied on top of surface

    • Uniform stress state should be obtained

    irrespective of the mesh

    undeformed

    deformed

  • 8/9/2019 Contact Tech

    24/228

    Patch Test 

    • Node-node contact pass the patch test

    • Node-surface contact fails the patch test

    • Surface-surface contact conditionally pass the patch test

    • Weak enforcement of contact constrains (penalty method),

    rather than strong enforcement (Lagrange multiplier method),

    is the recipe by which patch tests of this type may be passed.

    • Local penetration violates compatibility condition of

    displacement based FEA

     – Cross penetration into coarsely discretized contact surfaces can

    lead to inaccurate solution

     – Refinement of contact surface leads to global accuracy, although

    local contact stress oscillation may still be observed

     – Only matching meshes completely eliminate these problem

  • 8/9/2019 Contact Tech

    25/228

    2D/3D Node-Node Contact

    Element CONTA178

  • 8/9/2019 Contact Tech

    26/228

    Node-to -Node Element 178 

    • It is the simplest and least expensive (in terms of

    solution CPU) contact element available. When

    modeling conditions warrant their use, it can be an

    effective tool for modeling a variety of contactsituations.

    CONTA178 - 3D Gap (with damping)

    I

    J

  • 8/9/2019 Contact Tech

    27/228

    Node-node CONTA178: Ob jec tives 

    • Replacement of old gap elements 12,52,40

    • Alternative contact algorithms

    • Exact compatibility of contact constraint

    • More functionality

    • Easy of use and intelligent default settings – Chattering & penetration control, contact stiffness

    • More efficient and more stable than

     – Node-surf, surf-surf contact elements

    • Request from ANSYS critical customers

  • 8/9/2019 Contact Tech

    28/228

    Lim itat ions of Old Gap Elements 

    • CONTAC52

     – Contact normal based on initial locations of two nodes

    • two nodes must be separated initially• may provides wrong contact normal

     – Issues with real geometry model

    • two node are initially coincident or overlap

    • initial interference fit where initial penetration is not constant

     – No penetration control

    • contact stiffness must be an input

     – Lack of cylindrical gap

  • 8/9/2019 Contact Tech

    29/228

    Lim itat ions of Old Gap Elements 

    • CONTAC12

     – Contact normal based on real constant

    • each contact element may have its own real constant set

     – Circular gap

    • 2D frictionless

    • element stiffness is not updated

    • COMBIN40

     – Gap normal based on nodal coordinate

    • only support one dimension

    • accelerations operate, mass and inertia relief calculations are

    not correct

     – Not a true contact element

  • 8/9/2019 Contact Tech

    30/228

    Node-Node CONTA178: Overv iew 

    • The contact nodal forces are assumed to be directly

    conjugate to the nodal gaps.

    • The approach can not support 3D higher orderelement contact

    • The approaches is capable of passing so-called

    contact patch tests and LBB condition due tomatching mesh pattern.

  • 8/9/2019 Contact Tech

    31/228

    Node-Node CONT175: Overview 

     – Pure Lagrange, augmented Lagrange, or pure penalty

     – algorithms

    • Pure Lagrange permits tiny penetrations (best accuracy)

     – User-definable contact normal direction (several options)

     – Advanced surface behavior options (bonded, no-

    separation, ramped interference, etc.)

     – User-definable initial gap or interference – Element damper available (for closed gap status)

     – Semi-automatic real constants (factors)

     – Frictional circular & cylindrical gap types

     – Weak spring option for open gap

     – Unsymmetric solver option (NROPT)

  • 8/9/2019 Contact Tech

    32/228

    Con tact Element Generation 

     – EINTF enhancements

    • User-specified DX, DY, DZ offset values

     – Useful for either coincident or offset (noncoincident)nodes

    - User control over

    node number

    ordering

    - EINTF,,,REVE flips

    normal direction

  • 8/9/2019 Contact Tech

    33/228

    Node Ordering 

    • Node ordering is critical for contact normal

     – First node on one side, second on other side

    • Ordering control: EINTF,,,low/high

    • Order display: /PSYM, esys

    • Order verification

     – NSEL,s,pos,1 + ESLN + NSLE + /PSYS,esys + EPLOT

    • Ordering correction: EINTF,,,reve

  • 8/9/2019 Contact Tech

    34/228

    Contact Normal 

    • Support real geometry model

     – Nodes may be coincident or overlap

    • KEYOP(5)=0 – Real constants (NX,NY,NZ) if defined

     – Node locations (initially separate position)

    • KEYOP(5)=4,5,6 – X (Y,Z) axis of element coor. sys.

     – ESYS must be a Cartesian system

     – Each element can has its own

  • 8/9/2019 Contact Tech

    35/228

    Contact Normal 

    • KEYOP(5)=1,2,3

     – X (Y,Z) axis of nodal coor. sys.

    • averaging on both nodes

     – Each element has its own

     – Easy to build if using solid model

    command

    • NORA,area,ndir • NORL,line,area,ndir 

     – Acceleration, mass and inertia relief

    are correct

  • 8/9/2019 Contact Tech

    36/228

    A lternat ive con tact algo r i thms 

    • Pure Lagrange multipliers method

     – Near zero penetration and slip, no contact stiffness

     – More DOF, over constraint, chattering

     – Solver issue: PCG, impact, eigenvalue buckling

    • Augmented Lagrange method

     – Less expensive, more robust – Contact elements superposition

     – Less accurate, ill condition if too big contact stiffness

    • Lagrange multiplier on normal & penalty on tangent – Behaviors between above two

  • 8/9/2019 Contact Tech

    37/228

  • 8/9/2019 Contact Tech

    38/228

    A lternat ive con tact algo r i thms 

    Lagrange

    unsymmetry

    Lagrange

    symmetry

    Lagrange

    Penalty

    Augmented

    Lagrange

    DOF 5722 5722 5466 5338

    Iteration 15 17 13 14

    Penetration

  • 8/9/2019 Contact Tech

    39/228

    A lternat ive con tact algo r i thms 

    • Pure Lagrange multiplies method

     – KEYOP(2)=0

     – Contact length: average distance from contact node to

    center of underlying element

     – Chattering control parameters

    • TOLN: Max. overlap contact remains open

     – 0.1*Max. Displacement convergence tolerance – 1.e-3*contact length

    • FTOL: Max. tension force contact remains close

     – 0.1*Max. residual force

  • 8/9/2019 Contact Tech

    40/228

    Lagrange Mu lt ip l ier Method 

    Contact status

    adjustment andCompatibility check 

  • 8/9/2019 Contact Tech

    41/228

    A lternat ive con tact algo r i thms 

    • Lagrange multiplier on normal and Penalty on

    frictional plane

     – KEYOP(2)=1

     – Max. slip control SLTOL

    • 5.e-3*contact length

    • used to determine tangent contact stiffness KS

     – KS = max (mu*fn/SLTOL, rvr(4)) – Chattering control parameters

    • TOLN, FTOL

  • 8/9/2019 Contact Tech

    42/228

    A lternat ive con tact algo r i thms 

    • Augmented Lagrange method

     – KEYOP(2)=2

     – Normal contact stiffness KN

    • Contact length*Elastic Modulus (EX) of underlying elements

    (contact length*1.e9 if EX=0)

     – Penetration tolerance TOLN

    • 5.e-3*contact length

    • degenerate to penalty method if using big TOLN

     – Max. slip control SLTOL and KS

    • Pure Penalty method

     – KEYOP(2)=3

     – Contact stiffness KN, KS

  • 8/9/2019 Contact Tech

    43/228

    In it ial Gap s ize 

    • Real constant GAP + initial node locations

    (KEYOPT(4)=0)

     – Depends on contact normal

     – Not a distance

     – Supports varying initial interference

    • Real constant GAP (KEYOP(4)=1)

  • 8/9/2019 Contact Tech

    44/228

    Cyl ind r ical Gap 

    • Set KEYOPT(1)=1 & ignore KEYOPT(4,5)

    • Cylindrical axis direction cosines

     – Real constant NX, NY, NZ. (0,0,1 as default)

    • Cases

    Case 1: GAP = r2-r1 > 0

    un = GAP - |x2-x1| >= 0

    Case 2: GAP = - (r1+r2) < 0

    un = |x2-x1| + GAP >= 0

  • 8/9/2019 Contact Tech

    45/228

    Weak Spr ing Opt ions 

    • KEYOP(3)=0 does not use

    • KEYOP(3)=1 acts across an open gap

    • KEYOP(3)=2 open gap and/or sliding plane

     – Only contributes to contact stiffness

    • KEYOP(3)=3 acts across an open gap

    • KEYOP(3)=4 open gap and/or sliding plane

     – Contributes to contact stiffness and force

    • Real constant REDFACT (default=1.e-6)

