complexes ligand effects on the magnetic anisotropy of ... · mohamed r. saber,a,b and kim r....

17
1 Supporting information for Ligand effects on the magnetic anisotropy of tetrahedral cobalt complexes Mohamed R. Saber, a,b and Kim R. Dunbar a * a Department of Chemistry, TexasA&M University, College Station, Texas77842-3012 E-mail: [email protected] b Department of Chemistry, Fayoum University, Fayoum, 63514, Egypt. RECEIVED DATE (automatically inserted by publisher); E-mail: [email protected] Electronic Supplementary Material (ESI) for ChemComm. This journal is © The Royal Society of Chemistry 2014

Upload: others

Post on 11-Oct-2020

1 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: complexes Ligand effects on the magnetic anisotropy of ... · Mohamed R. Saber,a,b and Kim R. Dunbara* a Department of Chemistry, TexasA&M University, College Station, Texas77842-3012

1

Supporting information for

Ligand effects on the magnetic anisotropy of tetrahedral cobalt complexes

Mohamed R. Saber,a,b and Kim R. Dunbara*

a Department of Chemistry, TexasA&M University, College Station, Texas77842-3012E-mail: [email protected]

b Department of Chemistry, Fayoum University, Fayoum, 63514, Egypt.

RECEIVED DATE (automatically inserted by publisher); E-mail: [email protected]

Electronic Supplementary Material (ESI) for ChemComm.This journal is © The Royal Society of Chemistry 2014

Page 2: complexes Ligand effects on the magnetic anisotropy of ... · Mohamed R. Saber,a,b and Kim R. Dunbara* a Department of Chemistry, TexasA&M University, College Station, Texas77842-3012

2

Contents:Experimental Section ………………………………………………………..…………………………………………….. 2

X-ray Crystallographic Measurements…………………...…………………………………………………………………. 2

Table S 1. Crystal data and details of the refinement parameters for compounds 1-3 ...…...…….. 3

Table S 2. Bond distances and angles for 1-3…………………………………….……………….. 4

S 1. Thermal ellipsoid plot of 1 ..........................................................................................................6

S 2. Thermal ellipsoid plot of 2 ..........................................................................................................7

S 3. Thermal ellipsoid plot of 3 ..........................................................................................................8

S 4. Variable temperature DC magnetic susceptibility data for 1. .....................................................9

S 5. Variable temperature DC magnetic susceptibility data for 2. .....................................................9

S 6. Variable temperature DC magnetic susceptibility data for 3. ...................................................10

S 7. Reduced magnetization data for 1. Inset; field dependent magnetization data at 1.8 K. ..........10

S 8. Reduced magnetization data for 2. Inset; field dependent magnetization data at 1.8 K. ..........11

S 9. Reduced magnetization data for 3. Inset; field dependent magnetization data at 1.8 K. ..........11

S 10. Fequency dependent AC measurements at different fields for 2 (top) 3 (bottom). Optimum

field is 1000 Oe.................................................................................................................................12

S 11. Temperature (top) and frequency (bottom) dependence of the AC susceptibility for 2. In-

phase (open) out-of-phase (solid). ....................................................................................................13

S 12. Cole-Cole plots (top) and Arrhenius plot (bottom) for 2 with Ueff = 30.63 K, τ˳ = 4.65x10-10 s

. .........................................................................................................................................................14

S 13. Temperature (top) and frequency (bottom) dependence of the AC susceptibility for 3. In-

phase (open) out-of-phase (solid). ....................................................................................................15

S 14. Cole-Cole plots (top) and Arrhenius plot (bottom) for 3 with Ueff = 32.13 K, τ˳ = 1.5x10-8 s .

..........................................................................................................................................................16

Page 3: complexes Ligand effects on the magnetic anisotropy of ... · Mohamed R. Saber,a,b and Kim R. Dunbara* a Department of Chemistry, TexasA&M University, College Station, Texas77842-3012

3

Experimental SectionSyntheses

All complexes were synthesized following previously reported procedures.[1]

Co(quinolone)2I2 (1). A solution of quinoline (416 mg, 3.22 mmol) in 10 mL of hot anhydrous ethanol was added to a hot solution of CoI2 (500 mg, 1.6 mmol) in the same solvent. The blue green reaction was refluxed for 1 hour and cooled in air. The X ray quality blue green crystals that grew in the solution were collected by filtration and washed with 3 mL of cold ethanol followed by 3 mL of diethyl ether and finally dried under vacuum (Yield = 0.46 g, 51%).

