conf paper.pdf

Upload: anonymous-gt0wrnco

Post on 05-Jul-2018

236 views

Category:

Documents


0 download

TRANSCRIPT

  • 8/15/2019 Conf Paper.pdf

    1/20

    See discussions, stats, and author profiles for this publication at: https://www.researchgate.net/publication/257305017

    Effective Bore Pile Design and Installation

    CONFERENCE PAPER · SEPTEMBER 2012

    READS

    905

    1 AUTHOR:

    Ademola Bolarinwa

    Federal University Oye-Ekiti

    2 PUBLICATIONS  0 CITATIONS 

    SEE PROFILE

    All in-text references underlined in blue are linked to publications on ResearchGate,

    letting you access and read them immediately.

    Available from: Ademola Bolarinwa

    Retrieved on: 29 February 2016

    https://www.researchgate.net/profile/Ademola_Bolarinwa?enrichId=rgreq-ab5eef01-c9e7-4920-882f-58d9842d6b27&enrichSource=Y292ZXJQYWdlOzI1NzMwNTAxNztBUzoxMDM1MzY1ODcxODIwOTBAMTQwMTY5NjQ1NTc0OA%3D%3D&el=1_x_7https://www.researchgate.net/institution/Federal_University_Oye-Ekiti?enrichId=rgreq-ab5eef01-c9e7-4920-882f-58d9842d6b27&enrichSource=Y292ZXJQYWdlOzI1NzMwNTAxNztBUzoxMDM1MzY1ODcxODIwOTBAMTQwMTY5NjQ1NTc0OA%3D%3D&el=1_x_6https://www.researchgate.net/institution/Federal_University_Oye-Ekiti?enrichId=rgreq-ab5eef01-c9e7-4920-882f-58d9842d6b27&enrichSource=Y292ZXJQYWdlOzI1NzMwNTAxNztBUzoxMDM1MzY1ODcxODIwOTBAMTQwMTY5NjQ1NTc0OA%3D%3D&el=1_x_6https://www.researchgate.net/institution/Federal_University_Oye-Ekiti?enrichId=rgreq-ab5eef01-c9e7-4920-882f-58d9842d6b27&enrichSource=Y292ZXJQYWdlOzI1NzMwNTAxNztBUzoxMDM1MzY1ODcxODIwOTBAMTQwMTY5NjQ1NTc0OA%3D%3D&el=1_x_6https://www.researchgate.net/institution/Federal_University_Oye-Ekiti?enrichId=rgreq-ab5eef01-c9e7-4920-882f-58d9842d6b27&enrichSource=Y292ZXJQYWdlOzI1NzMwNTAxNztBUzoxMDM1MzY1ODcxODIwOTBAMTQwMTY5NjQ1NTc0OA%3D%3D&el=1_x_6https://www.researchgate.net/institution/Federal_University_Oye-Ekiti?enrichId=rgreq-ab5eef01-c9e7-4920-882f-58d9842d6b27&enrichSource=Y292ZXJQYWdlOzI1NzMwNTAxNztBUzoxMDM1MzY1ODcxODIwOTBAMTQwMTY5NjQ1NTc0OA%3D%3D&el=1_x_6https://www.researchgate.net/institution/Federal_University_Oye-Ekiti?enrichId=rgreq-ab5eef01-c9e7-4920-882f-58d9842d6b27&enrichSource=Y292ZXJQYWdlOzI1NzMwNTAxNztBUzoxMDM1MzY1ODcxODIwOTBAMTQwMTY5NjQ1NTc0OA%3D%3D&el=1_x_6https://www.researchgate.net/institution/Federal_University_Oye-Ekiti?enrichId=rgreq-ab5eef01-c9e7-4920-882f-58d9842d6b27&enrichSource=Y292ZXJQYWdlOzI1NzMwNTAxNztBUzoxMDM1MzY1ODcxODIwOTBAMTQwMTY5NjQ1NTc0OA%3D%3D&el=1_x_6https://www.researchgate.net/institution/Federal_University_Oye-Ekiti?enrichId=rgreq-ab5eef01-c9e7-4920-882f-58d9842d6b27&enrichSource=Y292ZXJQYWdlOzI1NzMwNTAxNztBUzoxMDM1MzY1ODcxODIwOTBAMTQwMTY5NjQ1NTc0OA%3D%3D&el=1_x_6https://www.researchgate.net/profile/Ademola_Bolarinwa?enrichId=rgreq-ab5eef01-c9e7-4920-882f-58d9842d6b27&enrichSource=Y292ZXJQYWdlOzI1NzMwNTAxNztBUzoxMDM1MzY1ODcxODIwOTBAMTQwMTY5NjQ1NTc0OA%3D%3D&el=1_x_5https://www.researchgate.net/?enrichId=rgreq-ab5eef01-c9e7-4920-882f-58d9842d6b27&enrichSource=Y292ZXJQYWdlOzI1NzMwNTAxNztBUzoxMDM1MzY1ODcxODIwOTBAMTQwMTY5NjQ1NTc0OA%3D%3D&el=1_x_1https://www.researchgate.net/profile/Ademola_Bolarinwa?enrichId=rgreq-ab5eef01-c9e7-4920-882f-58d9842d6b27&enrichSource=Y292ZXJQYWdlOzI1NzMwNTAxNztBUzoxMDM1MzY1ODcxODIwOTBAMTQwMTY5NjQ1NTc0OA%3D%3D&el=1_x_7https://www.researchgate.net/institution/Federal_University_Oye-Ekiti?enrichId=rgreq-ab5eef01-c9e7-4920-882f-58d9842d6b27&enrichSource=Y292ZXJQYWdlOzI1NzMwNTAxNztBUzoxMDM1MzY1ODcxODIwOTBAMTQwMTY5NjQ1NTc0OA%3D%3D&el=1_x_6https://www.researchgate.net/profile/Ademola_Bolarinwa?enrichId=rgreq-ab5eef01-c9e7-4920-882f-58d9842d6b27&enrichSource=Y292ZXJQYWdlOzI1NzMwNTAxNztBUzoxMDM1MzY1ODcxODIwOTBAMTQwMTY5NjQ1NTc0OA%3D%3D&el=1_x_5https://www.researchgate.net/profile/Ademola_Bolarinwa?enrichId=rgreq-ab5eef01-c9e7-4920-882f-58d9842d6b27&enrichSource=Y292ZXJQYWdlOzI1NzMwNTAxNztBUzoxMDM1MzY1ODcxODIwOTBAMTQwMTY5NjQ1NTc0OA%3D%3D&el=1_x_4https://www.researchgate.net/?enrichId=rgreq-ab5eef01-c9e7-4920-882f-58d9842d6b27&enrichSource=Y292ZXJQYWdlOzI1NzMwNTAxNztBUzoxMDM1MzY1ODcxODIwOTBAMTQwMTY5NjQ1NTc0OA%3D%3D&el=1_x_1https://www.researchgate.net/publication/257305017_Effective_Bore_Pile_Design_and_Installation?enrichId=rgreq-ab5eef01-c9e7-4920-882f-58d9842d6b27&enrichSource=Y292ZXJQYWdlOzI1NzMwNTAxNztBUzoxMDM1MzY1ODcxODIwOTBAMTQwMTY5NjQ1NTc0OA%3D%3D&el=1_x_3https://www.researchgate.net/publication/257305017_Effective_Bore_Pile_Design_and_Installation?enrichId=rgreq-ab5eef01-c9e7-4920-882f-58d9842d6b27&enrichSource=Y292ZXJQYWdlOzI1NzMwNTAxNztBUzoxMDM1MzY1ODcxODIwOTBAMTQwMTY5NjQ1NTc0OA%3D%3D&el=1_x_2

  • 8/15/2019 Conf Paper.pdf

    2/20

    THE USE OF PILE LOAD TEST TO DETERMINE THE RESIDUAL SETTLEMENT

    OF A PILE

    by

    BOLARINWA ADEMOLA

    GEOTECHNICAL ENGINEER,

    PORTSMAN FOUNDATIONS AND CIVIL WORKS,

    12B, LUGARD AVENUE,

    IKOYI, LAGOS, NIGERIA.