    • Do not combine with no-separate & bonded

  • 8/9/2019 Contact Tech

    46/228

    App l icat ion: 2D Cyc l ic Secto r Contact 

    Contact normal based on

    nodal coordinate system

    Equivalent stress

    after spin

    Contact results

    A l i i

  • 8/9/2019 Contact Tech

    47/228

    Appl icat ion: Bar Impact on a Rigid Wall

    Initial shape

    Contact element results Equivalent stress

    A l i t i A t i f i i l Hi J i t

  • 8/9/2019 Contact Tech

    48/228

    App l icat ion: A rt i f ic ial Hip Jo int 

    Stress

    Contact

    force

    Contact

    results

    Femoral head

    Acetabular 

    component

    Socket

    N d N d CONTA178 L i i t t i

  • 8/9/2019 Contact Tech

    49/228

    Node-Node CONTA178: L im itat ion 

    • Requires matching mesh pattern on both side of

    contact face

    • Requires 8 nodes hexahedron• Only supports small sliding and rotation

    • Does not support multi-physics contact

    • Contact results can not be visualized

  • 8/9/2019 Contact Tech

    50/228

    2D/3D Node-Surface Contact

    Element CONTA175

    Node Surface Con tact Element 175

  • 8/9/2019 Contact Tech

    51/228

    Node-Surface Con tact Element 175 

    I

    IX

    Y

    X

    Y

    Z

    2D associated target

    surface (TARGE169) 3D associated target

    surface (TARGE170)

    target normal

    target normal

    CONTA175CONTA175

    T t S t

  • 8/9/2019 Contact Tech

    52/228

    Target Segments 

    Line

    Parabola

    Arc

    CircleSphere

    Cone

    Cylinder 

    Pilot node

    Quad

    Quad8

    Tri

    Tri6

    TARGE169   TARGE170

    Node Sur f CONT175: Ob jectives

  • 8/9/2019 Contact Tech

    53/228

    Node-Sur f CONT175: Ob jectives 

    • Supports dissimilar mesh pattern on both sides ofcontacting surface that CONTA178 can not handle.

    • Solve contact problems when surface-surface contact

    elements CONTA171-174 have difficulties.• Point-surface contact & edge-surface contact

    • Replace CONTAC26,48,49.

     – Much less number of elements

     – Better way to treat large frictional sliding

     – 2d/3d rigid-deformable & deformable-deformable contact

     – Midside node for 2d/3d target, 2d contact surface

    • This element is typically used only in highly specializedniche applications:

     – In 3D, contact between a line (or sharp edge) and a surface.

     – In 2D, contact between a node (or sharp corner) and a surface.

    Doub le Beams Con tact

  • 8/9/2019 Contact Tech

    54/228

    Doub le Beams Con tact 

    14 symmetric contact pairs

    P i t C t t

  • 8/9/2019 Contact Tech

    55/228

    Poin t Contact 

    14 symmetric contact pairs

    Electr ical Connecto r

  • 8/9/2019 Contact Tech

    56/228

    Electr ical Connecto r 

    14 symmetric contact pairs

    Less Numbers of elements

  • 8/9/2019 Contact Tech

    57/228

    Less Numbers of elements 

    12 CONTAC48

    C*T

    3 CONTA175 + 4 TARGE169

    (C+T)

    Lim itat ions of Node-Based Con tact

  • 8/9/2019 Contact Tech

    58/228

    Lim itat ions of Node Based Con tact 

    Problem with 3D

    higher-order contact

    element

    Questionable for

    unique penetrationContact node slips off the

    edge of target surface

    Lim itat ion of Node-Based Con tact 

  • 8/9/2019 Contact Tech

    59/228

    Node-surface handles

    20 nodes brick element

    3D Upsett ing

  • 8/9/2019 Contact Tech

    60/228

    3D Upsett ing 

    Node-surfacehandles

    8 nodes brick

    element

    CONTA175: Overv iew 

  • 8/9/2019 Contact Tech

    61/228

    • The contact nodal forces are assumed to be directly conjugate

    to the nodal gaps. The contact traction can be recovered by

    trace the area on contact node.

    • Smoothing is done by averaging normal at the target nodes.The normal direction inside of target segment is obtained by

    interpolation of shape function

    • ANSYS automatically extends the target surface to prevent

    “slip-off”.

    • The approach can not support 3D higher order element

    contact

    • The approaches is incapable of passing so-called contactpatch tests. It satisfies LBB condition.

    CONTA175: Overv iew 

  • 8/9/2019 Contact Tech

    62/228

    • 2D/3D contact

    • Ridge-flexible, flexible-flexible contact

    • 2D lower/higher order contact & target

    • 3D lower order contact, 3D lower/higher target

    • Static, transient, model, linear buckling,harmonic, sub-structuring analysis

    • Thermal-electric contact ?

    Con tact Pair Concept 

  • 8/9/2019 Contact Tech

    63/228

    • Target (master) surface - a continuous surface

    • Contact (slave) surface

     – A set of discrete contact nodes – Contact constraint equation

    • Symmetric (two pass) contact

     – Difficulty of contact pressure interpretation – Overconstraint of the model

    The target nodes can pass

    through the contact

    su rface in between thecontact poin ts .

    The contact detect ion

    po ints can no t penetrate

    the target su rface.

    CONTA175 Mesh Too l: ESURF 

  • 8/9/2019 Contact Tech

    64/228

    ESURF

    GCGEN

    for

    48,49

    ESURF

    for

    175

    CONTA175 Mesh Too l: ESURF 

  • 8/9/2019 Contact Tech

    65/228

    Only exterior nodes

    are re-selected

    CONTA175: Con tact Models 

  • 8/9/2019 Contact Tech

    66/228

    • Contact force based model KEYOP(3) = 0

     – Gives contact forces as CONTAC48,49

     – FKN, FKT unit: Force/length – TCC, ECC depend on element size

     – Pressure contact force in etable and PLES/PLNS

    • Contact traction based model KEYOP(3)= 1 – Gives contact pressure as CONTA171-173

     – FKN, FKT unit: Force/length**3

     – Thermal-electric contact is available (TCC, ECC) – Point contact is not supported (auto switching).

    Con tact Normal Direct ion 

  • 8/9/2019 Contact Tech

    67/228

    • Perpendicular to target surface KEYOP(4)=0

     – Target surface smoothing must be done

     – Used if target surface is smoother than contact surface

    • Perpendicular to target surface KEYOP(4)=1

     – Contact surface smoothing must be done

    • Perpendicular to target surface KEYOP(4)=2

     – Used for shell/beam bottom surface contact

     – Contact surface smoothing must be done

    • Smoothing is performed by averaging surface

    normals connected to the node.

    Upsett ing 

  • 8/9/2019 Contact Tech

    68/228

    KEYOP(4)=0

     Normal to

    target surface

    O-ring Prob lem 

  • 8/9/2019 Contact Tech

    69/228

    KEYOP(4)=1 Normal from 

    contact surface

    Doub le Beams Prob lem 

  • 8/9/2019 Contact Tech

    70/228

    Different normal

    Definition gives

    Different anwsers

    CONTA175: Target Edge Extens ion 

  • 8/9/2019 Contact Tech

    71/228

    • Auto extension of target surface (TOLS)

     – Prevent from slipping of the target edge

     – Defaults 2 (2%) for nlgeom,on; 10 for nlgeom,off; 20 for

    interference fit

    Target Edge extens ion facto r 

  • 8/9/2019 Contact Tech

    72/228

    Interference fit

    TOLS=20 TOLS=2

     Miss contact

    detection

    CONTA175: Pos tpro cess 

  • 8/9/2019 Contact Tech

    73/228

    • Contact quantities can not be clearly visualized (asopposed to CONTA171-173).

    • Etable items and Sequence Numbers are similar toCONTA171-173

     – Easily switch element types

     – Waste spare space

    • Items in PLES, PLNS for contact force based model

     – PRES: contact nodal force

     – SFRI: contact frictional force

    Name Item I J

    PRES SMISC 5 1 2

    SFRIC SMISC - 3 4

    STAT1 NMISC 19 1 2

    OLDST NMISC - 3 4

    PENE2 NMISC - 5 6

    Node-Surf CONTA175: L im itat ion 

  • 8/9/2019 Contact Tech

    74/228

    • Does not support 3D higher order element contact

    • Requires 8 nodes hexahedron

    • Contact results can not be visualized

    • The approaches is incapable of passing so-called

    contact patch tests.

  • 8/9/2019 Contact Tech

    75/228

    Surface-Surface Contact

    Element CONTA171-174

    A New Revolution Technology

    Con tact Elemen ts 

  • 8/9/2019 Contact Tech

    76/228

    CONTA171   CONTA172

    CONTA173 CONTA174

    CONTA175

    Target Segments 

  • 8/9/2019 Contact Tech

    77/228

    Line

    Parabola

    Arc

    CircleSphere

    Cone

    Cylinder 

    Pilot node

    Quad

    Quad8

    Tri

    Tri6

    TARGE169   TARGE170

    Con tact/Target Degenerated Shape 

  • 8/9/2019 Contact Tech

    78/228

    • Fully support 3D 2nd order of contact and target

    elements with any kind of dropping mid-side

    nodes.

    Surface-to -su rface elements 

  • 8/9/2019 Contact Tech

    79/228

    • The surface-to-surface contact elements are the

    most versatile contact elements in the ANSYS

    program.

    • Because they are robust, feature-rich, and user-friendly, they have become the contact element of

    choice for most ANSYS users.

    Surface-to -su rface elements : Overview 

  • 8/9/2019 Contact Tech

    80/228

    • The surface-to-surface elements are the most widely usedcontact elements in ANSYS, due to the many advantages thatthey have over the other contact elements:

     – Compatible with both lower order and higher order elements.

