computational plasticity: h and p elastoplastic interface ...jan/ostrava04_pp4.pdf · computational...

24
Computational plasticity: h and p elastoplastic interface adaptivity Johanna Kienesberger, Jan Valdman SFB F013 / F1306 Prof. U. Langer, Dr. J. Sch¨ oberl Johannes Kepler University Linz, Austria Supported by Ostrava, December 6, 2004

Upload: truongmien

Post on 23-May-2018

244 views

Category:

Documents


0 download

TRANSCRIPT

Computational plasticity:h and p elastoplastic interface adaptivity

Johanna Kienesberger, Jan Valdman

SFB F013 / F1306

Prof. U. Langer, Dr. J. Schoberl

Johannes Kepler University

Linz, Austria

Supported by

Ostrava, December 6, 2004

Outline

• Motivation

• Modeling

• Algorithm

• h-adaptivity (interfaces)

• First p-version results

• Conclusions and outlook

Computational plasticity: h and p elastoplastic interface adaptivity 2

Motivation

• Computing solutions numerically avoids e.g. expensive crash tests:

• A fast and robust solver for the direct field problem is required!

Literature:

Han/Reddy, Carstensen

Computational plasticity: h and p elastoplastic interface adaptivity 3

Modeling

Find u ∈ W 1,2(0, T ; H10(Ω)n), p ∈ W 1,2(0, T ; L2(Ω, Rn×n)),

σ ∈ W 1,2(0, T ; L2(Ω, Rn×n)), α ∈ W 1,2(0, T ; L2(Ω, Rm)) such that

− div σ = b

σ = σT

ε(u) =1

2

“∇u + (∇u)

T”

ε(u) = C−1σ + p

ϕ(σ, α) < ∞

p : (τ − σ)− α : (β − α) ≤ ϕ(τ, β)− ϕ(σ, α)

are satisfied in the variational sense with (u, p, σ, α)(0) = 0 for all (τ, β).

b and C−1 are given, b(0) = 0.

Computational plasticity: h and p elastoplastic interface adaptivity 4

Numeric-analytic steps

• Time discretization: t1 = t0 + ∆t

• Reformulation of the problem using functional-analytic arguments

(switching arguments in variational inequalities using a dual functional)

• Equivalent minimization problem:

Computational plasticity: h and p elastoplastic interface adaptivity 5

Numeric-analytic steps

• Time discretization: t1 = t0 + ∆t

• Reformulation of the problem using functional-analytic arguments

(switching arguments in variational inequalities using a dual functional)

• Equivalent minimization problem:

Find the minimizer (u, p, α) ∈ H×Ln×nsym×Lm of

f(u, p, α) :=1

2

C[ε(u)− p] : (ε(u)− p)dx +1

2

|α|2dx + ∆t

ϕ∗(p− p0

∆t,α0 − α

∆t)dx−

b u dx

with ϕ describing the hardening law.

Computational plasticity: h and p elastoplastic interface adaptivity 5

Minimization problem for isotropic hardening

The minimization problem is

f(u, p) :=1

2

C[ε(u)− p] : (ε(u)− p)dx +1

2

(α0 + σyH|p− p0|)2dx +

σy|p− p0|dx−Z

Ω

b(t) u dx

under the constraint tr(p− p0) = 0

Computational plasticity: h and p elastoplastic interface adaptivity 6

Minimization problem for isotropic hardening

The minimization problem is

f(u, p) :=1

2

C[ε(u)− p] : (ε(u)− p)dx +1

2

(α0 + σyH|p− p0|)2dx +

σy|p− p0|dx−Z

Ω

b(t) u dx

under the constraint tr(p− p0) = 0.

New variable: p = p− p0

A differentiable approximation of |p|:

|p|ε :=

|p| if |p| ≥ ε12ε|p|

2 + ε2 if |p| < ε

Computational plasticity: h and p elastoplastic interface adaptivity 6

Minimization problem for isotropic hardening

The minimization problem is

f(u, p) :=1

2

C[ε(u)− p] : (ε(u)− p)dx +1

2

(α0 + σyH|p− p0|)2dx +

σy|p− p0|dx−Z

Ω

b(t) u dx

under the constraint tr(p− p0) = 0.

