computer vision i - tracking › ~ds24 › lehre › cv1_ws_2014 › vl13.pdf · computer vision i...

82
Computer Vision I - Tracking Carsten Rother Computer Vision I: Tracking 17/02/2015 17/02/2015 [slide credits: Alex Krull]

Upload: others

Post on 07-Jul-2020

15 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: Computer Vision I - Tracking › ~ds24 › lehre › cv1_ws_2014 › VL13.pdf · Computer Vision I - Tracking Carsten Rother 17/02/2015 Computer Vision I: Tracking 17/02/2015 [slide

Computer Vision I -Tracking

Carsten Rother

Computer Vision I: Tracking17/02/2015

17/02/2015

[slide credits: Alex Krull]

Page 2: Computer Vision I - Tracking › ~ds24 › lehre › cv1_ws_2014 › VL13.pdf · Computer Vision I - Tracking Carsten Rother 17/02/2015 Computer Vision I: Tracking 17/02/2015 [slide

What is Tracking?

• „Tracking an object in an image sequence means continuously identifying its location when either the object or the camera are moving“ [Lepetit and Fua 2005]

• This can mean estimating in each frame:

• 2D location or window

• 6D rigid body transformation

• More complex parametric models• Active Appearance Models

• Skeleton for human pose etc.

17/02/2015 Computer Vision I: Tracking 2

Page 3: Computer Vision I - Tracking › ~ds24 › lehre › cv1_ws_2014 › VL13.pdf · Computer Vision I - Tracking Carsten Rother 17/02/2015 Computer Vision I: Tracking 17/02/2015 [slide

What is Tracking?

• „Tracking an object in an image sequence means continuously identifying its location when either the object or the camera are moving“ [Lepetit and Fua 2005]

• This can mean estimating in each frame:

• 2D location or window

• 6D rigid body transformation

• More complex parametric models• Active Appearance Models

• Skeleton for human pose etc.

17/02/2015 Computer Vision I: Tracking 3

Page 4: Computer Vision I - Tracking › ~ds24 › lehre › cv1_ws_2014 › VL13.pdf · Computer Vision I - Tracking Carsten Rother 17/02/2015 Computer Vision I: Tracking 17/02/2015 [slide

What is Tracking?

• „Tracking an object in an image sequence means continuoslyidentifying its location when either the object or the camera aremoving“ [Lepetit and Fua 2005]

• This can mean estimating in each frame:

• 2D location or window

• 6D rigid body transformation

• More complex parametric models• Active Appearance Models

• Skeleton for human pose etc.

17/02/2015 Computer Vision I: Tracking 4

Page 5: Computer Vision I - Tracking › ~ds24 › lehre › cv1_ws_2014 › VL13.pdf · Computer Vision I - Tracking Carsten Rother 17/02/2015 Computer Vision I: Tracking 17/02/2015 [slide

Tracking vs Localization

• Tracking of objects is closely related to:

• camera pose estimation in a known environment

• localization of agents (eg. Robots) in a known environment

• Reminder: SLAM has unknown location (agent, camera) and unknown environment

17/02/2015 Computer Vision I: Tracking 5

Page 6: Computer Vision I - Tracking › ~ds24 › lehre › cv1_ws_2014 › VL13.pdf · Computer Vision I - Tracking Carsten Rother 17/02/2015 Computer Vision I: Tracking 17/02/2015 [slide

Outline

• This lecture• The Bayes Filter

• Explained for localization

• Next lecture• The Particle Filter

• The Kalman Filter

• Pros and Cons

• Beyond tracking and localization

• Case study: • 6-DOF Model Based Tracking via Object Coordinate Regression

17/02/2015 Computer Vision I: Tracking 6

Page 7: Computer Vision I - Tracking › ~ds24 › lehre › cv1_ws_2014 › VL13.pdf · Computer Vision I - Tracking Carsten Rother 17/02/2015 Computer Vision I: Tracking 17/02/2015 [slide

The Bayes Filter / Convolute and Multiply

17/02/2015 Computer Vision I: Tracking 7

• We have:

• Probabilistic model for movement

• Probabilistic model formeasurement• Based on map of the environment

• Where is the ship?

• Using all previous andcurrent observations

Page 8: Computer Vision I - Tracking › ~ds24 › lehre › cv1_ws_2014 › VL13.pdf · Computer Vision I - Tracking Carsten Rother 17/02/2015 Computer Vision I: Tracking 17/02/2015 [slide

1tztz

1txtx

The Hidden Markov Model

17/02/2015 Computer Vision I: Tracking 8

Observations:Depth measurement

States:Positions

time

Page 9: Computer Vision I - Tracking › ~ds24 › lehre › cv1_ws_2014 › VL13.pdf · Computer Vision I - Tracking Carsten Rother 17/02/2015 Computer Vision I: Tracking 17/02/2015 [slide

The Hidden Markov Model

17/02/2015 Computer Vision I: Tracking 9

Observation Model:What is the likelihoodof an observation, given a state?

𝑝 𝑧𝑡 𝑥𝑡 =1

𝑐𝑒− 𝑧𝑡−𝑑 𝑥𝑡

2/(2𝜎2)

1tztz

1txtx

time

𝑑 𝑥𝑡 is the known true depth

Page 10: Computer Vision I - Tracking › ~ds24 › lehre › cv1_ws_2014 › VL13.pdf · Computer Vision I - Tracking Carsten Rother 17/02/2015 Computer Vision I: Tracking 17/02/2015 [slide

The Hidden Markov Model

17/02/2015 Computer Vision I: Tracking 10

Motion Model:Probability forstate transition

𝑝 𝑥𝑡+1 𝑥𝑡

1tztz

1txtx

time

Page 11: Computer Vision I - Tracking › ~ds24 › lehre › cv1_ws_2014 › VL13.pdf · Computer Vision I - Tracking Carsten Rother 17/02/2015 Computer Vision I: Tracking 17/02/2015 [slide

Probability distribution for the state given all previous and currentobservations:

• This is what we are interested in

• Eg. use maximum as current estimate

The Posterior distribution

17/02/2015 Computer Vision I: Tracking 11

tz

tx

1tz

1tx

0z

0x

...

...

𝑝 𝑥𝑡 𝑧0:𝑡

𝑥𝑡∗ = 𝑎𝑟𝑚𝑎𝑥𝑥𝑡

𝑝 𝑥𝑡 𝑧0:𝑡

Page 12: Computer Vision I - Tracking › ~ds24 › lehre › cv1_ws_2014 › VL13.pdf · Computer Vision I - Tracking Carsten Rother 17/02/2015 Computer Vision I: Tracking 17/02/2015 [slide

The Prior distribution

17/02/2015 Computer Vision I: Tracking 12

1txtx

1tz

1tx

0z

0x

...