     – Support large deformations with significant amounts of slidingand friction efficiently.

     – Provide better contact results (easier to postprocess contactpressure and frictional stresses).

     – Can account for shell and beam thickness, as well as shellthickness changes.

     – Semi-automatic contact stiffness calculation.

     – “Pilot node” control of rigid surface.

     – Intelligent default settings, Contact Wizard (easy to use).

     – Multiphysics contact capability.

     – Numerous advanced options for overcoming difficult problems.

    Surf -Sur f Contact - Object ives 

  • 8/9/2019 Contact Tech

    81/228

    • Extend family of ANSYS contact elements

     – Surf-surf instead of node-node, node-surf contact

    • Provide higher-order contact/target elements

     – Mesh generation of 10 nodes tetrahedral is not an issue

     – Represent curve surfaces (non-faceted)

    • Provide general thermal/electric contact analysis

    capability

    • Support unmatched mesh pattern on contactingbodies

    • Easy of use and intelligent default settings

    • Solve real world problems

    ANSYS Con tact - Overv iew 

  • 8/9/2019 Contact Tech

    82/228

    •• RigidRigid--flexflex

     – – Bodies of vastly different stiffnessBodies of vastly different stiffness

     – – Steel against rubber sealsSteel against rubber seals

    •• FlexFlex--flexflex – – Bodies of comparable stiffnessBodies of comparable stiffness

     – – Metal contacting metalMetal contacting metal

    •• Self contactSelf contact – – Body folds over itself Body folds over itself 

     – – Column bucklingColumn buckling

    •• Large sliding with friction for allLarge sliding with friction for all

    Surface-Surface Con tact: Overv iew 

  • 8/9/2019 Contact Tech

    83/228

    • The formulation is given in terms of contact tractions

    • Transmission of pressure across contact element surface is

    basic to contact problem

    • Pressure is applied to element faces by using element shapefunctions to calculate the equivalent consistent nodal forces

    • The use of surface traction approach is recommended as the

    influence of element size is eliminated which supports well for

    thermal/electric conductance analysis.

    • Patch tests cannot be expected to be passed for arbitrary

    discretization and for arbitrary element orders.

    Surf -Sur f Con tact - Overv iew 

  • 8/9/2019 Contact Tech

    84/228

    Consistent nodal forces for higher-order elements

     No contact node“slips” off the edgeUnique penetration, No smoothing of target surface

    Gauss point

    Consistent thermal interface definition

    Surf -Sur f Contact - Overv iew 

  • 8/9/2019 Contact Tech

    85/228

    • Quadratic order contact/target elements

     – Comparatively stiff behavior associated with 4 nodes tet

     – Fully Automated mesh generation

    • 10 nodes tetrahedron is not an issue

    • 8 nodes Hexahedron is challenging

     – Represent curved surfaces (non-faceted)

    8-Nodes

    Hex

    10-nodes

    Tets

    20-Nodes

    Hex

    Surf -Sur f Con tact - Overv iew 

  • 8/9/2019 Contact Tech

    86/228

    Surf -Sur f Con tact - Overv iew 

  • 8/9/2019 Contact Tech

    87/228

    Surface-surface handles

    20 nodes brick element

    Con tact Pair Concept 

    T t ( t ) f ti f

  • 8/9/2019 Contact Tech

    88/228

    • Target (master) surface - a continuous surface

    • Contact (slave) surface

     – A set of discrete contact points (element quadrature points)

     – Contact constraint equation

    • Symmetric (two pass) contact

     – Difficulty of contact pressure interpretation – Overconstraint of the model

    The target nodes can pass

    through the contact

    su rface in between thecontact poin ts .

    The contact detect ion

    po ints can no t penetrate

    the target su rface.

    Con tact Pair Concept 

  • 8/9/2019 Contact Tech

    89/228

    Target

    Target

    Contact

    Contact

    Convex surfaceConvex surface

    Fine mesh surfaceFine mesh surface

    Softer surfaceSofter surface Higher order surfaceHigher order surface

    Smaller surfaceSmaller surface

    Concave/flat surfaceConcave/flat surface

    Coarse mesh surfaceCoarse mesh surface

    Stiffer surfaceStiffer surface Lower order surfaceLower order surface

    Larger surfaceLarger surface

    ContactContact surface:surface: TargetTarget surface:surface:

    Pilot Node 

    Go erns the motion of

  • 8/9/2019 Contact Tech

    90/228

    • Governs the motion oftarget surface

     – Force/displacement

     – Rotation/moment – Temperature/voltage

    • Characterizes heat flow

     – -: net heat loss

     – +: net heat gain

    • Can be at any location

    • Connects to other element – Mass element

    Rigid surface rotated

    Pilot node

    (at center of

    rotation)

    App l icat ion: Wire Bend ing 

  • 8/9/2019 Contact Tech

    91/228

    SOLID92

    Plasticity

    Pilot node

    App l icat ion: Deep Draw ing 

  • 8/9/2019 Contact Tech

    92/228

    4 node shell

    PlasticityBlank-holder force

    applied on pilot node

    Pilot node

    punch

    die

    Blank holder 

    F

    Blank

  • 8/9/2019 Contact Tech

    93/228

    Pilot node:KEYOPT(2)=1

    Pilot Node 

  • 8/9/2019 Contact Tech

    94/228

    Pilot node:KEYOPT(2) 1

    Bonded (Initial contact)

    Pilot Node(before)

    TargetSegment

    Pilot Node(after)

    F

    Pilot Node

    F

    Pilot node can be used together

    with the bonded contact option

    to introduce the rigid regionbetween the loading point and

    the structure, as shown here.

    Pilot node:KEYOPT(2)=1

    Pilot Node 

  • 8/9/2019 Contact Tech

    95/228

    Pilot node:KEYOPT(2) 1

    Force FY on Pilot node

    Pilot node

    Pilot node

  • 8/9/2019 Contact Tech

    96/228

    Con tact Wizard 

  • 8/9/2019 Contact Tech

    97/228

    Con tact Wizard 

  • 8/9/2019 Contact Tech

    98/228

      signSpace ® Graph ical User In terface 

  • 8/9/2019 Contact Tech

    99/228

    •Auto pair definition

    Design Space Model 

  • 8/9/2019 Contact Tech

    100/228

    Quadrature Rules 

    • Gauss full integration rule leads tot i ti f d l (f il LBB diti )

  • 8/9/2019 Contact Tech

    101/228

    goverconstrainting of model (fails LBB condition)

     – Penalty or augmented Lagrange method may alleviate the

    problem.

     – Smoothing is not required. It passes patch test.

    PressureVon Mises stress

    Existence of checkerboard mode

    Quadrature Rules 

    • Nodal quadrature rule

  • 8/9/2019 Contact Tech

    102/228

    q

     – Smoothing is always required

     – Overconstraint still exists for higher order contact element

     – Add a midface node to the center of contact element to getconsistent nodal force

     – Use mixed U-P formation

    • The order of interpolation function for pressure is lower than

    that for displacement

    Quadrature Rules 

    • Nodal integration rule (satisfies the LBB condition)

  • 8/9/2019 Contact Tech

    103/228

    g ( ) – Smoothing is always required which is performed by

    averaging surface normals connected to the node

     – Overconstraint exists for quadratic order contact element.

     – Use mixed U-P formation

    Surface-surface handles

    20 nodes brick element

    Highly distorted

    Interconnected Rai ls 

    14 symmetric contact pairs

  • 8/9/2019 Contact Tech

    104/228

    Contact Normal Direct ion 

    • KEYOPT(4)=0, Guass point, perpendicular to contact surface

  • 8/9/2019 Contact Tech

    105/228

    • KEYOPT(4)=1, Nodal point, perpendicular to contact surface

     –  New, smoothing on contact surface is performed which ismore expensive than Gauss point Scheme

     –  When contact surface is smoother then target surface

    • KEYOPT(4)=2, Nodal point, perpendicular to target surface

     –  New, smoothing on target surface is performed which is

    much more expensive than option (KEYOPT(4)=1) –  When target surface is smoother then contact surface

    • All schemes support low/high order contact elements

    • Smoothing is always required which is performed by averagingsurface normals connected to the node

    O-ring Prob lem 

  • 8/9/2019 Contact Tech

    106/228

    KEYOP(4)=1

     Normal from 

    contact surface

    Doub le Beams Prob lem 

  • 8/9/2019 Contact Tech

    107/228

    KEYOP(4)=2

     Normal to

    target surface

    Doub le Beams Prob lem 

    KEYOP(4)= 1

  • 8/9/2019 Contact Tech

    108/228

    ( )

     Normal from contact

    Different contact

    element pattern givesdifferent normal

    eventually gives

    different anwsers

    Electr ical Connecto r 

    14 symmetric contact pairs

  • 8/9/2019 Contact Tech

    109/228

  • 8/9/2019 Contact Tech

    110/228

    Auto Spurious Prevent ion : KEYOP(8)=1 is no long needed 

    /batch,list rmod,1,6,10

  • 8/9/2019 Contact Tech

    111/228

    /batch,list

    /prep7

    et,1,182,2

    et,2,169

    et,3,175

    keyop,3,4,1

    keyopt,3,8,0

     mp,ex,1,2e5

    rect,0,3,0,1

    kmod,1,0.5

    esiz,0.3

    ames,all

    type,3

    esurf

    type,2

    esurf

    Spurious contact

     most likely occurs

    rmod,1,6,10

    /solu

    nsel,s,loc,x,3

    d,all,all

    nsel,s,loc,y,0

    sf,all,pres,1

    alls

    solv

     Ansys70

    ansys61

    Automatic Asymmetr ic Detect ion KEYOP(8)=2 

    • Ansys70 can automatically detect asymmetric contact

    i h i i d fi d

  • 8/9/2019 Contact Tech

    112/228

    pair when symmetric pairs are defined

     –  Many pairs exists in the model

    • Be difficult to pick

     –  Model came from DS using auto contact detection

     –  The distinction between the contact and target surfaces is not

    clear.

