computational fluid dynamics i piw numerical methods for parabolic equations instructor: hong g. im...

49
Computational Fluid Dynamics I PI W Numerical Methods for Parabolic Equations Instructor: Hong G. Im University of Michigan Fall 2005

Upload: silas-fleming

Post on 22-Dec-2015

224 views

Category:

Documents


3 download

TRANSCRIPT

Page 1: Computational Fluid Dynamics I PIW Numerical Methods for Parabolic Equations Instructor: Hong G. Im University of Michigan Fall 2005

Computational Fluid Dynamics IPIW

Numerical Methods forParabolic Equations

Instructor: Hong G. ImUniversity of Michigan

Fall 2005

Page 2: Computational Fluid Dynamics I PIW Numerical Methods for Parabolic Equations Instructor: Hong G. Im University of Michigan Fall 2005

Computational Fluid Dynamics IPIW

One-Dimensional Problems• Explicit, implicit, Crank-Nicolson• Accuracy, stability• Various schemes• Keller Box method and block tridiagonal system

Multi-Dimensional Problems• Alternating Direction Implicit (ADI)• Approximate Factorization of Crank-Nicolson

Outline

Solution Methods for Parabolic Equations

Page 3: Computational Fluid Dynamics I PIW Numerical Methods for Parabolic Equations Instructor: Hong G. Im University of Michigan Fall 2005

Computational Fluid Dynamics IPIW

Numerical Methods forOne-Dimensional Heat Equations

Page 4: Computational Fluid Dynamics I PIW Numerical Methods for Parabolic Equations Instructor: Hong G. Im University of Michigan Fall 2005

Computational Fluid Dynamics IPIW

bxatx

f

t

f

,0;2

2

which is a parabolic equation requiring

)()0,( 0 xfxf

In this lecture, we consider a model equation

Initial Condition

)(),();(),( ttbfttaf ba Boundary Condition(Dirichlet)

)(),();(),( ttbx

ftta

x

fba

Boundary Condition

(Neumann)

or

and

Page 5: Computational Fluid Dynamics I PIW Numerical Methods for Parabolic Equations Instructor: Hong G. Im University of Michigan Fall 2005

Computational Fluid Dynamics IPIW

2

11

1 2

h

fff

t

ff n

j

n

j

n

j

n

j

n

j

Explicit: FTCS

n

j

n

j

n

j

n

j

n

j fffh

tff 112

1 2

j1 j j+1n

n+1

Explicit Method: FTCS - 1

Page 6: Computational Fluid Dynamics I PIW Numerical Methods for Parabolic Equations Instructor: Hong G. Im University of Michigan Fall 2005

Computational Fluid Dynamics IPIWModified Equation

xxxxxxxxxx fhthtOfrh

x

f

t

f),,()61(

12422

2

2

2

2h

tr

where

- Accuracy ),( 2htO

- If then ),( 22 htO ,6/1r

- No odd derivatives; dissipative

Explicit Method: FTCS - 2

Page 7: Computational Fluid Dynamics I PIW Numerical Methods for Parabolic Equations Instructor: Hong G. Im University of Michigan Fall 2005

Computational Fluid Dynamics IPIWStability: von Neumann Analysis

(Recall Lecture 2, p. 60)

14112

h

t

2

10

2

h

tFourier Condition

Explicit Method: FTCS - 3

)2/(sin412

sin41 22

2

1

rGh

kh

tDn

n

Page 8: Computational Fluid Dynamics I PIW Numerical Methods for Parabolic Equations Instructor: Hong G. Im University of Michigan Fall 2005

Computational Fluid Dynamics IPIW

Page 9: Computational Fluid Dynamics I PIW Numerical Methods for Parabolic Equations Instructor: Hong G. Im University of Michigan Fall 2005

Computational Fluid Dynamics IPIW

Page 10: Computational Fluid Dynamics I PIW Numerical Methods for Parabolic Equations Instructor: Hong G. Im University of Michigan Fall 2005

Computational Fluid Dynamics IPIWDomain of Dependence for Explicit Scheme

BC BC

x

t

Initial Data

h

P

tBoundary effect is not felt at P for many time steps

This may result inunphysical solutionbehavior

Explicit Method: FTCS - 4

Page 11: Computational Fluid Dynamics I PIW Numerical Methods for Parabolic Equations Instructor: Hong G. Im University of Michigan Fall 2005

Computational Fluid Dynamics IPIW

2

1

1

11

1

1 2

h

fff

t

ff n

j

n

j

n

j

n

j

n

j

Implicit Method: Laasonen (1949)

211

111 /12 htrfrffrrf n

jnj

nj

nj

j1 j j+1n

n+1

Tri-diagonal matrix system

Implicit Method - 1

Page 12: Computational Fluid Dynamics I PIW Numerical Methods for Parabolic Equations Instructor: Hong G. Im University of Michigan Fall 2005

Computational Fluid Dynamics IPIW

- The + sign suggests that implicit method may be less accurate than a carefully implemented explicit method.