New variable: p = p− p0

A differentiable approximation of |p|:

|p|ε :=

|p| if |p| ≥ ε12ε|p|

2 + ε2 if |p| < ε

Minimization strategy in each time step:

u = argminv minq

f(v, q) = argminv f(v, qopt(v))

Then p = p0 + p

Computational plasticity: h and p elastoplastic interface adaptivity 6

Minimization in u

FEM-Discretization of the unconstrained objective is equivalent to1

2(Bu− p)

T C(Bu− p) +1

2p

T H(|p|ε)p− bu −→ min!

Matrix notation:

1

2

„u

p

«T „BT CB −BT C−CB C + H

« „u

p

«+

„−b− BT Cp0

Cp0

«T „u

p

«−→ min!

Computational plasticity: h and p elastoplastic interface adaptivity 7

Minimization in u

FEM-Discretization of the unconstrained objective is equivalent to1

2(Bu− p)

T C(Bu− p) +1

2p

T H(|p|ε)p− bu −→ min!

Matrix notation:

1

2

„u

p

«T „BT CB −BT C−CB C + H

« „u

p

«+

„−b− BT Cp0

Cp0

«T „u

p

«−→ min!

Necessary condition: „BT CB −BT C−CB C + H

« „u

p

«+

„−b− BT Cp0

Cp0

«= 0

The Schur-Complement system in u with the matrix

S = BT(C− C(C + H)

−1C)B

is solved by a multigrid preconditioned conjugate gradient method.

Computational plasticity: h and p elastoplastic interface adaptivity 7

Constraint tr p = 0

in 2D: p22 = −p11, in 3D: p33 = −p11 − p22.

Projection matrix P: p = P p

2D: PE =

0@ 1 0

−1 0

0 1

1A, 3D: PE =

0BBBBBBB@

1 0 0 0 0

0 1 0 0 0

−1 −1 0 0 0

0 0 1 0 0

0 0 0 1 0

0 0 0 0 1

1CCCCCCCAModified Schur-Complement Matrix:

S = BT(C− CP (P

T(C + H)P )

−1P

T C)B

Computational plasticity: h and p elastoplastic interface adaptivity 8

Minimization in p

The objective in each integration point writes as

F (p) =1

2p

T Cp + pT0 Cp− p

T Cε(u) +1

2yH

2|p|2 + σy(1 + α0H)|p|ε

Computational plasticity: h and p elastoplastic interface adaptivity 9

Minimization in p

The objective in each integration point writes as

F (p) =1

2p

T Cp + pT0 Cp− p

T Cε(u) +1

2yH

2|p|2 + σy(1 + α0H)|p|ε

This problem (without regularization, i.e. ε = 0) has a unique solution

p =(|| dev A|| − b)+

2µ + σ2yH

2

dev A

|| dev A||,

where

A = C[ε(u)− p0], b = σy(1 + α0H).

Computational plasticity: h and p elastoplastic interface adaptivity 9

Numerical experiments

2DQuadratic plate

3DQuarter of a ring

F

F

x

Ω

y

x

Ω

y

Computational plasticity: h and p elastoplastic interface adaptivity 10

Elasto-plastic interface adaptivity for piecewise constant stresses:method of linearized yields

Yield function in the isotropic hardening case Φ(σ, α) = | dev σ|−σy(1+αH), where the hardening parameter

α = α0 + σyH|p − p0|. Nodal linear projection Φ ∈ H1(Ω)d×dsym to the piecewise constant yield function

Φ ∈ L2(Ω)d×dsym :

Φ(N) :=

PT∈T :N∈T Φ(σ|T , α|T )|T |P

T∈T :N∈T |T |

Elements with both negative and positive nodal values of Φ(N) are refined.