     –  The contact results are very hard to be interpreted.

     –  Overstrained model

     –  Decision is made by many factors

    • Stiffness, numb of element, element size, area, curvature

    Believe or notBelieve or not

  • 8/9/2019 Contact Tech

    113/228

    It has 209It has 209unsuppressed partsunsuppressed parts

    and 450 contactand 450 contact

    pairs.pairs. The modelThe model

    has 385,000 nodeshas 385,000 nodesand 1.15million DOFand 1.15million DOF

    Au tomat ic Asymmetr ic Detect ion 

    *** NOTE *** CP= 19.490 TIME= 18:22:37Symmetric Deformable- deformable contact pair identified by real

  • 8/9/2019 Contact Tech

    114/228

    constant set 8 and contact element type 9 has been set up. The

    companion pair has real constant set ID 9. Both pairs should have the

    same behavior.

    ANSYS will keep the current pair and remove its companion pair,

    resulting in asymmetric contact.

    *** NOTE *** CP= 19.490 TIME= 18:22:37

    Symmetric Deformable- deformable contact pair identified by real

    constant set 9 and contact element type 9 has been set up. The

    companion pair has real constant set ID 8. Both pairs should have the

    same behavior.

    ANSYS will remove the current pair and keep its companion pair,

    resulting in asymmetric contact.

    In i t ial Con tact Adjustment 

    • PSOLVE, ELFORMCheck initial contact status db -> rdb

  • 8/9/2019 Contact Tech

    115/228

     –  Check initial contact status, db -> rdb

     –  Physically moves contact nodes to the target surface

    • Only for nodal detection option or CONTA175• Initial contact nodes inside ICONT zone

    • Initial penetrated nodes with KEYOP(9)=1

     –  After save, all the setting can be modified

    Before PSOLVE After PSOLVE

    Output (if CONCNTR,PRINT,>0)

    Node 22 moved to target surface

    Node 25 moved to target surface

    Contact Algor i thms 

    • Penalty method (KEYOP(2)=1)

    • Augmented Lagrange method (KEYOP(2)=0)

  • 8/9/2019 Contact Tech

    116/228

    • Augmented Lagrange method (KEYOP(2)=0)

    • Lagrange multiplier method (KEYOP(2)=3)

    • Lagrange multiplier on normal & penalty on tangent

    (KEYOP(2)=2)

    • Automatic adaptation of boundary conditions andconstraints

    • Each method has advantages and disadvantages

    depending on the particular problem considered

  • 8/9/2019 Contact Tech

    117/228

    Penalty Method 

    • The linearized form :fCBBftKfKpBpBfKu δδδδδδ T T T ld p ++=++=− ),(

  • 8/9/2019 Contact Tech

    118/228

    • The system equation in New-Raphson iteration form

    • Advantages: It is simple and displacement based FE

    framework remains

    • Disadvantages: It suffers from ill-conditioning as

    penalty stiffnesses are increased.

    ( )   old T 

    T T  N  N  g    uf CBBgK K    −=++   δ ε ε σ  ,

    f CBBf tK f K pBpBf K u   δ δ δ δ δ δ    σ old    p   ++++ ),(

    Augmented Lagrange Method 

    • Ill-conditioning can be alleviated by augmentingLagrange multipliers

  • 8/9/2019 Contact Tech

    119/228

    g g p

    • The total potential energy (virtual work)

     – It can be considered as a generalization of the Lagrange

    multiplier method where an additional term involving thecontact tractions is added to the variational equations.

    • Augmented Lagrange method at element level

     – If the Lagrange multipliers are retained as variables in theactive contact elements and they remain as element level

    variables and do not enter the global structural solution.

    ( ) ( )[ ]dA g  g  T T T T  N  N  N  N ∫Γ  +++=Ψ   gg   δ ε λ δ ε λ δ 

  • 8/9/2019 Contact Tech

    120/228

    Augmented Lagrange Method 

    • Penalty stiffness is the most important parameteraffecting accuracy and convergence behavior 

  • 8/9/2019 Contact Tech

    121/228

     – High stiffness

    • Less penetration (better accuracy)

    • ill-conditioning (more difficult convergence)

     – Low stiffness

    • May help convergence, but lead to more penetration

    • Need more iterations if using too small penetration tolerance

    • What’s default for normal contact stiffness

     – Bulk modulus & material behaviors of underlying elements

     – Size of element (depth), structural flexibilities, self-contact

     – Total DOF

     – Cover 80-90 % applications

    Con tact Stif fness 

    • Normal penalty coefficient FKN – 1.0 (default) for bulk solid in contact

  • 8/9/2019 Contact Tech

    122/228

    ( )

     – 0.1 for more flexible (bending-dominated) parts

    • Default tangent penalty coefficient FKT

     – Can be overwritten

    Bulky contact; try FKN = 1.0

    Flexible contact; try FKN = 0.1

    d d  is result from FKN and equilibrium equationis result from FKN and equilibrium equation

    Pressure=Pressure=dd *FKN => Contact stress on contact surface*FKN => Contact stress on contact surface

    Penetrat ion VS. Con tact Pressure 

  • 8/9/2019 Contact Tech

    123/228

    100100--times Difference with FKN leads to 100times Difference with FKN leads to 100--times Difference withtimes Difference with d d 

    but only leads to about 5% Difference with contact pressure andbut only leads to about 5% Difference with contact pressure and stress.stress.

    Penetration d=0,26e-3,P=43642  Penetration d=0,45e-5,P=43927 

    60545.0326.0 =

    −−=∆

    eed  007.1

    4364243927 ==∆ p

    KN=0.001 und TOLN=0.1KN=0.001 und TOLN=0.1 KN=0.001 und TOLN=0.01KN=0.001 und TOLN=0.01

    Local Accu racy VS. Global Equ i libr ium 

  • 8/9/2019 Contact Tech

    124/228

    Penetration Penetration  Penetration Penetration 

    Bending stress Bendin g stress  Bendin g stress Bending stress 

    0

    .002202

    .004404

    .006606

    .008808

    .01101

    .013212

    .015414

    .017616

    0

    .432E-03

    .864E-03

    .001296

    .001728

    .002159

    .002591

    .003023

    .003455

    -123.031

    -88.59

    -54.148

    -19.70714.735

    49.176

    83.618

    118.059

    152.501

    -121.92

    -87.795

    -53.671

    -19.547

    14.578

    48.702

    82.826

    116.951

    151.075

    Contact St i ffness Update 

    • KEYOP(10)=0 – update contact stiffnesses at eachload step if FKN, FKT are redefined

  • 8/9/2019 Contact Tech

    125/228

    • KEYOP(10)=1 – update contact stiffnesses at each

    sub-step based on current geometry• KEYOP(10)=2 – update contact stiffnesses at each

    iteration – adaptive scheme

    Contact St i f fness Update 

    • Adaptive scheme for normal contact stiffness

     – First iteration bases on previous convergence pattern

  • 8/9/2019 Contact Tech

    126/228

     – The subsequent iterations depend on penetration

    >•

    =

    10

    102.0

    0

    0

    1

    k if  

    divergeor k if  

     N 

     N 

     N ε 

    ε 

    ε 

    >•

    =+

    +

    +

     K 

     N 

     K 

     N 

     K 

     N 

     K 

     N 

     K 

     N 

     K 

     N  K 

     N 

     g  g if  

     g  g if  

    411

    411

    15

    ε 

    ε ε 

    Contact St i f fness Update 

    • Adaptive scheme for tangential stiffness – Based on current normal pressure

  • 8/9/2019 Contact Tech

    127/228

     – Allowable Max. elastic slip distance (SLTOL)

     – Positive: as a factor SLTOL*(contact length)

     – Negative: as a true vale

     – Default to 1.d0

    crit T  l 

     p

    ε   =

    crit l  Allowable Max. elastic slip = l *01.0

    Frict io n Overview 

    • Friction is a complex physical phenomena thatinvolves the characteristics of the surface

  • 8/9/2019 Contact Tech

    128/228

     – Surface roughness, temperature, pressure, and relative

    velocity

    • Friction is a path dependent process, certain history

    variables must be tracked and accounted for

    traction determination.

    • The definition of reference system is a key point for

    integrations of the derivatives of contact tractions.