    Abstract

    This presentation reviews the accepted practice regarding the design, analysis and procedure of

    pile load testing. A step-by-step guide on pile load test is enumerated and a case study of a pile

    load test done in Lagos area of Nigeria is discussed. A comparison is made on the designed and

    load test obtained settlement results. Also, included are general reflections and new trends in the

    analysis of pile load test results.

    Introduction

    The behavior of single piles under axial loading has been examined in detail by many

    investigators, and their findings were outlined in several publications (Davisson 1972; Meyerhof

    1976; Vesic 1977; BS 8004: 1996; Das 1999; Nabil 2001). The load transfer settlement

    relationship for single piles and pile groups is very complex. Most settlement analysis methods

    are based on empirical methods and give only a rough approximation of the actual settlement,

    Gilbert (1991). Calculations of settlement are rarely performed when designing ordinary group

    pile and when they are done, the methods of calculation range from those using simple rules of

    thumb to those incorporating detailed finite element analysis. However, the direct method for

    calculating settlements from pressuremeter tests has been discussed by Frank (2012). A school of

    thought from http://osp.mans.edu.eg/deepfoundation/ch9.htm   explicitly stated the total

  • 8/15/2019 Conf Paper.pdf

    3/20

    settlement equation for single bored pile of diameters less than 600mm in a semi-empirical

    method below;

    S = Ss + Spp + Sps … (1)

    Where (Ss) is the elastic compression of pile shaft, (Spp) is the settlement caused by load

    transferred at the pile tip, (Sps) is the settlement caused by load transferred along the pile shaft.

    While the design of pile capacity is often verified by full-scale load testing, design for

    settlement is almost totally without the benefit of full-scale verification. The bearing capacity of

    a single pile may be estimated in one of three ways namely; (a) by load testing, (b) by static

    formulae and (c) by dynamic formulae, Scottt (1980). The first, i.e pile load test is a major focus

    in this paper with a case study. Generally the safe working capacity of a pile is dependent on

    factors such as pile dimension, its founding depth, geotechnical properties of surrounding soils

    strata and also method of installation. All these are best determined by a specialist piling

    contractor. Pile testing is the main part of QA/QC of piling works.

    Pile Load Test

    Pile load test is a static load test of a pile or group of piles used to establish an allowable load.

    The applied load is usually maximum of 150% to 200% of the design safe working load. The

    primary objectives of pile load test are;

    • 

    To establish load-deflection relationships in the pile-soil system,

    •  To determine capacity of the pile-soil system, and

    •  To determine load distribution in the pile-soil system.

    These tests will confirm design assumptions or provide information to allow those assumptions

    and the pile design to be modified, Geotechnical Engineering Bureau (2007). Pile load testing

    provides an opportunity for continuous improvement in foundation design and construction

    practices, while at the same time fulfilling its traditional role of design validation and routine

    quality control of the piling works. In order to achieve this improvement, data from pile tests has

    to be collected and analysed to enable the piling industry, both individually and collectively, to

    make the best use of resources, Federation of Piling Specialist (2006).

  • 8/15/2019 Conf Paper.pdf

    4/20

    Generally, many uncertainties are inherent in the design and construction of piles; it is therefore

    difficult to predict with accuracy the performance of a pile. The best way to know the pile

    behavior is to carry out a load test. The significance of a properly conducted load test is that, it

    furnishes the actual soil resistance at site upon which design can be based reliably. In practice,

    load tests will determine that the foundation is capable of sustaining working loads with

    sufficient factor of safety (normally Factor of Safety = 2.5 – 3.0). Load test will also identify the

    mechanism by which load is transferred to the soil.

    Basically, there are two types of test conducted for axial types of loading namely; compression

    tests and tension (pull out) tests.