...

𝑝 𝑥𝑡+1 𝑧0:𝑡

Probability distribution for the next state given only previousobservations:

• Intermediate step for calculating the next posterior

tz

Page 13: Computer Vision I - Tracking › ~ds24 › lehre › cv1_ws_2014 › VL13.pdf · Computer Vision I - Tracking Carsten Rother 17/02/2015 Computer Vision I: Tracking 17/02/2015 [slide

Important Distributions

17/02/2015 Computer Vision I: Tracking 13

𝑝 𝑥𝑡+1 𝑧0:𝑡

1txtx

1tz

1tx

0z

0x ...

tztz

tx

1tz

1tx

0z

0x ...

𝑝 𝑥𝑡 𝑧0:𝑡

1txtx

tz

tx

𝑝 𝑧𝑡 𝑥𝑡𝑝 𝑥𝑡+1 𝑥𝑡

Observation Model: Motion Model:

Posterior: Prior:

• Likelihood ofobservation givenstate

• Continuous Gaussianaround real depth

• Probability of newstate given old one

• Discrete Gaussian

• Probability of state given previousand current observations

• Probability of state given onlyprevious observations

Page 14: Computer Vision I - Tracking › ~ds24 › lehre › cv1_ws_2014 › VL13.pdf · Computer Vision I - Tracking Carsten Rother 17/02/2015 Computer Vision I: Tracking 17/02/2015 [slide

Probabilities - Reminder

• A random variable is denoted with 𝑥 ∈ {0,… , 𝐾}

• Discrete probability distribution: 𝑝(𝑥) satisfies 𝑥 𝑝(𝑥) = 1

• Joint distribution of two random variables: 𝑝(𝑥, 𝑧)

• Conditional distribution: 𝑝 𝑥 𝑧

• Sum rule (marginal distribution): 𝑝 𝑧 = 𝑥 𝑝(𝑥, 𝑧)

• Independent probability distribution: 𝑝 𝑥, 𝑧 = 𝑝 𝑧 𝑝 𝑥

• Product rule: 𝑝 𝑥, 𝑧 = 𝑝 𝑧 𝑥 𝑝(𝑥)

• Bayes’ rule: 𝑝 𝑥|𝑧 =𝑝(𝑧|𝑥)𝑝 𝑥

𝑝(𝑧)

17/02/2015 14Computer Vision I: Tracking

Page 15: Computer Vision I - Tracking › ~ds24 › lehre › cv1_ws_2014 › VL13.pdf · Computer Vision I - Tracking Carsten Rother 17/02/2015 Computer Vision I: Tracking 17/02/2015 [slide

Probabilities - Reminder

• Sum rule (marginal distribution): 𝑝 𝑧 = 𝑥 𝑝(𝑥, 𝑧)

• Product rule: 𝑝 𝑥, 𝑧 = 𝑝 𝑧 𝑥 𝑝(𝑥)

• Bayes’ rule: 𝑝 𝑥|𝑧 =𝑝(𝑧|𝑥)𝑝 𝑥

𝑝(𝑧)

• Sum rule (marginal distribution): 𝑝 𝑧|𝐴 = 𝑥 𝑝(𝑥, 𝑧|𝐴)

• Product rule: 𝑝 𝑥, 𝑧|𝐴 = 𝑝 𝑧 𝑥, 𝐴 𝑝(𝑥|𝐴)

• Bayes’ rule: 𝑝 𝑥|𝑧, 𝐴 =𝑝(𝑧|𝑥,𝐴)𝑝 𝑥|𝐴

𝑝(𝑧|𝐴)

17/02/2015 15Computer Vision I: Tracking

Page 16: Computer Vision I - Tracking › ~ds24 › lehre › cv1_ws_2014 › VL13.pdf · Computer Vision I - Tracking Carsten Rother 17/02/2015 Computer Vision I: Tracking 17/02/2015 [slide

Probabilities - Reminder

17/02/2015 16Computer Vision I: Tracking

𝐴 𝐵

𝐴

𝐶

𝐵

Independence

𝐴 and 𝐵 are not connected in graph

• 𝐴 does not contain informationabout 𝐵

• 𝑝 𝐴, 𝐵 = 𝑝 𝐴 𝑝 𝐵

• 𝑝 𝐴|𝐵 = 𝑝 𝐴

• 𝑝 𝐵|𝐴 = 𝑝(𝐵)

Conditional Independence

𝐴 and 𝐵 are connected only via 𝐶

• 𝐴 does not contain informationabout 𝐵 when 𝐶 is known

• 𝑝 𝐴, 𝐵|𝐶 = 𝑝 𝐴|𝐶 𝑝 𝐵|𝐶

• 𝑝 𝐴|𝐵, 𝐶 = 𝑝 𝐴|𝐶

• 𝑝 𝐵|𝐴, 𝐶 = 𝑝(𝐵|𝐶)

Two dice rolls

It rains

People have umbrellas

Tram is crowded

Page 17: Computer Vision I - Tracking › ~ds24 › lehre › cv1_ws_2014 › VL13.pdf · Computer Vision I - Tracking Carsten Rother 17/02/2015 Computer Vision I: Tracking 17/02/2015 [slide

Step by Step

17/02/2015 Computer Vision I: Tracking 17

𝑡 = 0

• Assume prior for first frame:

• Make first measurement: 𝑧0

𝑝(𝑥0)

Page 18: Computer Vision I - Tracking › ~ds24 › lehre › cv1_ws_2014 › VL13.pdf · Computer Vision I - Tracking Carsten Rother 17/02/2015 Computer Vision I: Tracking 17/02/2015 [slide

Step by Step

17/02/2015 Computer Vision I: Tracking 18

𝑡 = 0

• Calculate likelihood 𝑝(𝑧0|𝑥0) for every possible state 𝑥0:

Page 19: Computer Vision I - Tracking › ~ds24 › lehre › cv1_ws_2014 › VL13.pdf · Computer Vision I - Tracking Carsten Rother 17/02/2015 Computer Vision I: Tracking 17/02/2015 [slide

Step by Step

17/02/2015 Computer Vision I: Tracking 19

𝑡 = 0

• Calculate the posterior by• multiplying with prior• Normalizing

• Reducing uncertainty𝑝 𝑥0 𝑧0 =

𝑝(𝑥0)𝑝(𝑧0|𝑥0)