Modified Equation

xxxxxxxxxx fhthtOfrh

x

f

t

f),,()61(

12422

2

2

2

Implicit Method - 2

Amplification Factor (von Neumann analysis)

1)cos1(21 rG

Unconditionally stable

Page 13: Computational Fluid Dynamics I PIW Numerical Methods for Parabolic Equations Instructor: Hong G. Im University of Michigan Fall 2005

Computational Fluid Dynamics IPIW

2

11

2

1

1

11

1

1 22

2 h

fff

h

fff

t

ff n

j

n

j

n

j

n

j

n

j

n

j

n

j

n

j

Crank-Nicolson Method (1947)

j1 j j+1n

n+1

Tri-diagonal matrix system

Crank-Nicolson - 1

n

j

n

j

n

j

n

j

n

j

n

j rffrrfrffrrf 11

1

1

11

1 1212

Page 14: Computational Fluid Dynamics I PIW Numerical Methods for Parabolic Equations Instructor: Hong G. Im University of Michigan Fall 2005

Computational Fluid Dynamics IPIW

- Second-order accuracy

Modified Equation

xxxxxxxxxx fhtfh

x

f

t

f

423

2

2

2

360

1

12

1

12

Crank-Nicolson - 2

Amplification Factor (von Neumann analysis)

cos11

cos11

r

rG

Unconditionally stable

),( 22 htO

Page 15: Computational Fluid Dynamics I PIW Numerical Methods for Parabolic Equations Instructor: Hong G. Im University of Michigan Fall 2005

Computational Fluid Dynamics IPIW

2

11

2

1

1

11

1

1 2)1(

2

h

fff

h

fff

t

ff n

j

n

j

n

j

n

j

n

j

n

j

n

j

n

j

Generalization

j1 j j+1n

n+1

Combined Method A - 1

NicolsonCrank1/2

Implicit1

(FTCS)Explicit0

1

Page 16: Computational Fluid Dynamics I PIW Numerical Methods for Parabolic Equations Instructor: Hong G. Im University of Michigan Fall 2005

Computational Fluid Dynamics IPIW

Other Special Cases (for further accuracy improvement):

Combined Method A - 2

),(12

1

2

1 42 htOr

(a) If

r12

1

2

1(b) If and ),(20/1 62 htOr

Modified Equation

xxxxxxt fh

tff

122

1 22

xxxxxxfhtht

422232

360

1

2

1

6

1

3

1

Page 17: Computational Fluid Dynamics I PIW Numerical Methods for Parabolic Equations Instructor: Hong G. Im University of Michigan Fall 2005

Computational Fluid Dynamics IPIW

unconditionally stable

Combined Method A - 3

12

1

Stability Property

2

10 stable only if

42

10

r

Page 18: Computational Fluid Dynamics I PIW Numerical Methods for Parabolic Equations Instructor: Hong G. Im University of Michigan Fall 2005

Computational Fluid Dynamics IPIW

2

1

1

11

1

11 21

h

fff

t

ff

t

ff n

j

n

j

n

j

n

j

n

j

n

j

n

j

Generalized Three-Time-Level Implicit Scheme:Richtmyer and Morton (1967)

j1 j j+1

n

n+1

Combined Method B - 1

implicitfully level-Three1/2

Implicit0

1

n1

Page 19: Computational Fluid Dynamics I PIW Numerical Methods for Parabolic Equations Instructor: Hong G. Im University of Michigan Fall 2005

Computational Fluid Dynamics IPIWModified Equation:

Combined Method B - 2

)(

122

1 22

2 tOfh

tff xxxxxxt

Special Cases:

),(2

1 22 htO (a) If

r12

1

2

1(b) If ),( 42 htO

Page 20: Computational Fluid Dynamics I PIW Numerical Methods for Parabolic Equations Instructor: Hong G. Im University of Michigan Fall 2005