    Pile Details and Site Description

    The tested pile is located within the site at 31/33, Waziri Ibrahim Crescent, Victoria Island,

    Lagos. Table 1.0 below shows the pile details

    Table 1.0: Pile Details

    Auger Pile Diameter

    (mm)

    Type of test Pile

    Length

    (m)

    Safe Working

    Load (kN)

    Date of Test

    A-47 600 Compression 16.0 590 17t – 18

    t January,

    2012.

    The pile load test was carried out in accordance with BS 8004 “Code of Practice for Foundations”

    Table 2 below shows the general site characterisation through executed subsoil investigations prior to the

    design of piles. 4 no geotechnical boreholes were drilled to 60.0m each and 6 no. cone penetrometer test

    were performed to refusal depth.

  • 8/15/2019 Conf Paper.pdf

    5/20

    Table 2: The Generalized Subsoil Profile of the Site (Note * Refers to existing ground level.)

    From

    (m)

    To

    (m)

    Generalised Strata Description ConeResistance

    (kg/cm2)

    Nspt/Cu

    Values

    0.0* 10.5/12.0 Very loose to loose, fine to medium grained SAND

    being organic from 2.0m-6.50m in BH1/BH3, andclayey from 6.4m-11.5m in BH4.

    2 - 135 1 - 9

    10.5/12.0 20.0/20.5 Medium dense to dense, fine to coarse grainedgravelly SAND becoming loose at the bottom

    5 - 395 1 - 40

    20.0/20.5 32.0/38.0 Soft to stiff organic CLAY being silty at the top.

    BH-1 has medium dense sand between 25m and32m.

    5 - 95 Cu= 68-106 kPa

    32.0/38.0 42.0/50.0 Medium dense to very dense, fine to coarse grained

    SAND with gravel at places and with lateritic clayand organic material at the top.

    95 - 495 13 - 56

    42.0/50.0 60.0 Dense to very dense, medium-coarse grainedSAND with gravel at places and stiff sandy clay

    running across the site at depths between 52.5m

    and 58.5m (Cu=88 - 160kPa).

    - 30 - 55

    Preparation of Load Test Platform

    The test pile was installed such that the top is exactly at the required height and the support

    surface must be perfectly horizontal. Steel plates are then glued on top of the pile head while ensuring that

    the lower surface of the protruding parts is clear of the ground surface. The distance between these parts

    and the ground surface will be such that the test load is not carried by the ground. There should be enough

    clearance around the pile cap to prevent resistance from the sides or in particular, the base of the cap. A

    gap of 100 to 150mm is usually adequate below the cap.

    Equipments and Instrumentation for Pile Load Test

    Major equipment required for applying compressive load on a test pile generally include, but are

    not limited to the following:

    •  test beams - primary and secondary

  • 8/15/2019 Conf Paper.pdf

    6/20

    •  bearing plates

    •  hydraulic jack of appropriate capacity (800tons); connected to hydraulic pump

    •  oil manometer of suitable capacity

    •  kentledge or Dead weights (normally in form of concrete cubes of 1m3 and 24kN or 2.4tons),

    etc..

    •  2 nos. steel reference beams

    •  2 nos. dial gauges, capable of measuring movements within an accuracy of 0.01mm

    Arrangement of Load Test Platform

    The arrangement for an axial compression test is generally done using either;

    (a) 

    by means of a jack which obtains its reaction from kentledge heavier than the required test load

    (see Fig. 1 & 2);

    (b) 

    by means of jack which obtains its reaction from tension piles or other suitable anchors (section

    7.5.5.2 of BS 8004;1986).

    In the case study presented in this paper, the former was applicable i.e (a).