    Fr ict ion Law 

    • Coulomb model with additional cohesion b andshear behavior  maxt 

  • 8/9/2019 Contact Tech

    129/228

     – Sticking contact is reversible

     – Sliding contact is irreversible

    • Dynamic friction model

     

    p

    −−+=  g d 

    d  sd 

    c )e µ(µ µ µt t

    maxt 

    bSticking

    Static, dynamic, decay

    friction coefficients

    Fr ict ion Law 

    • If the static and dynamic coefficients of friction atleast one data point (µ1 ; Vrel1) are know

  • 8/9/2019 Contact Tech

    130/228

    • The decay coefficient:

     

      

     

    −−=

    k  s

    rel 

    cV 

    d  µ  µ 

     µ  µ 1

    1

    ln*1

     s µ 

    eqcd 

    k  sk    e  γ  

     µ  µ  µ  µ &−

    −+=   )(

    eqγ  &

    k  µ 

     µ 

    Sliding

    Sticking

    Dynamic Fr ict ion 

  • 8/9/2019 Contact Tech

    131/228

    Dynamic Fr ict ion 

    Heat generated by friction

    2.4

  • 8/9/2019 Contact Tech

    132/228

    1

    1.2

    1.4

    1.6

    1.8

    2

    2.2

    0 200 400 600 800 1000

    Velocity

        T   e   m   p   e   r   a    t   u   r   e

    Fr ic t ion Condi t ions 

    • Kuhn-Tucker conditions for Coulomb friction0

    ≤−−≡Φ  µ  pbT t Coulomb friction condition

  • 8/9/2019 Contact Tech

    133/228

    0

    0

    1

     

     

     

     −=Φ

    ∂−

    •••

    ξ ξ 

    ε ξ 

    λ T T T T T 

    tu t Non-associated flow rule

    Tangential traction is applied in the sliding direction

    Sliding only occurs when Φ=0

    If Φ

  • 8/9/2019 Contact Tech

    134/228

    k T T 

    k T 

    T T 

    tr T 

    tr 

    T k tr 

    T T 

    T k T 

    b pt 

    gt

    gt

    t

    t

    nn

    ngtt

    ∆+

    ∆+===

      +=

      ∆+

    =

    ++

    +

    +

    +++

    ε 

    ε 

     µ 

    ε 

    1,1

    max

    1

    1k 

    crit

    11k 

    crit

    1

    1+≤−∆+

      k k 

    T T 

    n

    T    pb   µ ε    gtif 

    otherwise

    max

    1 t b pk 

  • 8/9/2019 Contact Tech

    135/228

     – The matrix is unsymmetric which corresponds to the non-

    associativity of Coulomb’s frictional law

     – The combination of the frictional interface law with return

    mapping algorithm leads to a consistent matrix.

    ( )

    dpl 

     g dg dt 

    dpn p

     pdg nnt 

    dt 

    crit 

    iiT i

    i

     j jiijtr T 

    crit 

    T i

     µ ε 

     µ  µ δ ε 

    ∆+=

     

     

     

     

    ∂++−=

    +

    +

    11

    t b pt k 

    +=

    ++ 11k 

    crit  µ if 

    If sticking

    Consis ten t Sti f fness Matr ix 

    • Consistent behavior  – It makes system equation converge quadratically

    U t i b h i

  • 8/9/2019 Contact Tech

    136/228

    • Unsymmetric behavior 

     – Frictional sliding contact – Stress stiffness matrix due to curved contact/target

    surfaces

     – Adaptive tangential contact stiffness

     – Use the unsymmetric solver even friction coefficient issmall

    • Stiffness matrix symmetrization

     – Maintain limit pressure if sliding – Efficient for most contact problems

    Surface Interact ion Models 

    • Standard contact (unilateral contact)

    • Rough contact - no sliding permitted (infinite MU)

  • 8/9/2019 Contact Tech

    137/228

    • No separation can not open but can slide

    • Bonded contact no opening/sliding permitted

     – Assembly contact takes advantage of the bonded contact

    to glue multiple parts together 

    • Debonding for modeling crack (Beta)

    Glue parts A & B

    together usingassembly contact

     /prep7

    et,1,45

    mp,ex,1,2e5

    mp,dens,1,7.8e-9

    cylin,0,5,0,60,0,90 CEINT is valid only if the relations

    Bonded Contact 

  • 8/9/2019 Contact Tech

    138/228

    cylin,0,5,0,60,0,90

    block,0,10,0,10,25,35

    vovl,all

    esiz,2vsweep,all

    vsym,x,all

    vsym,y,all

    numm,node

    numm,kp

     /solu

    nlgeo,on

    nsel,s,loc,z,0

    d,all,all

    nsel,s,loc,y,10

    sf,all,pres,200

    alls

    solv

    Large deflection

    Traditional way Bonded contact CEINT

    between the CE DOFs are linear

    App l icat ion: Hel icop ter Roto r Shaft 

  • 8/9/2019 Contact Tech

    139/228

    Appl icat ion : Grapp l ing Hook 

  • 8/9/2019 Contact Tech

    140/228

    Bonded con tact Based MPC 

    • A powerful tool to connect incompatible meshregions

     – Solid-solid, shell-shell, shell-solid assembly

  • 8/9/2019 Contact Tech

    141/228

    • Multi-point constraints are built automatically

     – Based on surface normal and shape function of targetelement

     – Updated during each iteration

     – Working properly for larger deformation – Solving purely linear contact problems without iteration

     – DOF of the constrained contact nodes is eliminated

    • Translational, rotational, temperature, voltage, andmagnetic potential can be constrained

    3D Assemb ly Stress Analys is 

    14 two pass contact pairs

  • 8/9/2019 Contact Tech

    142/228

    MPC

    Bonding

    surface

    Shell-Shel l Assembly 

    14 symmetric contact pairs

  • 8/9/2019 Contact Tech

    143/228

    Translational, rotational DOFsare constrained

    Shel l Edge Assembly 

    14 symmetric contact pairs

  • 8/9/2019 Contact Tech

    144/228

  • 8/9/2019 Contact Tech

    145/228

    Multi-Physical Contact Element

    CONTA171-175

    A Cutting Edge Technology

    Mult i -Phys ics Contact 

    • Heat/electric conduction between contacting surfaces

    • Heat convection and/or radiation

  • 8/9/2019 Contact Tech

    146/228

    • Heat generation due to

     – Frictional dissipated energy

     – Electric current

    • Electric charge across the contacting interface

     – Piezo-electric analysis

     – Electrostatic analysis

    • Magnetic flux across the contacting interface

    App l icat ion: Upsett ing o f a B i l let 

  • 8/9/2019 Contact Tech

    147/228

    • Heat generation due to plastic work

    • Heat convection and radiation on free surface

    • Heat conduction and frictional heating on contact

    surface

    Free Surface

    Rigid die

    Contact

    Surface

    Temperature

    App l icat ion: Wheel Brake 

  • 8/9/2019 Contact Tech

    148/228

    Rotational velocity v. timeStress

    Temperature

  • 8/9/2019 Contact Tech

    149/228

  • 8/9/2019 Contact Tech

    150/228

    Piezo-electr ic Env ironment 

    VOLT DOF VM Stress

  • 8/9/2019 Contact Tech

    151/228

    App l icat ion: Electr ic Welding 

    Voltage

    ImposedVoltage &

  • 8/9/2019 Contact Tech

    152/228

    Bulk Temp=20 C

    Transient analysis (Time: 0-0.1s)

    Grounded

    Voltage &

    Displ.

    Temperature

    App l icat ion: Electrostat ic Micro Mirror 

    • Using sequential electrostatic-structural coupling procedure• Voltage difference between mirror and pad creates unbalanced

    electrostatic forces

  • 8/9/2019 Contact Tech

    153/228

    100µmpad

    mirror 

    App l icat ion: Electrostat ic Micro Mirror 

    Mesh for air 

  • 8/9/2019 Contact Tech

    154/228

    Voltage

    •Simulation with iterative process•Electrostatic solution to get force

    •Structural solution with contact

    •Morphing of electrostatic mesh

    Micro Mirror 

    Stress

    Ax isymmetr ic DC Ac tuator 

    Air 

    Magnetic

    potential

  • 8/9/2019 Contact Tech

    155/228

    Armature

    Model is disconnected

    along this line

    Building bonded contact

    Stator 

    Coil

    Magnetic

    flux

    Fluid -Struc tu re In terat ion 

    • Fully-automated multiphysics solution for 

     – Fluid-structure interaction, fluid-thermal-electric interaction

     – Full support for all nonlinearities: Geometric, material, contact

    – Fully-implicit time-stepping scheme:

  • 8/9/2019 Contact Tech

    156/228

      Fully-implicit time-stepping scheme:

     – FLOTRAN Element Birth and Death:

    • Suitable for FSI problems involving contact between immersed,

    moving structures

    • Fluid elements may be automatically deactivated as surfaces

    come into contact (e.g., valve closes), or reactivated as theyseparate (e.g., valve opens)

    • Extremely wide set of applications

    Deformable Flow Contro l Device 

    CONTA172’sUnder

    P

  • 8/9/2019 Contact Tech

    157/228

    FLUID141’s

    PLANE183’s

    TARGE169’s

    •Incompressible, turbulent water flow

    •Prescribed inlet-to-outlet P = 45 PSI

    •Hyperelastic, high strain

    (>100%) materials

    •Mooney-Rivlin model

    •Determine steady-state shape of solid and accompanying

    steady-state fluid flow rate

    Deformable Flow Contro l Device 

  • 8/9/2019 Contact Tech

    158/228

  • 8/9/2019 Contact Tech

    159/228

    Bolt Pretension Element

    PRETS179

    A State of Art

    Bolt Pretens ion 

    • Whenever you model a bolted structure, it might be important

    to include the pretension (or preload) in the bolt caused by the

    tightening of the bolt.

