constraints on the cosmological parameters from bicep2, planck and wmap

Upload: drdo7

Post on 03-Jun-2018

219 views

Category:

Documents


0 download

TRANSCRIPT

  • 8/12/2019 Constraints on the Cosmological Parameters From BICEP2, Planck and WMAP

    1/4

    arXiv:1403.7173v1[astro-ph.CO

    ]27Mar2014

    Constraints on the cosmological parameters from BICEP2, Planck and WMAP

    Cheng Cheng and Qing-Guo Huang

    State Key Laboratory of Theoretical Physics, Institute of Theoretical Physics,Chinese Academy of Science, Beijing 100190, Peoples Republic of China

    (Dated: March 28, 2014)

    In this paper we constrain the cosmological parameters in the base CDM+nrun+r+nt modelby adopting Background Imaging of Cosmic Extragalactic Polarization (B2), Planck released in

    2013 (P13) and Wilkinson Microwaves Anisotropy Probe 9-year Polarization (WP) data, wherenrun denotes the running of spectruml index and nt is the tilt of primordial gravitational wavesspectrum. We find that the constraints on r and nt are r= 0.23

    +0.050.09 and nt = 0.03

    +0.130.11 which are

    compatible with our previous results inarXiv:1403.5463where only B2 data was used.

    PACS numbers: 98.70.Vc, 04.30.-w, 98.80. Cq

    Recently the relic gravitational waves were discoveredby Background Imaging of Cosmic Extragalactic Polar-ization (B2)[1]:

    r= 0.20+0.070.05, (1)

    and r = 0 is disfavored at 7.0. Even though a mod-erately strong tension between B2 and Planck [2] wasalso reported in [1], the result of B2 is consistent withlow-cosmic microwave background (CMB) data[3], in-cluding Planck TT (P13) [2] and Wilkinson MicrowavesAnisotropy Probe TE (WP) data[4]. See a similar resultfor WMAP 7-year data in [5].

    After B2 data was released, we constrained the tilt ofrelic gravitational waves spectrum by using B2 data only,[6], namely

    r0.004 = 0.21+0.040.10, nt= 0.06

    +0.250.23, (2)

    where the tilt nt is defined by

    nt d ln Ptd ln k

    , (3)

    or equivalently, the amplitude Pt of relic gravitationalwaves spectrum can be parameterized by

    Pt(k) = At

    k

    kp

    nt, (4)

    here the pivot scale kp = 0.004 Mpc1 is fixed. Our result

    provides strong evidence for inflation [79], and the al-ternative models, for example the Ekpyrotic model [10],are ruled out at more than 5 confidence level. How-

    ever, our result is different from others [11] and [12,13]where an apparently blue tilted spectrum of primordialgravitational waves is preferred. Actually our method isdifferent from theirs where they fixed all of the remainingparameters to be those from P13+WP best fit values forCDM+tensor model, or combined B2 with P13+WPin the base CDM+tensor model. We believe that ourresult in[6] is correct, and a careful explanation and theconstraints on the cosmological parameters will be givenin the following part of this paper.

    It is well-known that the CMB power spectrum gen-erated by primordial gravitational waves are significantonly at the low multipoles, e.g. 0 is still allowed