    Arrangement of the load test equipment for the kentledge method is as follows:

    a) 

    Two support lines are established equidistant from the test pile position.

    b) 

    A steel plate of adequate thickness is placed centrally on the pile head and the hydraulic jack

    placed on the steel plate afterwards.

    c)  A second steel test plate is placed on the hydraulic jacks after which the primary beam is

    placed over it in a position parallel to the established supports.

    d) 

    To ensure that there is a clearance between the primary beam and the hydraulic jack, the beam

    is supported at each end and care is taken to ensure that there is a clearance between it and the

    hydraulic jack. As a minimum, placement of the beam is such that its top level lies either at

    the same level as that of the established supports or it is not more than 50mm below this level.

    e)  The secondary cross beams are then be placed over the established supports.

  • 8/15/2019 Conf Paper.pdf

    7/20

    f) 

    Afterwards, the kentledge is symmetrically placed to span across the cross beams which are

    supported by the established supports.

    g) 

    The reference datum beams, each with one end set in concrete and the other free but

    supported, are placed about 50cm from both sides of the pile head. This will allow the beam to

    move as its length changes with temperature variation.

    h)  The dial gauges are placed on flat steel plates which are connected to the test pile head by

    welding, after which glass plates, upon which the needle from dial gauges will rest, are then be

    taped to the reference datum beams. The general arrangement of load is presented in Fig. 1 –

    2.

    Figure 1: The Typical Compression Pile Load Test Set-up by Kentledge (Dead Weight Method.)

  • 8/15/2019 Conf Paper.pdf

    8/20

    Figure 2: A Schematic Section of Pile Load Test Arrangement

    Pile Load Test Procedure

    A detailed set of recorded results of load, time and movement measurement in tabular form and

    graph of load against settlement with indicated stages of loading are found as attachments in the

    appendix section.

    The maintained load method is the usual method of carrying out a pile load test especially when the load

    settlement relationship is required. It involves the application of the load in stages, with the load at each

    stage being maintained constant until the resulting settlement of the pile virtually ceases before the

    application of the next load increament.

    Maximum load to be applied on a single pile for this method will not exceed 2.0 x S.W.L. The load is

    applied in increments of 25% of the design load. Each load increment is maintained until the rate of

    settlement is not greater than 0.05mm/30minutes or until a maximum of about 2 hours have elapsed,

    whichever occurs first.

  • 8/15/2019 Conf Paper.pdf

    9/20

    The maximum load is maintained on the pile for 6hours, except in the event that the average rate of

    settlement is not greater than 0.05mm/30minutes. Unloading of pile is done in decrements of 25% of the

    maximum load or as specified by the client. A loading scheduled was prepared by the Geotechnical

    Engineer using the relationship between pressure, force and area. That is, pressure applied by the jack is

    directly proportional to its applied force (load on pile) and inversely proportional to the cross sectional

    area of the jack. Table 3.0 below shows the configuration of some available hydraulic jacks we use in

    practice.

    Table 3.0: Available Jacks for Pile Load Test

    Hydraulic Jack Details

    S/No. Make Model No. Capacity (tons) Effective Area (cm2) Calibration

    Date.

    1. ENERPAC 2501 250 176 Nov. 2010

    2. ENERPAC CLASG50012 500 730 Nov. 2010

    3. ENERPAC 800 961 Nov. 2010

  • 8/15/2019 Conf Paper.pdf

    10/20

    Typical loading schedule prepared for the load test in the case study is shown in Table 4.0 below

    Table 4.0: Pile Load Test Sequence for Ø600mm Pile

    Safe Working Load (SWL) : 55.90tons Pile Depth : 16.0m

    Maximum Load (2.0 x SWL) : 88.50tons Pile No. : A47

    Capacity of Hydraulic Jack : 500tons Date :

       F   I   R   S   T   C   Y   C   L   E

      Percentage

    Loading (%)

    Applied Loading

    (tons)

    Pressure

    (kg/cm2)

    Minimum load holding time

       L   O   A   D   I   N   G 

    0 0 0 10 minutes.

    25 14.750 19 30 minutes or 0.25mm/hr.

    50 29.500 38 30 minutes or 0.25mm/hr.

    75 44.250 57 30 minutes or 0.25mm/hr.

    100 59.000 76 1hour or 0.25mm/hr.