𝑥 𝑝(𝑥0 = 𝑥)𝑝(𝑧0|𝑥0 = 𝑥)

Page 20: Computer Vision I - Tracking › ~ds24 › lehre › cv1_ws_2014 › VL13.pdf · Computer Vision I - Tracking Carsten Rother 17/02/2015 Computer Vision I: Tracking 17/02/2015 [slide

The Bayes Filter / Convolute and Multiply

17/02/2015 Computer Vision I: Tracking 20

𝑡 = 0

𝑝 𝑥1 𝑧0 =

𝑥

𝑝 𝑥0 = 𝑥 𝑧0 𝑝 𝑥1 𝑥0 = 𝑥

• Calculate the prior by Convolutionwith motion model

• Adding uncertainty

Page 21: Computer Vision I - Tracking › ~ds24 › lehre › cv1_ws_2014 › VL13.pdf · Computer Vision I - Tracking Carsten Rother 17/02/2015 Computer Vision I: Tracking 17/02/2015 [slide

The Bayes Filter / Convolute and Multiply

17/02/2015 Computer Vision I: Tracking 21

𝑡 = 1

• Make new measurement: 𝑧1

Page 22: Computer Vision I - Tracking › ~ds24 › lehre › cv1_ws_2014 › VL13.pdf · Computer Vision I - Tracking Carsten Rother 17/02/2015 Computer Vision I: Tracking 17/02/2015 [slide

The Bayes Filter / Convolute and Multiply

17/02/2015 Computer Vision I: Tracking 22

𝑡 = 1

• Calculate likelihood 𝑝(𝑧1|𝑥1) for every possible state 𝑥1:

Page 23: Computer Vision I - Tracking › ~ds24 › lehre › cv1_ws_2014 › VL13.pdf · Computer Vision I - Tracking Carsten Rother 17/02/2015 Computer Vision I: Tracking 17/02/2015 [slide

The Bayes Filter / Convolute and Multiply

17/02/2015 Computer Vision I: Tracking 23

𝑡 = 1

• Calculate the posterior by• multiplying with prior• Normalizing

• Reducing uncertainty𝑝 𝑥1 𝑧0:1 =

𝑝(𝑥1|𝑧0)𝑝(𝑧1|𝑥1)

𝑥 𝑝(𝑥1 = 𝑥|𝑧0)𝑝(𝑧1|𝑥1 = 𝑥)

Page 24: Computer Vision I - Tracking › ~ds24 › lehre › cv1_ws_2014 › VL13.pdf · Computer Vision I - Tracking Carsten Rother 17/02/2015 Computer Vision I: Tracking 17/02/2015 [slide

The Bayes Filter / Convolute and Multiply

17/02/2015 Computer Vision I: Tracking 24

𝑡 = 1

• Calculate the prior by Convolutionwith motion model

• Adding uncertainty

𝑝 𝑥2 𝑧0:1 =

𝑥

𝑝 𝑥1 = 𝑥 𝑧0:1 𝑝(𝑥2|𝑥1 = 𝑥)

Page 25: Computer Vision I - Tracking › ~ds24 › lehre › cv1_ws_2014 › VL13.pdf · Computer Vision I - Tracking Carsten Rother 17/02/2015 Computer Vision I: Tracking 17/02/2015 [slide

The Bayes Filter / Convolute and Multiply

17/02/2015 Computer Vision I: Tracking 25

𝑡 = 2

• Make new measurement: 𝑧2

Page 26: Computer Vision I - Tracking › ~ds24 › lehre › cv1_ws_2014 › VL13.pdf · Computer Vision I - Tracking Carsten Rother 17/02/2015 Computer Vision I: Tracking 17/02/2015 [slide

The Bayes Filter / Convolute and Multiply

17/02/2015 Computer Vision I: Tracking 26

𝑡 = 2

• Calculate likelihood 𝑝(𝑧2|𝑥2) for every possible state 𝑥2:

Page 27: Computer Vision I - Tracking › ~ds24 › lehre › cv1_ws_2014 › VL13.pdf · Computer Vision I - Tracking Carsten Rother 17/02/2015 Computer Vision I: Tracking 17/02/2015 [slide

The Bayes Filter / Convolute and Multiply

17/02/2015 Computer Vision I: Tracking 27

𝑡 = 2

• Calculate the posterior by• multiplying with prior• Normalizing

• Reducing uncertainty𝑝 𝑥2 𝑧0:2 =

𝑝(𝑥2|𝑧0:1)𝑝(𝑧2|𝑥2)

𝑥 𝑝(𝑥2 = 𝑥|𝑧0:1)𝑝(𝑧2|𝑥2 = 𝑥)

Page 28: Computer Vision I - Tracking › ~ds24 › lehre › cv1_ws_2014 › VL13.pdf · Computer Vision I - Tracking Carsten Rother 17/02/2015 Computer Vision I: Tracking 17/02/2015 [slide

The Bayes Filter / Convolute and Multiply

17/02/2015 Computer Vision I: Tracking 28

𝑡 = 2

Page 29: Computer Vision I - Tracking › ~ds24 › lehre › cv1_ws_2014 › VL13.pdf · Computer Vision I - Tracking Carsten Rother 17/02/2015 Computer Vision I: Tracking 17/02/2015 [slide

The Bayes Filter / Convolute and Multiply

17/02/2015 Computer Vision I: Tracking 29

Algorithm:

1. Make observation

2. Calculate likelihood for every position

3. Multiply with last prior and normalize

• Calculate posterior

4. Convolution with motion model

• Calculate new prior

5. Go to 1.

Page 30: Computer Vision I - Tracking › ~ds24 › lehre › cv1_ws_2014 › VL13.pdf · Computer Vision I - Tracking Carsten Rother 17/02/2015 Computer Vision I: Tracking 17/02/2015 [slide

𝑝 𝑥0 𝑧0

Calculating the Posterior

17/02/2015 Computer Vision I: Tracking 30

𝑝(𝑥0)

0z

1x0x

1z

...