    http://arxiv.org/abs/1403.7173v1http://arxiv.org/abs/1403.7173v1http://arxiv.org/abs/1403.7173v1http://arxiv.org/abs/1403.7173v1http://arxiv.org/abs/1403.7173v1http://arxiv.org/abs/1403.7173v1http://arxiv.org/abs/1403.7173v1http://arxiv.org/abs/1403.7173v1http://arxiv.org/abs/1403.7173v1http://arxiv.org/abs/1403.7173v1http://arxiv.org/abs/1403.7173v1http://arxiv.org/abs/1403.7173v1http://arxiv.org/abs/1403.7173v1http://arxiv.org/abs/1403.7173v1http://arxiv.org/abs/1403.7173v1http://arxiv.org/abs/1403.7173v1http://arxiv.org/abs/1403.7173v1http://arxiv.org/abs/1403.7173v1http://arxiv.org/abs/1403.7173v1http://arxiv.org/abs/1403.7173v1http://arxiv.org/abs/1403.7173v1http://arxiv.org/abs/1403.7173v1http://arxiv.org/abs/1403.7173v1http://arxiv.org/abs/1403.7173v1http://arxiv.org/abs/1403.7173v1http://arxiv.org/abs/1403.7173v1http://arxiv.org/abs/1403.7173v1http://arxiv.org/abs/1403.7173v1http://arxiv.org/abs/1403.7173v1http://arxiv.org/abs/1403.7173v1http://arxiv.org/abs/1403.7173v1http://arxiv.org/abs/1403.7173v1http://arxiv.org/abs/1403.7173v1http://arxiv.org/abs/1403.7173v1http://arxiv.org/abs/1403.7173v1http://arxiv.org/abs/1403.7173v1http://arxiv.org/abs/1403.7173v1http://arxiv.org/abs/1403.7173v1http://arxiv.org/abs/1403.7173v1http://arxiv.org/abs/1403.5463http://arxiv.org/abs/1403.5463http://arxiv.org/abs/1403.7173v1
  • 8/12/2019 Constraints on the Cosmological Parameters From BICEP2, Planck and WMAP

    2/4

    2

    FIG. 1: The plot ofCTT for different tilt of relic gravitational waves spectrum. Here r0.004= 0.2, and the black solid, dashed

    and dotted curves correspond to nt =0, -2, +2 respectively.

    1 . 5 0 . 0

    1 . 53 . 0

    n

    t

    0 . 0

    0 . 1

    0 . 2

    0 . 3

    0 . 4

    0 . 5

    r

    P 1 3 + W P

    B 2

    B 2 + P 1 3 + W P

    FIG. 2: The contour plot ofr and nt constrained by differentCMB datasets in the base CDM+tensor cosmology. Theblue, gray and green contours correspond to B2 only in [6],P13+WP and B2+P13+WP respectively.

    by P13+WP. That is why the combination of B2 andP13+WP drives the fitting parameter space to the re-gion ofnt > 0 (the green contour) in Fig.2. Technically,from the viewpoint of 2 statistics, the tension on thetensor-to-scalar ratio in the region ofnt < 0 can signif-icantly increase the 2, and then the fitting parameterspace moves to the region ofnt > 0. Therefore we con-clude that the apparently blue tilted spectrum of primor-dial gravitational waves in[1113] might not be reliable

    because it can be easily explained by the tension betweentwo CMB datasets, i.e. B2 and P13+WP, which shouldnot be combined together!

    In order to confirm our previous argument, we takeinto account the running of spectruml index which is sup-posed to relax the tension between P13+WP and B2[1].Here we still take the tilt nt as a free parameter, and thepriors forr and nt are uniform in the ranges ofr [0, 2]andnt [4, 4] respectively. We run CosmoMC[16] andwork out the constraints on the cosmological parameters

    from the combination of B2, P13 and WP in the base six-parameter CDM+nrun+r+nt model. The results showup in Table I and Fig. 3. From Table I, we see that

    CDM+nrun+r+nt B2+P13+WP

    param ete rs 68% lim its

    bh2 0.02276+0.00164

    0.00200

    ch2 0.1161+0.0084

    0.0079

    100MC 1.04184+0.001030.00109

    0.1035+0.02680.0332

    ln(1010As) 3.106+0.0050.009

    ns 1.031+0.0290.037

    nrun 0.021+0.0410.021

    r 0.23+0.050.09

    nt 0.03+0.130.11

    TABLE I: Constraints on the cosmological parametersfrom the combination of B2, P13 and WP in theCDM+nrun+r+nt cosmology.

    the constraint on nt is nicely consistent with our previ-ous one in Eq. (2)[6], and a red-tilted spectrum of relicgravitational waves is consistent with data. One can also

  • 8/12/2019 Constraints on the Cosmological Parameters From BICEP2, Planck and WMAP