Computational Fluid Dynamics IPIW

2

11

11 2

2 h

fff

t

ff n

j

n

j

n

j

n

j

n

j

Richardson Method: A Case of Failure

Richardson Method

),( 22 htO

Similar to Leapfrog

but unconditionally unstable!

j1 j j+1

n

n+1

n1

Page 21: Computational Fluid Dynamics I PIW Numerical Methods for Parabolic Equations Instructor: Hong G. Im University of Michigan Fall 2005

Computational Fluid Dynamics IPIW

2

1

11

1

11

2 h

ffff

t

ff n

j

n

j

n

j

n

j

n

j

n

j

The Richardson method can be made stable by splitting by time average

j1 j j+1

n

n+1

DuFort-Frankel - 1

n1

n

jf 2/11 n

j

n

j ff

n

j

n

j

n

j

n

j

n

j fffrfrf 1

1

1

11 221

Page 22: Computational Fluid Dynamics I PIW Numerical Methods for Parabolic Equations Instructor: Hong G. Im University of Michigan Fall 2005

Computational Fluid Dynamics IPIW

xxxxxxt fh

thff

2

232

12

1

Modified Equation (Recall Homework #1)

DuFort-Frankel - 2

xxxxxxfh

tth

4

45234 2

3

1

360

1

Amplification factor

r

rrG

21

sin41cos2 22

Unconditionally

stable

Conditionally consistent

Page 23: Computational Fluid Dynamics I PIW Numerical Methods for Parabolic Equations Instructor: Hong G. Im University of Michigan Fall 2005

Computational Fluid Dynamics IPIW

FTCSStable for

BTCSUnconditionally

Stable

Crank-NicolsonUnconditionally

Stable

RichardsonUnconditionally

Unstable

xxt ff

2

11

1 2

h

fff

t

ff n

j

n

j

n

j

n

j

n

j

xxxxfrh

6112

2

Parabolic Equation - Summary

2

1r

2

1

1

11

1

1 2

h

fff

t

ff n

j

n

j

n

j

n

j

n

j

xxxxfrh

6112

2

n

j

n

j

n

j

n

j

n

j

n

j

n

j

n

j

fff

fffht

ff

11

1

1

11

12

1

2

22

xxxxxxxxxx ft

fh

1212

232

2

11

11 2

2 h

fff

t

ff n

j

n

j

n

j

n

j

n

j

),( 22 htO

Page 24: Computational Fluid Dynamics I PIW Numerical Methods for Parabolic Equations Instructor: Hong G. Im University of Michigan Fall 2005

Computational Fluid Dynamics IPIW

DuFort-Frankel Unconditionally

Stable,

Conditionally

Consistent

3-Level Implicit

Unconditionally

Stable

xxt ff

xxxxfrh 2

2

12112

Parabolic Equation - Summary

2

1

1

11

1

11

22

43

h

ffft

fff

n

j

n

j

n

j

n

j

n

j

n

j

xxxxf

h

12

2

2

1

11

1

11

2 h

ffff

t

ff n

j

n

j

n

j

n

j

n

j

n

j

Page 25: Computational Fluid Dynamics I PIW Numerical Methods for Parabolic Equations Instructor: Hong G. Im University of Michigan Fall 2005

Computational Fluid Dynamics IPIWThe Keller Box Method (1970)

Keller Box - 1

2

2

x

f

t

f

- Implicit with ),( 22 htO

Basic Concept:

Define

x

fvfu

;

yielding v

x

u

x

v

t

u

Page 26: Computational Fluid Dynamics I PIW Numerical Methods for Parabolic Equations Instructor: Hong G. Im University of Michigan Fall 2005

Computational Fluid Dynamics IPIWIn discretized form

Keller Box - 2

1

2/1

1

1

1

n

j

j

n

j

n

j vh

uu

j

n

j

n

j

n

n

j

n

j

h

vv

t

uu 2/1

1

2/1

1

2/1

1

2/1

j1 j

n+1

n

tn+1

hj

1

2/1

n

jv 1n

ju11

nju

j1 j

n+1

n

2/1

1

n

jv 2/1n

jvn

ju 2/1

1

2/1

n

ju

where

2;

2

1

2/1

1

1

1

1

2/1

n

j

n

jn

j

n

j

n

jn

j

vvv

uuu

Page 27: Computational Fluid Dynamics I PIW Numerical Methods for Parabolic Equations Instructor: Hong G. Im University of Michigan Fall 2005