=𝑝(𝑥0)𝑝(𝑧0|𝑥0)

𝑥 𝑝(𝑥0 = 𝑥)𝑝(𝑧0|𝑥0 = 𝑥)

(Multiply and normalize)Observation model

(see proof 1)

Page 31: Computer Vision I - Tracking › ~ds24 › lehre › cv1_ws_2014 › VL13.pdf · Computer Vision I - Tracking Carsten Rother 17/02/2015 Computer Vision I: Tracking 17/02/2015 [slide

Proof 1

17/02/2015 Computer Vision I: Tracking 31

Page 32: Computer Vision I - Tracking › ~ds24 › lehre › cv1_ws_2014 › VL13.pdf · Computer Vision I - Tracking Carsten Rother 17/02/2015 Computer Vision I: Tracking 17/02/2015 [slide

Calculating the next Prior

17/02/2015 Computer Vision I: Tracking 32

𝑝(𝑥0)

𝑝 𝑥0 𝑧0

𝑝 𝑥1 𝑧0

...

=

𝑥

𝑝 𝑥0 = 𝑥 𝑧0 𝑝 𝑥1 𝑥0 = 𝑥

(Convolution)

Observation model

0z

1x0x

1z

(see proof 2)

Page 33: Computer Vision I - Tracking › ~ds24 › lehre › cv1_ws_2014 › VL13.pdf · Computer Vision I - Tracking Carsten Rother 17/02/2015 Computer Vision I: Tracking 17/02/2015 [slide

Proof 2

17/02/2015 Computer Vision I: Tracking 33

Page 34: Computer Vision I - Tracking › ~ds24 › lehre › cv1_ws_2014 › VL13.pdf · Computer Vision I - Tracking Carsten Rother 17/02/2015 Computer Vision I: Tracking 17/02/2015 [slide

Calculating the Posterior

17/02/2015 Computer Vision I: Tracking 34

𝑝(𝑥0)

𝑝 𝑥0 𝑧0

𝑝 𝑥1 𝑧0

...

Observation model

1x0x

Observation model

𝑝 𝑥1 𝑧0:1 =𝑝(𝑥1|𝑧0)𝑝(𝑧1|𝑥1)

𝑥 𝑝(𝑥1 = 𝑥)𝑝(𝑧1|𝑥1 = 𝑥)

1z0z

Page 35: Computer Vision I - Tracking › ~ds24 › lehre › cv1_ws_2014 › VL13.pdf · Computer Vision I - Tracking Carsten Rother 17/02/2015 Computer Vision I: Tracking 17/02/2015 [slide

𝑝 𝑥𝑡 𝑧0:𝑡

Calculating the Posterior (General Case)

17/02/2015 Computer Vision I: Tracking 35

𝑝(𝑥𝑡|𝑧0:𝑡−1)

tz

1txtx

1tz

...

=𝑝(𝑥𝑡|𝑧0:𝑡−1)𝑝(𝑧𝑡|𝑥𝑡)

𝑥 𝑝(𝑥𝑡 = 𝑥|𝑧0:𝑡−1)𝑝(𝑧𝑡|𝑥𝑡 = 𝑥)

(Multiply and normalize)Observation model

...

(see proof 3)

Page 36: Computer Vision I - Tracking › ~ds24 › lehre › cv1_ws_2014 › VL13.pdf · Computer Vision I - Tracking Carsten Rother 17/02/2015 Computer Vision I: Tracking 17/02/2015 [slide

Proof 3

17/02/2015 Computer Vision I: Tracking 36

Page 37: Computer Vision I - Tracking › ~ds24 › lehre › cv1_ws_2014 › VL13.pdf · Computer Vision I - Tracking Carsten Rother 17/02/2015 Computer Vision I: Tracking 17/02/2015 [slide

Calculating the next Prior (General Case)

17/02/2015 Computer Vision I: Tracking 37

𝑝(𝑥𝑡|𝑧0:𝑡−1)

𝑝 𝑥𝑡 𝑧0:𝑡

𝑝 𝑥𝑡+1 𝑧0:𝑡

...

=

𝑥

𝑝 𝑥𝑡 = 𝑥 𝑧0:𝑡 𝑝(𝑥𝑡+1|𝑥𝑡 = 𝑥)

(Convolution)

Observation model

...

tz

1txtx

1tz

(see proof 4)

Page 38: Computer Vision I - Tracking › ~ds24 › lehre › cv1_ws_2014 › VL13.pdf · Computer Vision I - Tracking Carsten Rother 17/02/2015 Computer Vision I: Tracking 17/02/2015 [slide

Proof 4

17/02/2015 Computer Vision I: Tracking 38

Page 39: Computer Vision I - Tracking › ~ds24 › lehre › cv1_ws_2014 › VL13.pdf · Computer Vision I - Tracking Carsten Rother 17/02/2015 Computer Vision I: Tracking 17/02/2015 [slide

Overview Continuous Approaches

17/02/2015 Computer Vision I: Tracking 39

• How to apply it in continuous space?

• Two popular alternatives:

• Particle filter• Represent prior and posterior with samples

• Kalman Filter • Represent prior and posterior distributions as Gaussians

Page 40: Computer Vision I - Tracking › ~ds24 › lehre › cv1_ws_2014 › VL13.pdf · Computer Vision I - Tracking Carsten Rother 17/02/2015 Computer Vision I: Tracking 17/02/2015 [slide

Important Distributions (Particle Filter)

17/02/2015 Computer Vision I: Tracking 40

𝑝 𝑥𝑡+1 𝑧0:𝑡

1tx1tx

tx

1tz

1tZ

tx ...

tx1tz

1tZ

0z

0x

tz

tz ...

𝑝 𝑥𝑡 𝑧0:𝑡

tx1tz

1tx

0z

𝑝 𝑧𝑡 𝑥𝑡𝑝 𝑥𝑡+1 𝑥𝑡

Observation Model: Motion Model:

Posterior: Prior:

• Likelihood ofobservation givenstate

• Continuous Gaussianaround real depth

• Probability of newstate given old one

• Continuous Gaussian

• Probability of state given previousand current observations

• Continuous, represented as set ofSamples (Particles)

• Probability of state given onlyprevious observations

• Continuous, represented as set ofSamples (Particles)

Page 41: Computer Vision I - Tracking › ~ds24 › lehre › cv1_ws_2014 › VL13.pdf · Computer Vision I - Tracking Carsten Rother 17/02/2015 Computer Vision I: Tracking 17/02/2015 [slide

Particle Filter

17/02/2015 Computer Vision I: Tracking 41

Page 42: Computer Vision I - Tracking › ~ds24 › lehre › cv1_ws_2014 › VL13.pdf · Computer Vision I - Tracking Carsten Rother 17/02/2015 Computer Vision I: Tracking 17/02/2015 [slide