    3/4

    3

    0 . 8 0 . 4 0 . 0 0 . 4 0 . 8

    n

    t

    0 . 0

    0 . 1

    0 . 2

    0 . 3

    0 . 4

    0 . 5

    r

    B 2

    B 2 + P 1 3 + W P ( + n r u n )

    FIG. 3: The constraints on r and nt in the baseCDM+nrun+r+nt model from B2, Planck and WP. Herethe red contours correspond to the constraints on r and ntin the base CDM+nrun+r+nt model from B2, Planck andWP, and the blue ones correspond to B2 only in the baseCDM+r+nt model in [6].

    consider other possible extensions like those in [11]. Webelieve that our constraint on ntdoes not change so muchas long as the tension between B2 and P13 is relaxed inthe extensions to the base six-parameter CDM+r+ntmodel.

    To summarize, our new constraints on r and ntfrom B2, P13 and WP in the base six-parameter

    CDM+nrun+r+nt model are consistent with our pre-vious results in[6]. We believe that our results in[6] andthis paper are robust, and we conclude that a red-tiltedspectrum of primordial gravitational waves is consistentwith current CMB data, and nt = 2 is ruled out at morethan 5 confidence level.

    Actually it is dangerous to use the CMB temperaturespectrum to constrain the properties of relic gravitationalwaves, e.g. the tilt nt, because the relic gravitationalwaves just make a small contribution to the CMB tem-perature spectrum which can be affected by a lot of com-plicated physics, such as the baryon density today, thecold dark matter density today, the spectruml index, the

    running of spectruml index (nrun), the total mass of ac-tive neutrinos (

    m), the number of relativistic species

    (Neff), the gravitational lensing, the abundance of lightelements and so on. All of these complicated physics canbring strong bias on the data analysis. See, for exam-ple, in this paper we constrain the tilt nt from the samecombination of B2, P13 and WP, but the results (see thegreen contours in Fig.2and the red contours in Fig.3)are quite different from each other in two different mod-els (CDM+r+ntand CDM+nrun+r+nt). It indicates

    that the apparently blue tilted spectrum of relic gravita-tional waves is not reliable and it can be explained by thetension between B2 and P13+WP in the CDM+r+ntmodel. In a word, the polarization data like those re-leased by B2 is sill supposed to be the best one for us toconstrain the tilt of primordial gravitational waves spec-trum. That is why we only used B2 data to constrain ntin[6].

    Finally, the canonical single-field slow-roll inflationpredicts a consistency relationnt = r/8. We hope thatthis consistency relation can be explicitly tested in thenear future, and then the inflation model will be defi-nitely proved.

    Acknowledgments. We acknowledge the use ofPlanck Legacy Archive, ITP and Lenovo Shenteng 7000supercomputer in the Supercomputing Center of CAS forproviding computing resources. This work is supportedby the project of Knowledge Innovation Program of Chi-nese Academy of Science and grants from NSFC (grant

    NO. 10821504, 11322545 and 11335012).

    Electronic address: [email protected][1] P. A. RAde et al. [ BICEP2 Collaboration],

    arXiv:1403.3985[astro-ph.CO].[2] P. A. R. Ade et al. [Planck Collaboration],

    arXiv:1303.5076[astro-ph.CO].[3] W. Zhao, C. Cheng and Q. -G. Huang,arXiv:1403.3919

    [astro-ph.CO].[4] G. Hinshaw et al. [WMAP Collaboration], Astrophys. J.

    Suppl. 208, 19 (2013) [arXiv:1212.5226[astro-ph.CO]].

    [5] W. Zhao and L. P. Grishchuk, Phys. Rev. D 82, 123008(2010)[arXiv:1009.5243[astro-ph.CO]].

    [6] C. Cheng and Q. -G. Huang, arXiv:1403.5463 [astro-ph.CO].