Computational Fluid Dynamics IPIWSubstituting

Keller Box - 3

2

11

111

1

nj

nj

j

nj

nj vv

h

uu

j

nj

nj

n

nj

nj

j

nj

nj

n

nj

nj

h

vv

t

uu

h

vv

t

uu 1

1

111

1

1

11

1

or 0

2211

11

11

nj

jnj

nj

jnj v

huv

hu

nj

nj

nj

nj

n

jnj

nj

n

jnj

nj

n

j vvuut

hvu

t

hvu

t

h11

1

11

11

1

11

1

Page 28: Computational Fluid Dynamics I PIW Numerical Methods for Parabolic Equations Instructor: Hong G. Im University of Michigan Fall 2005

Computational Fluid Dynamics IPIWAdding boundary conditions, e.g.

Keller Box - 4

),,1(; 11

11 JjCuCu J

nJ

n

022

:2 12

212

11

211 nnnn v

huv

huj

nnnn

n

nn

n

nn

n

vvuut

hvu

t

hvu

t

h1212

1

212

12

1

211

11

1

2

11

1:1 Cuj n

022

: 1111

11

nj

jnj

nj

jnj v

huv

hujj

nj

nj

nj

nj

n

jnj

nj

n

jnj

nj

n

j vvuut

hvu

t

hvu

t

h11

1

11

1

11

11

1

JnJ CuJj 1:

2R

jRj

Page 29: Computational Fluid Dynamics I PIW Numerical Methods for Parabolic Equations Instructor: Hong G. Im University of Michigan Fall 2005

Computational Fluid Dynamics IPIWIn Matrix Form

Keller Box - 5

0

0

0

0

0

0100000000

11000000

2/12/1000000

0000

0001100

0002/12/100

0000011

000002/12/1

000000001

3

2

3

3

2

2

1

1

33

33

22

22

J

J

JJJ

JJ

R

R

R

v

u

v

u

v

u

v

u

hh

hh

hh

CFFF

11

111

nj

nj

nj ADB

D1 A1

A2D2B2

B3 D3 A3

DJBJ

Block Tridiagonal Matrix Appendix, Linpack

Page 30: Computational Fluid Dynamics I PIW Numerical Methods for Parabolic Equations Instructor: Hong G. Im University of Michigan Fall 2005

Computational Fluid Dynamics IPIWModified Keller Box Method – Express in terms of

Keller Box - 6

v

Starting with original Keller box method:

u

2

1

1

11

1

1

n

j

n

j

j

n

j

n

j vv

h

uu

j

nj

nj

n

nj

nj

j

nj

nj

n

nj

nj

h

vv

t

uu

h

vv

t

uu 1

1

111

1

1

11

1

Eliminating from (b) using (a) nj

nj vv 1

11 ,

(a)

(b)

2

1

1

1

2

11

11

1

11

1

2222j

nj

nj

j

nj

n

nj

nj

j

nj

nj

j

nj

n

nj

nj

h

uu

h

v

t

uu

h

uu

h

v

t

uu

Page 31: Computational Fluid Dynamics I PIW Numerical Methods for Parabolic Equations Instructor: Hong G. Im University of Michigan Fall 2005

Computational Fluid Dynamics IPIWFurther elimination of yields (Tannehill, p. 136)

Keller Box - 7

jnjj

njj

njj CuAuDuB

11

111

jn

jj ht

hB

2

1

Tridiagonal Matrix Thomas Algorithm

nj

nj vv ,1

11

1 2

jn

jj ht

hA

11

1

1

22

jjn

j

n

jj hht

h

t

hD

1

11

11

1

11 22

n

jnj

nj

n

jnj

nj

j

nj

nj

j

nj

nj

j t

huu

t

huu

h

uu

h

uuC

Page 32: Computational Fluid Dynamics I PIW Numerical Methods for Parabolic Equations Instructor: Hong G. Im University of Michigan Fall 2005

Computational Fluid Dynamics IPIW

Notes on Keller Box Method

Keller Box - 8

1. Second-order accurate in time and space

2. Accuracy is preserved for nonuniform grids

3. More operations per timestep compared to Crank-Nicolson

Page 33: Computational Fluid Dynamics I PIW Numerical Methods for Parabolic Equations Instructor: Hong G. Im University of Michigan Fall 2005

Computational Fluid Dynamics IPIW

Numerical Methods forMulti-Dimensional Heat Equations

Page 34: Computational Fluid Dynamics I PIW Numerical Methods for Parabolic Equations Instructor: Hong G. Im University of Michigan Fall 2005