       U   N   L   O   A   D   I   N   G 

    75 44.250 57 10 minutes or 0.25mm/hr.

    50 29.500 38 10 minutes or 0.25mm/hr.

    25 14.750 19 10 minutes or 0.25mm/hr.

    0 0 0 30 minutes or 0.25mm/hr.

       S   E   C

       O   N   D

       C   Y   C   L   E

       L   O   A   D   I   N   G 

    100 59.000 76 30 minutes or 0.25mm/hr.

    125 73.750 95 30 minutes or 0.25mm/hr.

    150 88.500 114 12 Hours or 0.25mm/hr.

       U   N   L   O   A   D   I   N

       G 

    125 73.750 95 10 minutes or 0.25mm/hr.

    100 55.900 76 10 minutes or 0.25mm/hr.

    75 44.250 57 10 minutes or 0.25mm/hr.

    50 29.500 38 10 minutes or 0.25mm/hr.

    25 14.750 19 10 minutes or 0.25mm/hr.

    0 0 0 30 minutes or 0.25mm/hr.

  • 8/15/2019 Conf Paper.pdf

    11/20

    Before and after the application of each stage of loading and unloading, reading is made at two opposite

    sides of pile head by means of dial gauges. During loading, additional readings are taken at interval of 10

    minutes. However, where the rate of settlement does not show any appreciable difference in two

    consecutive readings, the reading is taken at a reasonable interval or next stage of loading or unloading is

    performed. The Survey instrument is also used to monitor the settlement as a form of check for the

    fleximeter readings.

    Pile Load Test Results and Discussion

    The compression pile (A-47) with cross sectional diameter of 600mm is tested to a maximum 150% of the

    proposed safe working load, i.e. test load of 885kN. The design compressive SWL for the pile is 590kN.

    The test for pile (A-47) was carried out in two cycles, first to design test load of 590kN, then to 1.5 x

    design test load (1.5 x 590 = 885kN) during the 2nd

     cycle.

    Table 5: Pile Load Test Result Summary 

    Pile

    No.

    100%

    SWL

    (kN)

    Movement

    (mm)

    125% of

    SWL

    (kN)

    Movement

    (mm)

    150% of

    SWL

    (kN)

    Movement

    (mm)

    Residual

    Movement

    (mm)

    A-47 590 1.01 737.50 1.65 885 3.03 1.41

    In the first cycle, progressive and increasing loads till 100% SWL was applied on the pile and on

    attainment of the 100% maximum load it was maintained for a period of about 1-hour, during which pile

    movements as loading progressed were recorded, see summary in Table 5.0 above. The percentage

    increase or decrease in successive loading or unloading was 25%. During the second cycle loading, the

    test was taken to the maximum test load 1.5xSWL i.e. 885kN which was maintained continuously for

    12hours and the corresponding movement was recorded. The full records of load test are found in the

    appendix section. The load – settlement curve is shown in Fig. 3; load – time curve in Fig. 4, and the

    settlement/deflection – time curve in Fig. 5

    Pile (A-47), under the maximum applied load of 885kN, pile movements recorded for this pile is mm

    as shown in the Table 5 above. The test load was then gradually removed over this second and final cycle

    until the entire test load was fully removed.

  • 8/15/2019 Conf Paper.pdf

    12/20

    Figure 3: Load – Settlement Curve for Pile No. A-47

  • 8/15/2019 Conf Paper.pdf

    13/20

  • 8/15/2019 Conf Paper.pdf

    14/20

    Table 6: Comparison between Designed and Load Test Settlements Results

    Design Results Load Test Results

    Load (tons) Settlement (mm) Load (tons) Settlement (mm)

    59.00 1.16 59.00 1.01

    73.75 1.74 73.75 1.65

    88.50 3.26 88.50 3.03

    Note that, 10kN = 1ton. 