    [7] A. H. Guth, Phys. Rev. D 23, 347 (1981).[8] A. D. Linde, Phys. Lett. B 108, 389 (1982).[9] A. Albrecht and P. J. Steinhardt, Phys. Rev. Lett. 48,

    1220 (1982).[10] J. Khoury, B. A. Ovrut, P. J. Steinhardt and N. Turok,

    Phys. Rev. D 64, 123522 (2001)[hep-th/0103239].[11] A. Lewis,http://cosmocoffee.info/viewtopic.php?t=2302.[12] M. Gerbino, A. Marchini, L. Pagano, L. Salvati, E. Di

    Valentino and A. Melchiorri, arXiv:1403.5732 [astro-ph.CO].

    [13] Y. Wang and W. Xue,arXiv:1403.5817[astro-ph.CO].

    [14] A. Challinor,astro-ph/0403344.[15] A. Challinor, Lect. Notes Phys. 653, 71 (2004)

    [astro-ph/0502093].[16] A. Lewis and S. Bridle, Phys. Rev. D 66, 103511

    (2002) [astro-ph/0205436]; A. Lewis, Phys. Rev. D 87,no. 10, 103529 (2013) [arXiv:1304.4473[astro-ph.CO]];R. M. Neal, [arXiv:math/0502099]; A. Lewis, A. Challi-nor and A. Lasenby, Astrophys. J. 538, 473 (2000)[astro-ph/9911177]; C. Howlett, A. Lewis, A. Hall andA. Challinor, JCAP 1204, 027 (2012) [arXiv:1201.3654[astro-ph.CO]]; A. Challinor and A. Lewis, Phys.

    mailto:[email protected]://arxiv.org/abs/1403.3985http://arxiv.org/abs/1303.5076http://arxiv.org/abs/1403.3919http://arxiv.org/abs/1212.5226http://arxiv.org/abs/1009.5243http://arxiv.org/abs/1403.5463http://arxiv.org/abs/hep-th/0103239http://cosmocoffee.info/viewtopic.php?t=2302http://arxiv.org/abs/1403.5732http://arxiv.org/abs/1403.5817http://arxiv.org/abs/astro-ph/0403344http://arxiv.org/abs/astro-ph/0502093http://arxiv.org/abs/astro-ph/0205436http://arxiv.org/abs/1304.4473http://arxiv.org/abs/math/0502099http://arxiv.org/abs/astro-ph/9911177http://arxiv.org/abs/1201.3654http://arxiv.org/abs/1201.3654http://arxiv.org/abs/astro-ph/9911177http://arxiv.org/abs/math/0502099http://arxiv.org/abs/1304.4473http://arxiv.org/abs/astro-ph/0205436http://arxiv.org/abs/astro-ph/0502093http://arxiv.org/abs/astro-ph/0403344http://arxiv.org/abs/1403.5817http://arxiv.org/abs/1403.5732http://cosmocoffee.info/viewtopic.php?t=2302http://arxiv.org/abs/hep-th/0103239http://arxiv.org/abs/1403.5463http://arxiv.org/abs/1009.5243http://arxiv.org/abs/1212.5226http://arxiv.org/abs/1403.3919http://arxiv.org/abs/1303.5076http://arxiv.org/abs/1403.3985mailto:[email protected]
  • 8/12/2019 Constraints on the Cosmological Parameters From BICEP2, Planck and WMAP

    4/4

    4

    Rev. D 84, 043516 (2011) [arXiv:1105.5292 [astro-ph.CO]]; A. Lewis and A. Challinor, Phys. Rev. D76, 083005 (2007) [astro-ph/0702600 [ASTRO-PH]];U. Seljak and M. Zaldarriaga, Astrophys. J. 469, 437

    (1996) [astro-ph/9603033]; M. Zaldarriaga, U. Seljakand E. Bertschinger, Astrophys. J. 494, 491 (1998)[astro-ph/9704265].

    http://arxiv.org/abs/1105.5292http://arxiv.org/abs/astro-ph/0702600http://arxiv.org/abs/astro-ph/9603033http://arxiv.org/abs/astro-ph/9704265http://arxiv.org/abs/astro-ph/9704265http://arxiv.org/abs/astro-ph/9603033http://arxiv.org/abs/astro-ph/0702600http://arxiv.org/abs/1105.5292