Co(PPh3)2I2 (2). A solution of PPh3 (840 mg, 3.2 mmol) in 10 mL of hot anhydrous ethanol was added to a hot solution of CoI2 (500 mg, 1.6 mmole) in the same solvent. Reddish brown crystals of the product formed instantaneously. The reaction was refluxed for 1 hour and then cooled in air. The resulting X ray quality crystals were collected by filtration, washed with 3 mL of cold ethanol followed by 3 mL of diethyl ether and then dried under vacuum (Yield = 1.0 g, 75%).

Co(AsPh3)2I2 (3). A solution of AsPh3 (1000 mg, 3.26 mmol) in 10 mL of hot anhydrous nitromethane was added to a hot solution of CoI2 (550 mg, 1.75 mmol) in the same solvent. Yellow brown crystals of the product deposited instantly. The reaction was refluxed for 1 hour and then left to cool for three hours. X-ray quality crystals were collected by filtration, washed with cold nitromethane followed by 3 mL of diethyl ether and then dried under vacuum (Yield = 1.35 g, 83%).

X-ray Crystallographic Measurements

X-ray diffraction data for 1-3 were collected at 110 K on a Bruker Apex II diffractometer equipped with a CCD area detector and MoK radiation. Absorption corrections were applied by using SADABS.[2] All structures were solved by direct methods (SHELXS-97)[3] and refined by full-matrix least-squares calculations on F2 (SHELXL-97).[4] The non-hydrogen atoms were refined anisotropically and hydrogen atoms were refined isotropically. Table S1 provides a summary for the crystal parameters and refined structures data.CCDC- 1003633-1003635 contain the supplementary crystallographic data for this paper. These can be obtained free of charge from The Cambridge Crystallographic Data Centre via www.ccdc.cam.ac.uk/data_request/cif.

Page 4: complexes Ligand effects on the magnetic anisotropy of ... · Mohamed R. Saber,a,b and Kim R. Dunbara* a Department of Chemistry, TexasA&M University, College Station, Texas77842-3012

4

Table S 1. Crystal data and details of the refinement parameters for compounds (Ph3PMe)2[Fe2(TCNQ)3] 1, (Ph3PMe)2[Co2(TCNQ)3] 2, (Ph3PMe)2[Ni2(TCNQ)3] 3, and (Ph3PMe)2[Zn2(TCNQ)3] 4.

Compound 1 2 3

Formula C18 H14 Co I2 N2 C36 H30 Co I2 P2 C36 H30 Co I2 As2

Fw [g mol-1] 571.04 837.27 925.17

Crystal size [ mm3] 0.04 x 0.04 x 0.18 0.05 x 0.1 x 0.16 0.08 x 0.24 x 0.29

Crystal system Monoclinic Monoclinic Monoclinic

Space group P21/n P21/c P21/c

a [Å] 7.9139(16) 19.165(4) 19.117(4)

b [Å] 15.284(3) 10.198(2) 10.215(2)

c [Å] 14.611(3) 17.929(4) 18.245(4)

α[] 90.00 90.00 90.00

[] 90.99(3) 112.23(3) 111.72(3)

γ[] 90.00 90.00 90.00

V [Å3] 1766.9(6) 3243.7(11) 3309.9(11)

Z 4 4 4

calc [g cm-3] 2.147 1.715 1.857

(MoK) [mm-1] 4.465 2.555 4.392

Reflections collected 20501 37469 36835Independent reflections 4072 7504 7480

Parameters 208 370 370

R(int) 0.0255 0.0236 0.0355

R1[a] 0.0255 0.0291 0.0395

wR2[b] 0.056 0.0562 0.0839

GOF 1.046 1.026 1.055[a] R1 = Fo /FcFo. [b] wR2 = [[w(Fo

2 - Fc2)2]/[w(Fo

2)2]]1/2

Page 5: complexes Ligand effects on the magnetic anisotropy of ... · Mohamed R. Saber,a,b and Kim R. Dunbara* a Department of Chemistry, TexasA&M University, College Station, Texas77842-3012

5

Table S 2. Bond distances and angles for 1-3.