Computational Fluid Dynamics IPIW

2

2

2

2

y

f

x

f

t

f

Applying forward Euler scheme:

2

1,,1,

2

,1,,1,1

, 22

y

fff

x

fff

t

ff nji

nji

nji

nji

nji

nji

nji

nji

Consider a 2-D heat equation

hyx If

nji

nji

nji

nji

nji

nji

nji fffff

ht

ff,1,1,,1,12

,1

, 4

Explicit Method - 1

Page 35: Computational Fluid Dynamics I PIW Numerical Methods for Parabolic Equations Instructor: Hong G. Im University of Michigan Fall 2005

Computational Fluid Dynamics IPIWIn matrix form

n

JI

n

JI

n

n

n

J

n

n

n

JI

n

JI

n

n

n

J

n

n

n

JI

n

JI

n

n

n

J

n

n

f

f

f

f

f

f

f

h

t

f

f

f

f

f

f

f

f

f

f

f

f

f

f

,

1,

2,2

1,2

,1

2,1

1,1

2

,

1,

2,2

1,2

,1

2,1

1,1

1

,

1

1,

1

2,2

1

1,2

1

,1

1

2,1

1

1,1

410

100

10

01

101410

100141

010014

Explicit Method - 2

Page 36: Computational Fluid Dynamics I PIW Numerical Methods for Parabolic Equations Instructor: Hong G. Im University of Michigan Fall 2005

Computational Fluid Dynamics IPIWExplicit Method - 3

Von Neumann Analysis imyikxnnj ee

nimhimhikhikhnn eeeeh

t 42

1

4cos2cos212

1

mhkhh

tn

n

2sin

2sin

41 22

2

mhkh

h

t

Worst case

18

112

h

t4

12

h

t

Page 37: Computational Fluid Dynamics I PIW Numerical Methods for Parabolic Equations Instructor: Hong G. Im University of Michigan Fall 2005

Computational Fluid Dynamics IPIW

Explicit method for multi-dimensional heat equation is not desirable.

Explicit Method - 4

Stability Condition for Heat Equation

4

12

h

t(2-D)

6

12

h

t(3-D)

2

12

h

t(1-D)

Page 38: Computational Fluid Dynamics I PIW Numerical Methods for Parabolic Equations Instructor: Hong G. Im University of Michigan Fall 2005

Computational Fluid Dynamics IPIW

Too expensive!!

Crank-Nicolson

Crank-Nicolson Method for 2-D Heat Equation

2

2

2

2

2

12

2

121

2 y

f

x

f

y

f

x

f

t

ff nnnnnn

1,

11,

11,

1,1

1,12,

1, 4

2

nji

nji

nji

nji

nji

nji

nji fffff

h

tff

hyx If

nji

nji

nji

nji

nji fffff

h

t,1,1,,1,12

42

Page 39: Computational Fluid Dynamics I PIW Numerical Methods for Parabolic Equations Instructor: Hong G. Im University of Michigan Fall 2005

Computational Fluid Dynamics IPIW

Fractional Step:

ADI - 1

A Clever Remedy – Alternating Direction Implicit (ADI)

nji

nji

nji

nji

nji

nji

nn ffffffh

tff 1,,1,

2/1,1

2/1,

2/1,12

2/1 222

hyx

11,

1,

11,

2/1,1

2/1,

2/1,12

2/11 222

nji

nji

nji

nji

nji

nji

nn ffffffh

tff

Step 1:

Step 2:

2

2

2

12

2

2/121

2

1

2 y

f

y

f

x

ftff

nnnnn

Combining the two becomes equivalent to:

Page 40: Computational Fluid Dynamics I PIW Numerical Methods for Parabolic Equations Instructor: Hong G. Im University of Michigan Fall 2005

Computational Fluid Dynamics IPIWADI - 2

Computational Molecules for ADI Method

n

n+1/2

n+1

ii+1

i1

j+1

j1

j

Page 41: Computational Fluid Dynamics I PIW Numerical Methods for Parabolic Equations Instructor: Hong G. Im University of Michigan Fall 2005

Computational Fluid Dynamics IPIW

Stability Analysis:

ADI - 3

ADI Method is accurate

Similarly,

22 , htO imyikxnn

j ee

imhimhnikhikhnnn eeeeh

t

222/12

2/1

2sin21

2sin21

22

222/1

mhh

t

khh

t

n

n

2sin21

2sin21

22

22

2/1

1

khh

t

mhh

t

n

n

Page 42: Computational Fluid Dynamics I PIW Numerical Methods for Parabolic Equations Instructor: Hong G. Im University of Michigan Fall 2005

Computational Fluid Dynamics IPIWADI - 4

Combining

Unconditionally stable!