Discrete Bayes Filter vs. Particle Filter

17/02/2015 Computer Vision I: Tracking 42

• Discrete Bayes Filter:

1. Make observation

• Particle Filter:

2. Calculate likelihood forevery position

3. Multiply with last priorand normalize

4. Convolution with motionmodel

5. Go to 1.

1. Make observation

2. Calculate likelihood forevery sample -> weights

3. Resampling according toweights

4. Randomly move samplesaccording to motion model(Sampling)

5. Go to 1.

Page 43: Computer Vision I - Tracking › ~ds24 › lehre › cv1_ws_2014 › VL13.pdf · Computer Vision I - Tracking Carsten Rother 17/02/2015 Computer Vision I: Tracking 17/02/2015 [slide

The Bayes Filter / Convolute and Multiply

17/02/2015 Computer Vision I: Tracking 43

𝑡 = 0

• Represent continuous prior with particles 𝑥𝑡1 , … , 𝑥𝑡

𝑛

• Make measurement: 𝑧𝑡

Page 44: Computer Vision I - Tracking › ~ds24 › lehre › cv1_ws_2014 › VL13.pdf · Computer Vision I - Tracking Carsten Rother 17/02/2015 Computer Vision I: Tracking 17/02/2015 [slide

Particle Filter / Resampling

17/02/2015 Computer Vision I: Tracking 44

• Calculate weight 𝑤𝑡𝑖= 𝑝(𝑧𝑡|𝑥𝑡 = 𝑥𝑡

𝑖) for every particle 𝑥𝑡𝑖:

Page 45: Computer Vision I - Tracking › ~ds24 › lehre › cv1_ws_2014 › VL13.pdf · Computer Vision I - Tracking Carsten Rother 17/02/2015 Computer Vision I: Tracking 17/02/2015 [slide

Particle Filter / Resampling

17/02/2015 Computer Vision I: Tracking 45

𝑡 = 0

• Draw samples 𝑥𝑡1 , … , 𝑥𝑡

𝑛 from posterior by resamplingfrom 𝑥𝑡

1 , … , 𝑥𝑡𝑛 using the weights 𝑤𝑡

𝑖

• Reducing uncertainty

0 i

i

tw

Page 46: Computer Vision I - Tracking › ~ds24 › lehre › cv1_ws_2014 › VL13.pdf · Computer Vision I - Tracking Carsten Rother 17/02/2015 Computer Vision I: Tracking 17/02/2015 [slide

Particle Filter / Resampling

17/02/2015 Computer Vision I: Tracking 46

𝑡 = 0

random

0 i

i

twrandom random

• Draw samples 𝑥𝑡1 , … , 𝑥𝑡

𝑛 from posterior by resamplingfrom 𝑥𝑡

1 , … , 𝑥𝑡𝑛 using the weights 𝑤𝑡

𝑖

• Reducing uncertainty

Page 47: Computer Vision I - Tracking › ~ds24 › lehre › cv1_ws_2014 › VL13.pdf · Computer Vision I - Tracking Carsten Rother 17/02/2015 Computer Vision I: Tracking 17/02/2015 [slide

Particle Filter / Resampling

17/02/2015 Computer Vision I: Tracking 47

𝑡 = 0

0 i

i

tw

• Draw samples 𝑥𝑡1 , … , 𝑥𝑡

𝑛 from posterior by resamplingfrom 𝑥𝑡

1 , … , 𝑥𝑡𝑛 using the weights 𝑤𝑡

𝑖

• Reducing uncertainty

Page 48: Computer Vision I - Tracking › ~ds24 › lehre › cv1_ws_2014 › VL13.pdf · Computer Vision I - Tracking Carsten Rother 17/02/2015 Computer Vision I: Tracking 17/02/2015 [slide

Particle Filter / Resampling

17/02/2015 Computer Vision I: Tracking 48

Why is this allowed?

Resampling is like multiplication andnormalization:

• Sample density in posterior dependslinearly on

• Density of prior samples 𝑥𝑡1 , … , 𝑥𝑡

𝑛

• Likelihood 𝑤𝑡𝑖

Page 49: Computer Vision I - Tracking › ~ds24 › lehre › cv1_ws_2014 › VL13.pdf · Computer Vision I - Tracking Carsten Rother 17/02/2015 Computer Vision I: Tracking 17/02/2015 [slide

Discrete Bayes Filter vs. Particle Filter

17/02/2015 Computer Vision I: Tracking 49

• Discrete Bayes Filter:

1. Make observation

• Particle Filter:

2. Calculate likelihood forevery position

3. Multiply with last priorand normalize

4. Convolution with motionmodel

5. Go to 1.

1. Make observation

2. Calculate likelihood forevery sample -> weights

3. Resampling according toweights

4. Randomly move samplesaccording to motion model(Sampling)

5. Go to 1.

Page 50: Computer Vision I - Tracking › ~ds24 › lehre › cv1_ws_2014 › VL13.pdf · Computer Vision I - Tracking Carsten Rother 17/02/2015 Computer Vision I: Tracking 17/02/2015 [slide

Particle Filter / Sampling

17/02/2015 Computer Vision I: Tracking 50

𝑡 = 0

• Obtain samples 𝑥𝑡+11 , … , 𝑥𝑡+1

𝑛 from the new prior by moving eachparticle according to motion model

• Adding uncertainty

Page 51: Computer Vision I - Tracking › ~ds24 › lehre › cv1_ws_2014 › VL13.pdf · Computer Vision I - Tracking Carsten Rother 17/02/2015 Computer Vision I: Tracking 17/02/2015 [slide

Particle Filter / Sampling

17/02/2015 Computer Vision I: Tracking 51

𝑝 𝐵 𝐴 = 1 𝑝 𝐵 𝐴 = 2

𝑝 𝐴 = 1 = 𝑝 𝐴 = 2 = 0.5

Why is this allowed?

• We want to sample: Bi~𝑝 𝐵

• Don‘t know 𝑝 𝐵

• We sample first: 𝐴𝑖~𝑝 𝐴

• And then 𝐵𝑖~𝑝 𝐵|𝐴 = 𝐴𝑖

1

1 2 3 4 5 61 2 3 4 5 6

𝐴 𝐵

Page 52: Computer Vision I - Tracking › ~ds24 › lehre › cv1_ws_2014 › VL13.pdf · Computer Vision I - Tracking Carsten Rother 17/02/2015 Computer Vision I: Tracking 17/02/2015 [slide

BA

Particle Filter / Sampling

17/02/2015 Computer Vision I: Tracking 52

1txtx

1tz

1tx

0z

0x ...

tz

• We want to sample 𝑥𝑡+1𝑖 ~𝑝 𝑥𝑡+1 𝑧0:𝑡

• Don‘t know 𝑝 𝑥𝑡+1 𝑧0:𝑡

Why is this allowed?