    • ANSYS provides a convenient way to simulate bolt pretension:

  • 8/9/2019 Contact Tech

    160/228

     – Pretension elements PRETS179

     – Automatic pretension mesh generation

     – Load management for pretension sequence of multiple bolts

    Stresses due

    to specified

    pretension in

    bolt

    Bolt Pretens ion : Tradit ional Ways 

    • There was no automated wayto prescribe the pre-load. It

    was modeled through

     – Contact initial interference

  • 8/9/2019 Contact Tech

    161/228

     – Thermal expansion

    • Manually iteration process is

    required

    • It is difficult to control and

    monitor the variation of the

    bolt force during whole

    modeling

    Bolt Pretens ion : Overview 

    • An automated way tospecify bolt pretension

    • Useful for creating,

    managing and loading

  • 8/9/2019 Contact Tech

    162/228

    managing, and loading

    structures having multiple

    pretensioned bolts (no limit

    on the number of bolts)

    • Replaces previous trial-

    and-error techniques

    • Automated generation

    capability

    Stresses Due to

    Specified Pretension

    in Bolt

    Surrounding Structure

    PRETS179 Element 

    • Pretension elements (PRETS179) apply thespecified preload across a pretens ion sect ion .

  • 8/9/2019 Contact Tech

    163/228

    g

    Preloaded Bolt

    Pretension Node

    Pretension Section

    (brick or tet meshes)

    PRETS179 Element 

    • Features of the pretension element:

     – A set of pretension elements is

    identified as a “section”.

     – 2-D or 3-D line element that acts like a

    "hook" connecting two halves of a Preload

  • 8/9/2019 Contact Tech

    164/228

    g

    bolt.

     – Nodes I, J are the end nodes, usually

    coincident.

     – Node K is the pretens ion node :

    • Location is arbitrary.

    • Has one DOF: UX.

    • Used to define the preload, as an FX

    force or UX displacement.

    • Actual line of action is in pretensionload direction

    direction

    J

    K

    Node I

    Pretension

    section

    Bolt — solids,shells, or beams

    PRETS179 Element 

    • Features of the pretension element (continued): – Preload direction is constant – it does not update for

    rotations. It can be re-defined during load steps.

     – No material properties or key options

  • 8/9/2019 Contact Tech

    165/228

     – Underlying bolt elements may be solids, shells, or beams,

    lower or higher order.

     – The DOF: translations, rotations, temperature, voltage

    which are detected internally based the DOF of underlying

    elements.

     – Elements created automatically using GUI-based

    procedure.

    Typ ical Procedure 

    • Five main steps:1. Import or create the geometry, including the bolt(s) and

    the surrounding structure.

    2. Mesh all parts.

  • 8/9/2019 Contact Tech

    166/228

    3. Create the pretension elements.

    4. Apply loads and solve using multiple load steps:

    • Load step 1 for the bolt preload

    • Load step 2 to “fix” the bolt length• Load step 3 for other loads on the structure

    5. Review results.

    • We will expand on steps 3 and 4 next.

    Typ ical Procedure 

    Creating the Pretension Elements

    • After all parts of the structure, including the bolt(s), havebeen meshed, the next step is to create the pretensionelements.

  • 8/9/2019 Contact Tech

    167/228

    • Two options:

     – Using PSMESH

    • Fastener must be meshed as one piece.

    • PSMESH will cut the fastener in two and generate the pretension sectiontogether with the pretension elements.

     – Elements at coincident nodes, EINTF (not discussed here)

    • The fastener must be meshed in two separate pieces.

    • Requires a matching node pattern.

    Typ ical Procedure 

    • The menus provide a wide variety of methods to

    create the pretension mesh.

     – Preprocessor > Create > Elements > - Pretension –

    Pretensn Mesh >

  • 8/9/2019 Contact Tech

    168/228

    • We will illustrate the procedure using the WithOptions > pick.

    ANSYS splits the bolt shown

    and inserts the necessarypretension elements.

    ANSYS splits the bolt shown

    and inserts the necessarypretension elements.

    Typ ical Procedure 

    • Select the option to – Divide at Node – Picked

    Elements +

     – Follow the menu prompts

    Window the

  • 8/9/2019 Contact Tech

    169/228

    Pick a node to indicatewhere to section the bolt.

    A pretension node will be

    created at this location.

    elements where the

    bolt should be split.

    Typ ical Procedure 

     – Next, fill in the dialog box Assign a sectionnumber and name

    Specify the preload direction

  • 8/9/2019 Contact Tech

    170/228

     – Pressing OK will separate the elements of the bolt into

    two unconnected groups, tied together with pretension

    elements.

    (Y-axis points along the boltaxis in this case)

  • 8/9/2019 Contact Tech

    171/228

  • 8/9/2019 Contact Tech

    172/228

    Typ ical Procedure 

    Pretension Load Application• When a physical bolt is pretensioned:

     – Turning the nut reduces the unstretched grip length of the bolt,

    thereby inducing pretension

    Wh th d i d t i i hi d d th h i

  • 8/9/2019 Contact Tech

    173/228

     – When the desired pretension is achieved and the wrench isremoved, the new unstretched grip length becomes ‘locked’

    • Typical ANSYS pretension loading procedure represents

    this same sequence

     – First, apply the specified pretension (usually a specified force)

    in one load step

     – Then, lock the pretension section displacement (lock the

    shortened grip length) in a subsequent load step.

     – Once all bolts are pretensioned and locked, apply externalloads in the final load step

    Typ ical Procedure 

    Pretensioning and locking a large number of bolts in a

    Stiff plate

    Soft gasket

    bolt1 bolt2 bolt3

  • 8/9/2019 Contact Tech

    174/228

    • Pretensioning and locking a large number of bolts in aspecified sequence is made easy with the load-management

    tool.

     – Solution > Loads > Apply > Pretnsn Sectn …

    Section to be preloaded first

    Semi-automated ‘locking’ of

    pretension displacement in

    the next load step

    Pretension load to be applied

    to this bolt

    Typ ical Procedure 

    • Continue the loading sequence for the other two sections:

    Incrementing the loadstep number

    controls the pretensioning

    sequence

  • 8/9/2019 Contact Tech

    175/228

    Semi-automatic restraint of the

    free-body bolt pieces

    Typ ical Procedure 

    • In solution, ANSYS automatically applies and locks the

    loads in the specified load step every time you issue a

    SOLVE.

     – For the three bolts shown in the previous example, you would

    need to solve four times to apply the specified pretension

    sequence

  • 8/9/2019 Contact Tech

    176/228

    sequence.• SOLVE (LS1, applies the preload to bolt1)

    • SOLVE (LS2, fixes the preload displacement for bolt 1 and tightens

    bolt2)

    • SOLVE (LS3, locks bolt 2 and tightens bolt3)

    • SOLVE (LS4, locks bolt3)

    • With the preload applied, apply external loads acting on the

    overall structure.

    Typ ical Procedure 

    • Deformed geometry plot and bolt forces for the previous

    example

  • 8/9/2019 Contact Tech

    177/228

    8 node brick  20 node brick 

    Appl icat ion: 3D bo l t Joint s imulat ion 

  • 8/9/2019 Contact Tech

    178/228

    10 node Tet

    Pre-tension section

  • 8/9/2019 Contact Tech

    179/228

    Appl icat ion: Bracket Assemb ly 

    Static Analysis: Loading

    First load step: Resolve bolt pre-tension (Fi=5,000 lb)

  • 8/9/2019 Contact Tech

    180/228

    Appl icat ion: Bracket Assemb ly 

  • 8/9/2019 Contact Tech

    181/228

    Results for First Load Step

    Appl icat ion: Bracket Assemb ly 

    Second Load StepApplied pressure on bracket

    (1,500 lb total load)

  • 8/9/2019 Contact Tech

    182/228

    Modal analysis

    Contact status maintained

    App l icat ion: Bo l ted Jo int Thermal

    Contact 

  • 8/9/2019 Contact Tech

    183/228

    App l icat ion: Bo l ted Jo int Thermal

    Contact 

  • 8/9/2019 Contact Tech

    184/228

    App l icat ion: Bo l ted Jo int Thermal

    Contact 

  • 8/9/2019 Contact Tech

    185/228

    Solver Issue for Contact

  • 8/9/2019 Contact Tech

    186/228

    Solver Issue for ContactAnalysis

    Solver issue 

    • Sparse solver is the default solver 

     – Best for medium contact models (under 1,000,000 DOF)

