comsol - classical models of the interface between an electrode and electrolyte...

13
Classical Models of the Interface between an Electrode and Electrolyte M.Sc. Ekaterina Gongadze Faculty of Informatics and Electrical Engineering Comsol Conference Milano 2009 13 10 2009 Interdisziplinäre Fakultät Fakultät für Informatik und Elektrotechnik Medizinische Fakultät Mathematisch-Naturwissenschaftliche Fakultät Fakultät für Maschinenbau und Schiffstechnik 13.10.2009 Presented at the COMSOL Conference 2009 Milan

Upload: others

Post on 10-Feb-2021

3 views

Category:

Documents


0 download

TRANSCRIPT

  • Classical Models of the Interface between an Electrode and Electrolyte

    M.Sc. Ekaterina GongadzeFaculty of Informatics and Electrical Engineering

    Comsol ConferenceMilano 200913 10 2009

    Interdisziplinäre Fakultät Fakultät für Informatik und Elektrotechnik Medizinische FakultätMathematisch-Naturwissenschaftliche Fakultät Fakultät für Maschinenbau und Schiffstechnik

    13.10.2009

    Presented at the COMSOL Conference 2009 Milan

  • Outline

    MotivationElectrical Double Layer (EDL)y ( )EDL Models

    • Classical ModelsClassical ModelsEDL Capacitance ComparisonF t G lFuture Goals

    2

  • Motivation

    Implant & Body Implant & Body FluidsFluidsFluidsFluids

    Electrical Electrical

    Double LayerDouble Layer

    3

    Source: Lüthen et al. (2005),Biomaterials 26

  • Electrical Double Layer (EDL)

    • What?

    The interface between a charged surface and an electrolyte

    • How big?

    Thickness: 0.1 - 100 nm (~ ionic strength of the solution)

    • Where?

    Implant´s surfaceElectrolyte batteryElectrolyte battery In microsystems, around charged nanoparticles (biomolecules, latex beads…)Aurora, solar corona, pulsars

    4

  • Distribution of Ions

    D t i d b th f tDetermined by three factors:

    • electrostatic (Coulombic) forceselectrostatic (Coulombic) forces • diffusion• specific interactionsp

    5

  • Helmholtz Model

    Potential profile determined by Poisson’s equation: q

    022

    02

    2

    dxd

    dxd

    r

    022

    02

    2

    dxd

    dxd

    r

    εr relative permittivity of medium

    ε0 permittivity of free space

    ρ space charge density

    φ electric potentialφ electric potential

    x distance tangential to the electrode‘s surface

    d diameter of the solvated counter

    6

    d diameter of the solvated counter ion

  • Gouy-Chapman Model

    Assumptions:

    • ions as point-like charges• dilute ionic solution• continuum dielectric solvent• continuum dielectric solvent

    7

  • Stern Model

    Helmholtz layerHelmholtz layer+

    Diffuse double layery

    Total capacitance:

    CH and Cdiffuse in series:

    )(111

    0diffuseHd CCC

    8

  • Numerical Simulation

    • Geometry and Subdomain Settings

    Gouy-Chapman Model:Linearized Poisson BoltzmannSubdomain Settings Linearized Poisson-Boltzmann Equation:

    zekTn sinh8

    2/10

    whereElectrolyte:

    NaCl

    Ele

    ctro

    de

    Ø 2

    0 nm

    kTx r 2

    sinh0

    k Boltzmann constant

    20 nm0.3 nm 0.3 nm

    E k Boltzmann constante unit chargezi ion i charge numberc concentration of ion i

    Helmholtz Model:Poisson Equation:

    02d

    ci concentration of ion iT temperatureni0 number of ion i in bulk

    9

    02 dx

  • Numerical Simulation (2)

    Stern Model: • Boundary conditions

    Subdomain 1:

    02d

    symmetry

    Subdomain 2:

    02 dx

    continuity

    pote

    ntia

    l

    pote

    ntia

    l

    dom

    ain

    1

    dom

    ain

    2

    kTzekTn

    x 2sinh8

    2/10

    El.

    p

    El.

    Sub

    d

    Sub

    d

    kTx r 20 symmetry

    10

  • Postprocessing

    • Capacitance computation

    i

    ndADQ 0QC

    where Q – free electric charge dA i i fi i i l

    H l h lt G St M d l E i t

    QC dA - vector representing an infinitesimal element of area D0 - electric displacement field

    Helmholtz Model

    Gouy-Chapman Model

    Stern Model Experiment

    C [µF/cm2] 231 41 77 16 57 92 6Cdl [µF/cm2]analytical

    231.41 77.16 57.92 6

    Cdl [µF/cm2]i

    231.69 77.03 57.61 6

    11

    numerical

  • Classical Models – an overview

    Assumptions:• ions as point like charges

    Disadvantages:

    i t t d i t h• ions as point-like charges• dilute ionic solution• continuum dielectric solvent

    • ions treated as point charges• only significant interactions -

    Coulombic ones• constant electrical permittivity

    Advantages:• Simple implementation • Analytical solution

    • not time-dependent• infinite concentration of counter-

    ions near the charged surface• inhomogeneity of the charge • Analytical solution o oge e y o e c a gedistribution not included• finite size & shape anisotropy of

    molecules not incorporated• distorted structure by steric effectdistorted structure by steric effect

    & hydration force not included• overlapping problem

    12

  • Summary & Outlook

    • Importance of EDL

    • Classical Models

    • Need of a Sophisticated M d lModel

    • Modelling of a non-planar electrode‘s surface

    13

    Source: Lange, R. et al (2009), Material and cell biological investigations on structured biomaterial surfaces with regular geometry, IBI 2009