Page 53: Computer Vision I - Tracking › ~ds24 › lehre › cv1_ws_2014 › VL13.pdf · Computer Vision I - Tracking Carsten Rother 17/02/2015 Computer Vision I: Tracking 17/02/2015 [slide

Particle Filter / Sampling

17/02/2015 5317/02/2015 Computer Vision I: Tracking 53

1txtx1tx0x ...

1tz0z tz

• We want to sample 𝑥𝑡+1𝑖 ~𝑝 𝑥𝑡+1 𝑧0:𝑡

• Don‘t know 𝑝 𝑥𝑡+1 𝑧0:𝑡

• We use samples 𝑥𝑡𝑖~𝑝 𝑥𝑡 𝑧0:𝑡

Why is this allowed?

Page 54: Computer Vision I - Tracking › ~ds24 › lehre › cv1_ws_2014 › VL13.pdf · Computer Vision I - Tracking Carsten Rother 17/02/2015 Computer Vision I: Tracking 17/02/2015 [slide

Particle Filter / Sampling

17/02/2015 Computer Vision I: Tracking 54

• We want to sample 𝑥𝑡+1𝑖 ~𝑝 𝑥𝑡+1 𝑧0:𝑡

• Don‘t know 𝑝 𝑥𝑡+1 𝑧0:𝑡

• We use samples 𝑥𝑡𝑖~𝑝 𝑥𝑡 𝑧0:𝑡

• We sample 𝑥𝑡+1𝑖 ~𝑝 𝑥𝑡+1 𝑥𝑡 = 𝑥𝑡

𝑖 = 𝑝 𝑥𝑡+1 𝑥𝑡 = 𝑥𝑡𝑖 , 𝑧0:𝑡

1txtx1tx0x ...

1tz0z tz

Why is this allowed?

Page 55: Computer Vision I - Tracking › ~ds24 › lehre › cv1_ws_2014 › VL13.pdf · Computer Vision I - Tracking Carsten Rother 17/02/2015 Computer Vision I: Tracking 17/02/2015 [slide

Particle Filter (Tracking application)

• Tracking an object in a video sequence [Perez at al. 2002]

• States:

• 2D windows (x,y and size)

• Gaussian motion

• Observations:

• Color histograms

17/02/2015 Computer Vision I: Tracking 55

Page 56: Computer Vision I - Tracking › ~ds24 › lehre › cv1_ws_2014 › VL13.pdf · Computer Vision I - Tracking Carsten Rother 17/02/2015 Computer Vision I: Tracking 17/02/2015 [slide

Particle Filter (Tracking application)

• Pose tracking of an object in a kinect sequence [Krull at al. 2014]

• States:

• 6D Pose• 3D position

• 3D rotation

• Observations:

• Depth images

• Predicted Object coordinates

17/02/2015 Computer Vision I: Tracking 56

Page 57: Computer Vision I - Tracking › ~ds24 › lehre › cv1_ws_2014 › VL13.pdf · Computer Vision I - Tracking Carsten Rother 17/02/2015 Computer Vision I: Tracking 17/02/2015 [slide

Particle Filter (Summary)

• The Particle Filter implements the Bayes Filter

• Prior and posterior are represented as sample sets (particle)

• Likelihood is only evaluated at particles

• Multiplication -> weighted resampling

• Convolution -> random movement according to motion model

17/02/2015 Computer Vision I: Tracking 57

Page 58: Computer Vision I - Tracking › ~ds24 › lehre › cv1_ws_2014 › VL13.pdf · Computer Vision I - Tracking Carsten Rother 17/02/2015 Computer Vision I: Tracking 17/02/2015 [slide

Overview Continuous Approaches

• How to apply it in continuous space?

• Two popular alternatives:

• Particle filter• Represent prior and posterior with samples

• Kalman Filter • Represent prior and posterior distributions as Gaussians

17/02/2015 Computer Vision I: Tracking 58

Page 59: Computer Vision I - Tracking › ~ds24 › lehre › cv1_ws_2014 › VL13.pdf · Computer Vision I - Tracking Carsten Rother 17/02/2015 Computer Vision I: Tracking 17/02/2015 [slide

Kalman Filter

17/02/2015 Computer Vision I: Tracking 59

Page 60: Computer Vision I - Tracking › ~ds24 › lehre › cv1_ws_2014 › VL13.pdf · Computer Vision I - Tracking Carsten Rother 17/02/2015 Computer Vision I: Tracking 17/02/2015 [slide

Important Distributions (Kalman Filter)

17/02/2015 Computer Vision I: Tracking 60

𝑝 𝑥𝑡+1 𝑧0:𝑡

1tx1tx

tx

1tz

1tZ

tx ...

tx1tz

1tz

0z

0x

tz

tz ...

𝑝 𝑥𝑡 𝑧0:𝑡

tx1tz

1tx

0z

𝑝 𝑧𝑡 𝑥𝑡𝑝 𝑥𝑡+1 𝑥𝑡

Observation Model: Motion Model:

Posterior: Prior:

• Likelihood ofobservation givenstate

• Continuous Gaussianaround real position

• Probability of newstate given old one

• Continuous Gaussian

• Probability of state given previousand current observations

• Continuous, represented asGaussiasn

• Probability of state given onlyprevious observations

• Continuous, represented asGaussiasn

Page 61: Computer Vision I - Tracking › ~ds24 › lehre › cv1_ws_2014 › VL13.pdf · Computer Vision I - Tracking Carsten Rother 17/02/2015 Computer Vision I: Tracking 17/02/2015 [slide

Discrete Bayes Filter vs. Kalman Filter

17/02/2015 Computer Vision I: Tracking 61

• Discrete Bayes Filter:

1. Make observation

• Kalman Filter:

2. Calculate likelihood forevery position

3. Multiply with last priorand normalize

4. Convolution with motionmodel

5. Go to 1.

1. Make observation

2. Calculate likelihood forevery position in closed form

3. Multiply with last priorand normalize in closed form

4. Convolution with motionmodel in closed form

5. Go to 1.

Page 62: Computer Vision I - Tracking › ~ds24 › lehre › cv1_ws_2014 › VL13.pdf · Computer Vision I - Tracking Carsten Rother 17/02/2015 Computer Vision I: Tracking 17/02/2015 [slide