     – Good for slender/thin structure

     – Direct solver - more robust than PCG solver 

     – Unsymmetric system is available but expensive

  • 8/9/2019 Contact Tech

    187/228

    • PCG solver as an option

     – Enhanced for handling indefinite matrix

     – Large contact models (over 1,000,000 DOF) – Good for bulky solid

     – Iteration solver - performance bases on element shape andcontact condition

     – Not applicable for pure Lagrange algorithm, unsymmetricsolver 

    Solut ion Opt ions 

    • Sparse solver is the default solver 

    Total DOF = 502851

    # Sparse in ansys57

    Memory=480, CPU=2123

  • 8/9/2019 Contact Tech

    188/228

    # Sparse in ansys60:

    Memory=312, CPU=1146

    # PCGMemory = 294, CPU=1014

    App licat ion : Sp lined Shaft 

  • 8/9/2019 Contact Tech

    189/228

    SOLID92

    PCG Solver 

    App licat ion : Sp lined Shaft 

     Number of equations = 497380, Maximum wavefront = 383

    EQUIL ITER 1 COMPLETED. NEW TRIANG MATRIX. MAX DOF INC= -0.4047E-01FORCE CONVERGENCE VALUE = 0.1941E+05 CRITERION= 18.79

    EQUIL ITER 2 COMPLETED. NEW TRIANG MATRIX. MAX DOF INC= -0.7171E-03

    FORCE CONVERGENCE VALUE = 0.3028E+05 CRITERION= 16.13

    EQUIL ITER 3 COMPLETED. NEW TRIANG MATRIX. MAX DOF INC= -0.3307E-03

    FORCE CONVERGENCE VALUE = 108 6 CRITERION= 16 56

  • 8/9/2019 Contact Tech

    190/228

    FORCE CONVERGENCE VALUE = 108.6 CRITERION= 16.56

    EQUIL ITER 4 COMPLETED. NEW TRIANG MATRIX. MAX DOF INC= -0.5784E-04

    FORCE CONVERGENCE VALUE = 9.115 CRITERION= 16.88

  • 8/9/2019 Contact Tech

    191/228

    3D Assembly 

    Finite Element Model

    119,000 Elements

    590,000 DOFs

  • 8/9/2019 Contact Tech

    192/228

     AMG shows superior convergence and scaling for this problem

    300

    722

    Mbytes

    Memory

    5301

    200

    Iter 

    10-6

    8679

    5265

    7745

    3831

    6636

    2638

    6909

    1884

    NP=1 NP=2 NP=3 NP=4

    Solver Elapsed Time (sec)

    PCG

     AMG

    Method

    Tips and Troubleshooting

  • 8/9/2019 Contact Tech

    193/228

    p gfor Contact Analysis -

    A Diagnostic tools

    Non contact-related issues 

    • Unrealistic physical model

    • Unreasonable loading and boundary conditions

    • Poorly/coarsely discretized mesh, sharp corner, location of

    mid-side nodes, element distortion

    • Hourglass and locking

  • 8/9/2019 Contact Tech

    194/228

    • Unreasonable or incorrect material properties and bad input

    unit

    • Large plastic deformation

    • Incompressible or near incompressible

    • Local & global instabilities

    • Follower loads

    What You Should Do in the Begin

    • Read Chapter 10 of Ansys structural analysis guide

    • Verify outward normal of contact/target surfaces

    • Verify pinball region

    • Verify constraints

  • 8/9/2019 Contact Tech

    195/228

    • Verify initial contact status through output

     – Issue: PSOLVE, elform

    • Use CONCNTR, PRINT, level, to get detailed printout

    of the contact state in the output file so that you

    can diagnose the problem.

    • Rigid-to-Flexible and Flexible-to-Flexible contact can be

    defined in the same model. Be sure to use separate realconstants to define the contact pairs. The output file

    information can be helpful to check your contact pairs.

    • Be sure to check the outward normal direction of the contact

    and target elements (via Main Menu > Preprocessor > Create >Contact Pair > View and Edit…) Contact occurs on the

    What You Shou ld Do in the Begin: Tip 

  • 8/9/2019 Contact Tech

    196/228

    Contact Pair View and Edit…) Contact occurs on the

    positive outward normal side of the contact and target

    elements.

    Improper 

    Proper 

    What You Shou ld Do in the Begin: Tip 

    • Defining duplicate nodes contact/target surface

     – On contact surface

    • Overconstraints if using pure Lagrange mutiplier 

     – On target surface

    • Contact node may stuck there

  • 8/9/2019 Contact Tech

    197/228

    • Using poorly discretized surfaces

     – Unrealistic penetration occurs with coaresly discretized

    contact surface. Use refiner mesh to define contact

    accurately.

     – Coarsely discretized, curved target surfaces can lead tounaccepatble solution accuracy. Using a more refined

    mesh or higher order mesh will improve the overall

    What You Should Do in the Begin: Tip 

  • 8/9/2019 Contact Tech

    198/228

    mesh or higher order mesh will improve the overall

    accuracy of the solution.

    • Ensure that the target and contact surfacedefinitions extend far enough to cover the full

    expected range of motion for the analysis.

    What You Shou ld Do in the Begin: Tip 

    • Sharp corners on the contact/target surfaces:

     – Smooth the surfaces.

     – Use refined mesh around corner.

     – Use unsymmetric solver.

     – If the physical problem has a sharp concave fold, use two

    separate contact pair definitions

  • 8/9/2019 Contact Tech

    199/228

    separate contact pair definitions.

    Outward NormalSmoothing Radius

    Rigid Target Surface

    What You Shou ld Do in the Begin: Tip 

    • Interference fit problems with widely varying

    contact normal directions can result in non-physicalbehavior. In this case try switching the target and

    contact surfaces. Or, try to use contact normal

    being perpendicular to target surface (KEYOP(4)=2)Target

  • 8/9/2019 Contact Tech

    200/228

    Contact

    surface

    Target

    surface This can result innon-physical

    behavior 

    • Summary of contact status for each contact pair 

     – CONCNTR,print, -1 – No contact pair information

     – CONCNTR,print, 0 - Limited information

    • At beginning of solution

    • At the stage of solution divergence

    – CONCNTR, print, 1

    Output Fi le Info rmation 

  • 8/9/2019 Contact Tech

    201/228

      CONCNTR, print, 1

    • At the end of each sub-step

     – CONCNTR, print, 2• At the end of each iteration

     – CONCNTR, print, 3

    • For individual contact point

    Output: CONTACT INFORMATION PRINTOUT LEVEL 3

     More

    Info

  • 8/9/2019 Contact Tech

    202/228

    *** NOTE *** CP= 0.000 TIME= 00:00:00Rigid-deformable contact pair identified by real constant set 2 and

    contact element type 3 has been set up. Please verify constraints on

    target nodes which may be automatically fixed by ANSYS.

    Contact algorithm: Augmented Lagrange method 

    Contact detection at: nodal point (normal from contact nodes)

    Default contact stiffness factor FKN 1.0000

    The resulting contact stiffness 2579.8Default penetration tolerance factor FTOLN 0.10000

    The resulting penetration tolerance 0.22786E-01

     Max. initial friction coefficient MU 2.1000

    Default tangent stiffness factor FKT 1.0000

    Default Max. friction stress TAUMAX 0.10000E+21

     Average contact surface length 0.34860 Average contact pair depth 0.22786

    Default pinball region factor PINB 3.0000

    h l i i b ll i 0 68358

  • 8/9/2019 Contact Tech

    203/228

    The resulting pinball region 0.68358

    Default target edge extension factor TOLS 2.0000

    Initial contact closure factor ICONT 0.10000E-07

    The resulting initial contact closure 0.22786E-08

    *WARNING*: Initial penetration is included.

    *** NOTE *** CP= 0.000 TIME= 00:00:00

     Max. Initial penetration 0 was detected between contact element 454

    and target element 435.

    ****************************************

    *** WARNING *** CP= 0.000 TIME= 00:00:00

     Max. Friction coef. 2.1 has defined in the model. Switch the

    unsymmetric solver (NROP,UNSYM) instead if convergence difficulty is

    encountered.

    Too big penetrat ion at the Beginning o f

    the Analysis 

    • Read output to see the contact penetration pair

    based.

    • Real initial interfence

     – Use Ramped option KEYOP(9)=2,4 solving initial

    interference over several sub-steps.

    – For reasonable small one use KEYOP(9)=1

  • 8/9/2019 Contact Tech

    204/228

      For reasonable small one use KEYOP(9) 1

     – Use smaller FKN and increase FKN in subsequent load

    steps

    • Spurious contact:

     – Redefine PINB

     – Check surface normal & flip the surface normal

    Troubleshoot ing 

    • Very small displacement correction, but the

    tolerance on residual force is not satisfied due to:

     – Contact length too small

    • Warning: Min. contact depth 5.376d-6 is too small which may causeaccuracy problem, you may scale the length unit in the model.

     – The Elastic moduli or force/mass quantities too big

    W i M t t tiff 1 21d16 i t bi hi h

  • 8/9/2019 Contact Tech

    205/228

    • Warning: Max. contact stiffness 1.21d16 is too big which may causeaccuracy problem, you may scale the force unit in the model

     – Contact surface offset using CNOF or Bonded always• Introduce rotation energy

     – Contact stiffnesses are too large

     – Solution: scale units or modify CNVTOL or reduceFKN, FKT, or use PSOLVE,

  • 8/9/2019 Contact Tech

    206/228

    *** NOTE *** CP= 0.000 TIME= 00:00:00

    6 contact points have abrupt change in contact status.

    Load step size is too big: use auto time prediction keyopt(7)>0

    Pinball is too small, increase PINB

    The contact node is sliding off the target edge: increase TOLS

    *** NOTE *** CP= 0.000 TIME= 00:00:00

    Contact element 454 has the highest chattering level 7.