1

2sin21

2sin21

2sin21

2sin21

22

22

22

221

khh

t

mhh

t

mhh

t

khh

t

n

n

Unfortunately, a 3-D version does not have the same desirable stability properties.

Conditionally stable and 2, htO

Page 43: Computational Fluid Dynamics I PIW Numerical Methods for Parabolic Equations Instructor: Hong G. Im University of Michigan Fall 2005

Computational Fluid Dynamics IPIWADI - 5

Advantages:

1. Stability limits of 1-D case apply.

2. Different t can be used in x and y directions.

1. Cannot be directly extended to 3-D problems.

Approximate factorization

Limitations:

Page 44: Computational Fluid Dynamics I PIW Numerical Methods for Parabolic Equations Instructor: Hong G. Im University of Michigan Fall 2005

Computational Fluid Dynamics IPIWApproximate Factorization - 1

The Crank-Nicolson for heat equation becomes

Define jijijixx x ,1,,122

1

1,,1,22

1

jijijiyy y

),,(22

222111

yxtOfffft

ff nnyy

nnxx

nn

),,(

221

221

222

1

yxttO

ftt

ftt n

yyxxn

yyxx

which can be rewritten as

Page 45: Computational Fluid Dynamics I PIW Numerical Methods for Parabolic Equations Instructor: Hong G. Im University of Michigan Fall 2005

Computational Fluid Dynamics IPIWApproximate Factorization - 2

Factoring each side

),,( 222 yxttO

1

221

421

21 n

yyxxn

yyxx ft

ftt

or

nyyxx

nyyxx f

tf

tt 42

12

122

nyyxx

nyyxx f

ttf

tt

21

21

21

21 1

)( tO ),,(

42221

22

yxttOfft nn

yyxx

Page 46: Computational Fluid Dynamics I PIW Numerical Methods for Parabolic Equations Instructor: Hong G. Im University of Michigan Fall 2005

Computational Fluid Dynamics IPIWApproximate Factorization - 3

Final factored form of the discrete equation

at an accuracy of

nyyxx

nyyxx f

ttf

tt

21

21

21

21 1

),,( 222 yxtO

Note that the ADI method can be written as

nyy

nxx f

tf

t

21

21 2/1

2/11

21

21

n

xxn

yy ft

ft

which is equivalent to factorized Crank-Nicolson

Page 47: Computational Fluid Dynamics I PIW Numerical Methods for Parabolic Equations Instructor: Hong G. Im University of Michigan Fall 2005

Computational Fluid Dynamics IPIWApproximate Factorization - 4

Two-step algorithm

can be written into two steps:

nyyxx

nyyxx f

ttf

tt

21

21

21

21 1

*1

21 ff

t nyy

nyyxxxx f

ttf

t

21

21

21 *

each of which can be solved by TDMA (Thomas algorithm).

(Step 2)

(Step 1)

Page 48: Computational Fluid Dynamics I PIW Numerical Methods for Parabolic Equations Instructor: Hong G. Im University of Michigan Fall 2005

Computational Fluid Dynamics IPIWApproximate Factorization - 5

Note: Boundary condition for is needed at

*1

21 ff

t nyy

This can be determined from

*f Ni ,1

For example, at 0x

2

11,1

1,1

11,11

,1*,1

2

2 y

ffftff

nj

nj

njn

jj

Similarly, at Lx

2

11,

1,

11,1

,*

,

2

2 y

ffftff

njN

njN

njNn

jNjN

Page 49: Computational Fluid Dynamics I PIW Numerical Methods for Parabolic Equations Instructor: Hong G. Im University of Michigan Fall 2005

Computational Fluid Dynamics IPIWApproximate Factorization - 6

Generalized 3-D Algorithm: unconditionally stable,

where

nnzzyyxx fRHSf

ttt

1

21

21

21

***

21 ff

tyy

nxx fRHSf

t

*

21

(Step 2)

(Step 1)

nzzyyxx

n fttt

fRHS

21

21

21

**

21 ff

tzz

(Step 3)

22 ,htO