Kalman Filter

17/02/2015 Computer Vision I: Tracking 62

• Calculate likelihood 𝑝(𝑧𝑡|𝑥𝑡) as Gaussian:

Page 63: Computer Vision I - Tracking › ~ds24 › lehre › cv1_ws_2014 › VL13.pdf · Computer Vision I - Tracking Carsten Rother 17/02/2015 Computer Vision I: Tracking 17/02/2015 [slide

Kalman Filter

17/02/2015 Computer Vision I: Tracking 63

• Calculate the posterior by• Multiplying with prior• Normalizing

• Reducing uncertainty

𝑝 𝑥𝑡 𝑧0:𝑡 =𝑝(𝑥𝑡|𝑧0:𝑡−1)𝑝(𝑧𝑡|𝑥𝑡)

𝑝(𝑥𝑡 = 𝑥|𝑧0:𝑡−1)𝑝(𝑧𝑡|𝑥𝑡 = 𝑥) 𝑑 𝑥

• Closed form solution:

• Another Gaussian

Page 64: Computer Vision I - Tracking › ~ds24 › lehre › cv1_ws_2014 › VL13.pdf · Computer Vision I - Tracking Carsten Rother 17/02/2015 Computer Vision I: Tracking 17/02/2015 [slide

Discrete Bayes Filter vs. Kalman Filter

17/02/2015 Computer Vision I: Tracking 64

• Discrete Bayes Filter:

1. Make observation

• Kalman Filter:

2. Calculate likelihood forevery position

3. Multiply with last priorand normalize

4. Convolution with motionmodel

5. Go to 1.

1. Make observation

2. Calculate likelihood forevery position in closed form

3. Multiply with last priorand normalize in closed form

4. Convolution with motionmodel in closed form

5. Go to 1.

Page 65: Computer Vision I - Tracking › ~ds24 › lehre › cv1_ws_2014 › VL13.pdf · Computer Vision I - Tracking Carsten Rother 17/02/2015 Computer Vision I: Tracking 17/02/2015 [slide

Kalman Filter

17/02/2015 Computer Vision I: Tracking 65

• Calculate the prior byConvolution with motion model

• Adding uncertainty

𝑝 𝑥𝑡+1 𝑧0:𝑡 = 𝑝 𝑥𝑡 = 𝑥 𝑧0:𝑡 𝑝 𝑥𝑡+1 𝑥𝑡 = 𝑥 𝑑 𝑥

• Closed form solution:

• Another Gaussian

Page 66: Computer Vision I - Tracking › ~ds24 › lehre › cv1_ws_2014 › VL13.pdf · Computer Vision I - Tracking Carsten Rother 17/02/2015 Computer Vision I: Tracking 17/02/2015 [slide

Pros and Cons

17/02/2015 Computer Vision I: Tracking 66

Particle Filter:

Observation model can be anything

Kalman Filter:

Multimodal

Likelihood calculation per particlecan be expensive

Easy to implement and parallelize

Problematic in high dimensional statespace (many particles required)

Motion model can be anything

Observation model: linear transformation of stateplus Gaussian noise

Unimodal

Motion model: linear transformation of last stateplus Gaussian noise

Closed form solution in every step

Page 67: Computer Vision I - Tracking › ~ds24 › lehre › cv1_ws_2014 › VL13.pdf · Computer Vision I - Tracking Carsten Rother 17/02/2015 Computer Vision I: Tracking 17/02/2015 [slide

Pose Estimation vs. Pose Tracking

17/02/2015 Computer Vision I: Tracking 67

One Shot Pose Estimation [1] Pose Tracking

[1] Brachmann, E., Krull, A., Michel, F., Shotton, J., Gumhold, S., Rother, C.: Learning 6d object pose estimation using 3d object coordinates, ECCV (2014)

• Estimate 6D Pose from singleRGB-D image

• Use Object Coordinate Regression

• Stream of RDB-D images

• Use information from previous frames:• Realtime

• Increase robustness, accuracy

Page 68: Computer Vision I - Tracking › ~ds24 › lehre › cv1_ws_2014 › VL13.pdf · Computer Vision I - Tracking Carsten Rother 17/02/2015 Computer Vision I: Tracking 17/02/2015 [slide

• Augmented Reality• Alteration• Annotation• Substitution

Robotics Recognition/Tracking

Automatic Grasping

Application Scenarios

17/02/2015 Computer Vision I: Tracking 68

Page 69: Computer Vision I - Tracking › ~ds24 › lehre › cv1_ws_2014 › VL13.pdf · Computer Vision I - Tracking Carsten Rother 17/02/2015 Computer Vision I: Tracking 17/02/2015 [slide

Object Coordinate Regression

17/02/2015 Computer Vision I: Tracking 69

Energy OptimizationCompare observed and rendered images

Page 70: Computer Vision I - Tracking › ~ds24 › lehre › cv1_ws_2014 › VL13.pdf · Computer Vision I - Tracking Carsten Rother 17/02/2015 Computer Vision I: Tracking 17/02/2015 [slide

Energy Formulation

17/02/2015 Computer Vision I: Tracking (Part I) 70

𝐸𝑐 Hc = λdepthEcdepth

Hc + 𝜆𝑐𝑜𝑜𝑟𝑑𝐸𝑐𝑐𝑜𝑜𝑟𝑑 𝐻𝑐 + 𝜆𝑜𝑏𝑗𝐸𝑐

𝑜𝑏𝑗𝐻𝑐

Ecdepth

Hc 𝐸𝑐𝑐𝑜𝑜𝑟𝑑 𝐻𝑐 𝐸𝑐

𝑜𝑏𝑗𝐻𝑐 𝐸𝑐 Hc

• Arbitrary 6DoF pose hypotheses 𝐻𝑐 is scored according to:

Channel

Energy

Comparison of Depth Comparison to Forest Prediction

Page 71: Computer Vision I - Tracking › ~ds24 › lehre › cv1_ws_2014 › VL13.pdf · Computer Vision I - Tracking Carsten Rother 17/02/2015 Computer Vision I: Tracking 17/02/2015 [slide

Efficient Search

17/02/2015 Computer Vision I: Tracking 71

Forest Prediction

ObjectSpace

Input

CameraSpace

Pose Hypothesis

Page 72: Computer Vision I - Tracking › ~ds24 › lehre › cv1_ws_2014 › VL13.pdf · Computer Vision I - Tracking Carsten Rother 17/02/2015 Computer Vision I: Tracking 17/02/2015 [slide

How to Adapt it for Pose Tracking?