Yield function (left) and its nodal linear projection (right)

Computational plasticity: h and p elastoplastic interface adaptivity 11

text

00.2

0.40.6

0.81

0

0.2

0.4

0.6

0.8

1−0.5

0

0.5

1

1.5

2

2.5

3

3.5

00.2

0.40.6

0.81

0

0.2

0.4

0.6

0.8

1−1.5

−1

−0.5

0

0.5

1

1.5

2

2.5

3

00.2

0.40.6

0.81

0

0.2

0.4

0.6

0.8

1−1.5

−1

−0.5

0

0.5

1

1.5

2

2.5

3

00.2

0.40.6

0.81

0

0.2

0.4

0.6

0.8

1−1.5

−1

−0.5

0

0.5

1

1.5

2

2.5

3

00.2

0.40.6

0.81

0

0.2

0.4

0.6

0.8

1−1.5

−1

−0.5

0

0.5

1

1.5

2

2.5

3

00.2

0.40.6

0.81

0

0.2

0.4

0.6

0.8

1−2

−1

0

1

2

3

4

00.2

0.40.6

0.81

0

0.2

0.4

0.6

0.8

1−2

0

2

4

6

8

00.2

0.40.6

0.81

0

0.2

0.4

0.6

0.8

1−2

0

2

4

6

8

00.2

0.40.6

0.81

0

0.2

0.4

0.6

0.8

1−2

0

2

4

6

8

10

12

00.2

0.40.6

0.81

0

0.2

0.4

0.6

0.8

1−2

0

2

4

6

8

10

12

00.2

0.40.6

0.81

0

0.2

0.4

0.6

0.8

1−2

0

2

4

6

8

10

12

0 0.2 0.4 0.6 0.8 1 1.2 1.40

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Nodal linear approximations of the yield function for graduated refinements and the elastoplastic zones for the

finest refinement. Implemented in Matlab.

Computational plasticity: h and p elastoplastic interface adaptivity 12

Elasto-plastic interface adaptivity for piecewise constant stresses:method of neighboring elements with different phases

Error estimator marks both neighboring elements T1 and T2 with different phases, i.e where

Φ(σ|T1, α|T1

)Φ(σ|T2, α|T2

) ≤ 0

Elastoplastic zones (blue - elastic, red - plastic)

Computational plasticity: h and p elastoplastic interface adaptivity 13

Convergence result (2D)

1e-05

0.0001

0.001

0.01

0.1

1 10 100 1000 10000 100000 1e+06

erro

r

DOF

uniform (error)zz (error)

linearized yield (error)common edge (error)

0.0001

0.001

0.01

0.1

1 10 100 1000 10000 100000 1e+06

erro

r

DOF

uniform (zz)zz (zz)

linearized yield (zz)common edge (zz)

Approximated errors (left) and zz error estimates (right) for different refinement techniques

Computational plasticity: h and p elastoplastic interface adaptivity 14

text

1e-05

0.0001

0.001

0.01

0.1

1 10 100 1000 10000 100000

erro

r

DOF

linearized yield (error)common edge (error)

linearized yield (zz)common edge (zz)

Failure of ZZ estimation in elastoplasticity???

Computational plasticity: h and p elastoplastic interface adaptivity 15

p and h method in 2D: von Mises stress

h=1 h=1/4 h=1/16

p=0

p=4

p=9

Computational plasticity: h and p elastoplastic interface adaptivity 16

p and h method in 3D: von Mises stress

For visualization reasons the stresses are projected onto a H1 function

h=1 h=1/2 h=1/4

p=0

p=1

p=3

Computational plasticity: h and p elastoplastic interface adaptivity 17

Conclusions

We have considered:

• Problem formulation and discretization

• Minimization: 3D time-dependent algorithm

• Numerical experiments

– Interface adaptivity

– p - version

Computational plasticity: h and p elastoplastic interface adaptivity 18

Conclusions

We have considered:

• Problem formulation and discretization

• Minimization: 3D time-dependent algorithm

• Numerical experiments

– Interface adaptivity

– p - version

Outlook

• Combined hpr methods

– h, r: Singularities

– p: Smooth solutions

• Level sets use for elastoplastic interface identification

• Application to shells

Computational plasticity: h and p elastoplastic interface adaptivity 18