    Conclusion

    This paper has attempted to simplify a direct method of obtaining the residual settlement of a

    single pile. Comparison of the designed and as built settlement values were also done in order to

    avoid mispredictions, see Table 6 above for details. The comparison between the designed settlement

    and load test obtained settlement for Pile No. A-47 under a designed safe working load of 59.0tons shows

    little or no deviation. Italian software called “KK” was used in computing safe working load for the test

    pile and corresponding settlements anticipated.

    The designed settlement at safe working load of 59.0tons for the pile was 1.16mm while the load test

    obtained settlement was 1.01mm, hence a deviation of 0.15mm. The time required by the pile under the

    load test at safe working load of 59.0tons to reach a settlement of 1.01mm is 1.66hrs which is considered

    insignificant considering a long term settlement results. See Table 6 above for a comprehensive analysis

    of the designed settlement and load test obtained settlement. Figure 3 – 5 also shows a three dimensional

    representation of a single pile behaviour. The three dimensions being Time, Load and Settlement. The

    maximum pile movement for Pile No.A-47 under these loading is far less than 10% of the pile diameters

    i.e. 60mm, the boundary that would have theoretically taken the piles to their plastic limits. The tested

    pile (A-47) rebounded after the test loads had been fully removed with residual movements/settlement of

    about 1.41mm recorded after the load was fully removed. This is an indication of a good quality piles

    with good elastic properties.

  • 8/15/2019 Conf Paper.pdf

    15/20

    References

    British Standard Code of Practice for Foundations BS 8004: (1996).

    Das Braja M. (1999). “Principles of Foundation Engineering”. 4th Edition, Brooks/Cole

    Publishing Co., Pacific Groove, Calif.

    Davisson, M.T. (1972). “High Capacity Piles, Proceedings, Soil Mechanics Lecture Series on

    Innovations in Foundation Construction” American Society of Engineers, ASCE, Illinois

    Section, Chicago. Pp 81-112.

    Federation of Piling Specialists, F.P.S. (2006). “Handbook on Pile Load testing”

    www.fps.org.uk/fps/piletesting/loadtestinghandbook.pdf  (Accessed on 20th July, 2012.)

    Fleming, W.G.K. (1992). “A New Method for Single Pile Settlement Prediction and Analysis”

    Geotechnique, Vol. 42, No. 3. Pp 411 – 425.

    Frank, R. (2012). “Some Aspects of Research and Practice for Foundations Design in France”.  

    Université Paris-Est, Ecole des Ponts ParisTech, UR Navier, Geotechnical team-

    CERMES.Pp 25 – 42. http://www.sloged.si/LinkClick  (Accessed on 2nd June, 2012.)

    Geotechnical Engineering Bureau. (2007). “Geotechnical Control Procedure” New York State

    Department of Transportation.

    Gilbert, G. (1991). “Design of Pile Foundations”. US Army Corps of Engineers. Engineers

    Manual No. 1110-2-2906.

    http://osp.mans.edu.eg/deepfoundation/ch9.htm . (Accessed on 29th June, 2012.)

    Meyerhof, G.G. (1976). “Bearing Capacity and Settlement of Pile Foundations”. J. Geotech.

    Engrg.Div., ASCE, 102(3), 195-228.

  • 8/15/2019 Conf Paper.pdf

    16/20

    Nabil, F.I. (2001). “Axial Load Tests on Bored Piles and Pile Groups in Cemented Sands”

    Journal of Geotechnical & Geoenvironmental Engineering. Vol.127, No. 9, Pp 766 – 773.

    New Trends and Developments in Geotechnical Engineering. International Society of Soil

    Mechanics and Geotechnical Engineering (ISSMGE) International Conference.

    Vesic, A.S. (1977). “Design of Pile Foundations”. Nat. Cooperative Hwy.Res. Program

    Synthesis of Pract.No.42, Transportation Research Board, Washington D.C.

  • 8/15/2019 Conf Paper.pdf

    17/20

    APPENDIX

    LOAD TEST RECORDING SHEETS

  • 8/15/2019 Conf Paper.pdf

    18/20

  • 8/15/2019 Conf Paper.pdf

    19/20

  • 8/15/2019 Conf Paper.pdf

    20/20