17/02/2015 Computer Vision I: Tracking 72

Ingredients:

Particle Filter

Object Coordinate Regression

Efficient Search

Observation Model:

Proposal Distribution:• Find rough estimate using

• Concentrate samples aroundrough estimate

Energy

Motion Model:• Assume continous motion

Page 73: Computer Vision I - Tracking › ~ds24 › lehre › cv1_ws_2014 › VL13.pdf · Computer Vision I - Tracking Carsten Rother 17/02/2015 Computer Vision I: Tracking 17/02/2015 [slide

Filtering with Object Coordinates

17/02/2015 Computer Vision I: Tracking 73

Sampling from Proposal DistributionSampling from Motion Model

Page 74: Computer Vision I - Tracking › ~ds24 › lehre › cv1_ws_2014 › VL13.pdf · Computer Vision I - Tracking Carsten Rother 17/02/2015 Computer Vision I: Tracking 17/02/2015 [slide

Filtering with Object Coordinates

17/02/2015 Computer Vision I: Tracking 74

• Find a rough estimate for current pose Efficient Search

Sampling from Motion Model Sampling from Proposal Distribution

Page 75: Computer Vision I - Tracking › ~ds24 › lehre › cv1_ws_2014 › VL13.pdf · Computer Vision I - Tracking Carsten Rother 17/02/2015 Computer Vision I: Tracking 17/02/2015 [slide

Filtering with Object Coordinates

17/02/2015 Computer Vision I: Tracking 75

Sampling from Proposal DistributionSampling from Motion Model

𝑝 𝑥𝑡+1 𝑥𝑡 𝑞 𝑥𝑡+1 𝑥𝑡

Page 76: Computer Vision I - Tracking › ~ds24 › lehre › cv1_ws_2014 › VL13.pdf · Computer Vision I - Tracking Carsten Rother 17/02/2015 Computer Vision I: Tracking 17/02/2015 [slide

Filtering with Object Coordinates

17/02/2015 Computer Vision I: Tracking 76

• Most samples have a very low weight

Sampling from Proposal DistributionSampling from Motion Model

• Few samples have very low weight

𝑤𝑡𝑖= 𝑝(𝑧𝑡|𝑥𝑡 = 𝑥𝑡

𝑖) 𝑤𝑡𝑖= 𝑝(𝑧𝑡|𝑥𝑡 = 𝑥𝑡

𝑖)𝑝 𝑥𝑡 = 𝑥𝑡

𝑖 𝑥𝑡−1 = 𝑥𝑡−1𝑖

𝑞 𝑥𝑡 = 𝑥𝑡𝑖 𝑥𝑡−1 = 𝑥𝑡−1

𝑖

Page 77: Computer Vision I - Tracking › ~ds24 › lehre › cv1_ws_2014 › VL13.pdf · Computer Vision I - Tracking Carsten Rother 17/02/2015 Computer Vision I: Tracking 17/02/2015 [slide

Filtering with Object Coordinates

17/02/2015 Computer Vision I: Tracking 77

• Most samples have a very low weight

• Few samples have very low weight

Sampling from Proposal DistributionSampling from Motion Model

𝑤𝑡𝑖= 𝑝(𝑧𝑡|𝑥𝑡 = 𝑥𝑡

𝑖) 𝑤𝑡𝑖= 𝑝(𝑧𝑡|𝑥𝑡 = 𝑥𝑡

𝑖)𝑝 𝑥𝑡+1 𝑥𝑡 = 𝑥𝑡

𝑖

𝑞 𝑥𝑡+1 𝑥𝑡 = 𝑥𝑡𝑖

Page 78: Computer Vision I - Tracking › ~ds24 › lehre › cv1_ws_2014 › VL13.pdf · Computer Vision I - Tracking Carsten Rother 17/02/2015 Computer Vision I: Tracking 17/02/2015 [slide

Filtering with Object Coordinates

17/02/2015 Computer Vision I: Tracking 78

Sampling from Proposal DistributionSampling from Motion Model

• More efficient

• Number of Particles can be reduced

• Frame rate can be increased

Page 79: Computer Vision I - Tracking › ~ds24 › lehre › cv1_ws_2014 › VL13.pdf · Computer Vision I - Tracking Carsten Rother 17/02/2015 Computer Vision I: Tracking 17/02/2015 [slide

Evaluation: Choi and Christensen’s Dataset [2]

17/02/2015 Computer Vision I: Tracking 79

• A total of 4 synthetic sequences with 4 objects

• Objects placed in static environment

• Camera moving around object

• Partial occlusion

• Very exact ground truth

[2] Changhyun Choi, Henrik I. Christensen, RGB-D Object Tracking: A Particle Filter Approach on GPU, IROS, 2013

Page 80: Computer Vision I - Tracking › ~ds24 › lehre › cv1_ws_2014 › VL13.pdf · Computer Vision I - Tracking Carsten Rother 17/02/2015 Computer Vision I: Tracking 17/02/2015 [slide

Evaluation: Our Dataset

17/02/2015 Computer Vision I: Tracking 80

• A total of 6 captured sequences of with 3 objects

• Manually annotated ground truth

• Moving objects in front of dynamic background

• Fast erratic movement

• Strong occlusions

Page 81: Computer Vision I - Tracking › ~ds24 › lehre › cv1_ws_2014 › VL13.pdf · Computer Vision I - Tracking Carsten Rother 17/02/2015 Computer Vision I: Tracking 17/02/2015 [slide

Evaluation: Our Dataset

17/02/2015 Computer Vision I: Tracking 81

• Compared to [1] applied to each frame separately

• Lower average error

• Almost no outliers

Page 82: Computer Vision I - Tracking › ~ds24 › lehre › cv1_ws_2014 › VL13.pdf · Computer Vision I - Tracking Carsten Rother 17/02/2015 Computer Vision I: Tracking 17/02/2015 [slide

Conclusion

17/02/2015 Computer Vision I: Tracking 82

• We have adapted the systemfrom [1] for real time pose tracking

• We have designed a proposal distribution making efficient use of object coordinates

• Our method is robust against:• Quick motion

• Strong occlusion

• Shadows and changing light conditions

• Deformation

[1] Brachmann, E., Krull, A., Michel, F., Shotton, J., Gumhold, S., Rother, C.: Learning 6d Object Pose Estimation Using 3d Object Coordinates, ECCV '14 (2014)