    Troub leshoo t ing (Pair Based) 

  • 8/9/2019 Contact Tech

    207/228

    g g

    Contact stiffness is too big: reduce FKN, FKT

    Load step size is too bigSharp corner or coarse mesh: refine mesh

    Stick-sliding: use NROP,unsym?

    The contact node is sliding off the target edge: increase TOLS

    Divergence of Solut ion 

    • Too Many Cutbacks in the Last Time Increment

     – Restart the analysis

     – Reset solution options, number of equilibrium iterations

     – Increase the number of allowable increments on the NSUB

    option and redo the analysis.

    • Failure to determine the contact state change

  • 8/9/2019 Contact Tech

    208/228

    Failure to determine the contact state change

    occurs

     – in first increment: Possible causes include too big thepenetartion

     – Occurs after the first increment: Possible causes are

    contact chattering

    • Failure to achieve equilibrium: force residuals

    Fai lure to ach ieve equ i l ibr ium : force

    residuals 

    • Unconstrained rigid body motion indicated by the

    presence of very large displacement corrections.

    • Overconstraints usually indicated by zero

    pivot/negative warning messages.

    • Buckling indicated by the load-displacement curve

    reaching a load maximum: use arc-length

  • 8/9/2019 Contact Tech

    209/228

    reaching a load maximum: use arc-length

    algorithm.

    • Friction in the model

  • 8/9/2019 Contact Tech

    210/228

    •Add chattering measurement CNOS to PLES, PLNS, PRES, PRNS

    PLNS,CONT,CNOS

    Con tact Chatter ing 

  • 8/9/2019 Contact Tech

    211/228

    Con tact Chatter ing 

  • 8/9/2019 Contact Tech

    212/228

    Causes o f Con tact Chatter ing 

    • Contact stiffnesses are too higher: reduce the initial stiffness

    or redefine during load step. – Often occur when the model has long, flexible parts with small

    contact pressures.

     – FKN and FTOLN need to be set appropriately: FKN usually willbe between 0.01 and 10. Use a value of 1.0 (default) for bulk

    deformation problems, and 0.1 for bending dominated problems.Do NOT set FTOLN too small, too tight a penetration tolerancecan result in divergence.

  • 8/9/2019 Contact Tech

    213/228

    • Only a few nodes are in contact: refine the underlying mesh

    of the contact surface or reduce the contact stiffnesses todistribute the contact over more nodes.

    • The size of the region in contact is rapidly changing: usekeyopt(7) to control time increment.

    • The target surface is not sufficiently smooth : smooth thetarget surface by refining the underlying mesh.

    Causes o f Con tact Chatter ing 

    • A contact node is sliding off the target surface:

     – Ensure that the target and contact surface definitions extend farenough to cover the full expected range of motion for the

    analysis.

     – When modeling contact, ensure that the target surface edge is

    extended far enough for all expected motions of the contactingparts of the model. Use CONCNTR,print,3 option to monitor the

    history of the contact node that might slide off the target surface

    and find where the target surface needs to be extended more

  • 8/9/2019 Contact Tech

    214/228

    and find where the target surface needs to be extended more.

    • For extremely dif f icu l t si tuation s , you can allow some points

    to violate contact conditions by setting the numb on the

    CONCNTR, MAXP option. These parameters can be reset in a

    subsequent step.

    • If none of the above cases seem to app ly, try using thetransient option

    Troubleshoo t ing (Solut ion) 

     Allow some points to violate contact conditions (too much

     penetration) by setting

    –CONCNTR, MAXP, numb (default to 0)

     And/or change default number of iterations resultingconvergence inspire of penetration:

    –CONCNTR, CNIT, numb (default to 4)

    e.g.

    CONCNTR,MAXP,3

  • 8/9/2019 Contact Tech

    215/228

    CONCNTR,CNIT,5

     MAX. NUMBER OF VIOLATIONS POINT. FOR OVER PENETRA. 3

     NUMBER OF ITERATIONS IN SPITE OF PENETRATION 5

    The control parameters can be reset in a subsequent step. WARNING: These controls are intended for experienced analystsand should be used with great care.

    Ax isymmetr ic con tact 

    • Inaccurate contact stresses when using

    axisymmetric elements at the symmetry axis.

     – For axisymmetric elements the contact area is zero at the

    nodes lying on the symmetry axis when:

    • CONTA175

    • CONTA171,172 with KEYOP(4)=1,2

     – To avoid numerical singularity problems caused by a zero

  • 8/9/2019 Contact Tech

    216/228

    contact area, ANSYS provides a small area at that nodes.

    This may result in inaccurate local contact stresses for the

    node located on the symmetry axis.

    F

    Sometime, the parts in a contact model is not uniquely constrained, It

    means some parts can move without producing any elastic deformation-

    Rigid Body Motion. This rigid body motion is unfortunately not allowed in

    a static analysis. Usually, there are 3 types of rigid body motion

     –The parts are not in contact

     –The initial penetration is too high, this will leads to a very high contact force

     – Friction force is too small comparing the external force

    Rigid Body Mot ion 

  • 8/9/2019 Contact Tech

    217/228

    F

    b

    F

    a

    F

    F

    < F

    c

    • Add a small friction to avoid the numeric instability

    • Use reasonable boundary condition, e.g. use 2 load steps, load step 1

    to move the body together and then apply the load.

    F

    FE Model

    U

    LS-1

    F

    LS-2

    Rigid Body Mot ion Prevent ion 

  • 8/9/2019 Contact Tech

    218/228

    •  Add a small friction to avoid the numeric instability

    FE Model Without friction

    • Do a slow dynamic analysis to introduce the inertial force.

    • Use specified displacement, if possible, in stead of force.

    F

    FE Model

    F

    Static

    F U

    •You will need to add mass anddamping in order to convert the

    solution from a static to a dynamic

    solution. This is known as a slow

    dynamic solution.

    This technique uses imposed

    displacements to move the

    b d d lt t th

    Rigid Body Mot ion Prevent ion 

  • 8/9/2019 Contact Tech

    219/228

    Real problem FE model

    • Use weak spring to avoid the numeric noise.

    F The spring stiffnesses should be negligible compared to thestiffness of the system. By connecting the springs to ground,

    the reactions at the grounded nodes can be compared to the

    total reaction forces to ensure that the springs have no effect

    on the solution.The open-spring contact option could also be

    used.

    body and as result you get the

    reaction force

    • Use artificial initial penetration to close the contact.

    FE model with initial gap FE model with

    geometrical penetration

    FE model with artificial

    penetration

    Rigid Body Mot ion Prevent ion 

  • 8/9/2019 Contact Tech

    220/228

    • Use no-separation Option KEYOPT(12)

    geometrical penetration penetration

    Never try to solve a static problem with rigid body motion!

    When possible, one should always use a very small geometric penetration to

    prevent the rigid body motion, at the same time, the geometric penetration

    establishes the initial contact region, which hold the structure together todistribute the load.

    The initial penetration can be modeled via:

    TIP

    F

    Rigid Body Mot ion Prevent ion 

  • 8/9/2019 Contact Tech

    221/228

    p

    a) Overlap the geometry slightly, be careful in plastic analysis, because even the

    small penetration can produce plasticity.

    b) Use CNOF to close the geometric gap, it can be very tedious, because you

    must know the gap size to adjust the CNOF.

    c) Use KEYOPT(5) to close the geometric gap automatically.

    d) Use Contact178, instead of surface contact, Contact178 can ignore the all the

    gaps

    In i t ial Con tact Cond i t ion Adjus tment 

    • User defined contact surface offset CNOF

    • Automatic adjustment using KEYOPT(5)

    • Adjustment band ICONT - making in contact

     – Always check default value – Turn off for other strategies to be effective

    KEYOPT(9) t dj t i iti l t ti

  • 8/9/2019 Contact Tech

    222/228

    • KEYOPT(9) to adjust initial penetration

     – Include, exclude, ramp

    • Initial allowable penetration range (PMIN,PMAX)

     – Auto move target along unconstrained DOF

    • Combination of above techniques

    Default - parallel to globale

    11

    X

     Y

    1

    2

    3

    45

    Rotated to local cylindrical

    11

    X

     Y

    Rotated nodal coord inate system Rotated nodal coo rdinate system 

  • 8/9/2019 Contact Tech

    223/228

    p g

    coordinate systemy

    coordinate system

    X

    X n2

     Yn

    1

     Y

    30o

    Caution: for large rotation analysis, the nodal coordinate system is not rotated to the

    deformed configuration. e.g. If node 1 is rotated into CSYS-1, the original nodal

    coordinate direction will not be changed.

    Possible position

    UX=0

    Wanted position

    Rotated nodal coord inate system Rotated nodal coo rdinate system 

  • 8/9/2019 Contact Tech

    224/228

     All nodes keep the original direction

    This kind of problem can be nicely solved with contact element with Option:

    Sliding only (KEY(12)=4).With Rigid-Target, all the nodes can only move in tangential direction.

    Rigid-Target

    Allowed movement

    Rotated nodal coord inate system Rotated nodal coo rdinate system 

  • 8/9/2019 Contact Tech

    225/228

    The