Selected bond distances (Å) and angles for (1)

Co1 I1 2.5803(7) I1 Co1 I2 109.72(2)

Co1 I2 2.5770(7) I1 Co1 N1 108.51(7)

Co1 N1 2.053(3) I1 Co1 N2 119.59(7)

Co1 N2 2.057(3) I2 Co1 N1 111.64(7)

I2 Co1 N2 105.38(7)

N1 Co1 N2 101.8(1)

Selected bond distances (Å) and angles for (2)

I1 Co1 2.5433(7) I1 Co1 I2 111.44(1)

I2 Co1 2.5580(5) I1 Co1 P2 105.39(2)

Co1 P2 2.3899(7) I1 Co1 P1 109.04(2)

Co1 P1 2.4129(8) I2 Co1 P2 112.71(2)

I2 Co1 P1 109.84(2)

P2 Co1 P1 108.25(2)

Selected bond distances (Å) and angles for (3)

Co1 I1 2.5273(9) I1 Co1 I2 116.80(2)

Co1 I2 2.5303(8) I1 Co1 As1 108.44(2)

Co1 As1 2.5137(9) I1 Co1 As2 104.23(2)

Co1 As2 2.4826(8) I2 Co1 As1 109.73(2)

I2 Co1 As2 111.75(2)

As1 Co1 As2 105.15(2)

Page 6: complexes Ligand effects on the magnetic anisotropy of ... · Mohamed R. Saber,a,b and Kim R. Dunbara* a Department of Chemistry, TexasA&M University, College Station, Texas77842-3012

6

S 1. Thermal ellipsoid plot of 1

Page 7: complexes Ligand effects on the magnetic anisotropy of ... · Mohamed R. Saber,a,b and Kim R. Dunbara* a Department of Chemistry, TexasA&M University, College Station, Texas77842-3012

7

S 2. Thermal ellipsoid plot of 2

Page 8: complexes Ligand effects on the magnetic anisotropy of ... · Mohamed R. Saber,a,b and Kim R. Dunbara* a Department of Chemistry, TexasA&M University, College Station, Texas77842-3012

8

S 3. Thermal ellipsoid plot of 3

Page 9: complexes Ligand effects on the magnetic anisotropy of ... · Mohamed R. Saber,a,b and Kim R. Dunbara* a Department of Chemistry, TexasA&M University, College Station, Texas77842-3012

9

0

0.2

0.4

0

0.5

1

1.5

2

2.5

0 50 100 150 200 250 300

χ(e

mu/

mol

)

χT (e

mu×

K/m

ol)

Temperature (K)

χT

χ

S 4. Variable temperature DC magnetic susceptibility data for 1.

0

0.2

0.4

0.6

0.8

0

0.5

1

1.5

2

2.5

0 50 100 150 200 250 300

χ(e

mu/

mol

)

χT (e

mu×

K/m

ol)

Temperature (K)

χT

χ

S 5. Variable temperature DC magnetic susceptibility data for 2.

Page 10: complexes Ligand effects on the magnetic anisotropy of ... · Mohamed R. Saber,a,b and Kim R. Dunbara* a Department of Chemistry, TexasA&M University, College Station, Texas77842-3012

10

0

0.2

0.4

0.6

0.8

0

0.5

1

1.5

2

2.5

0 50 100 150 200 250 300

χ(e

mu/

mol

)

χT (e

mu×

K/m

ol)

Temperature (K)

χT

χ

S 6. Variable temperature DC magnetic susceptibility data for 3.

0

0.5

1

1.5

2

2.5

0 10 20 30 40 50

Mag

netiz

atio

n (B

.M.)

H/T (kOe/K)

1 T2 T3 T4 T5 T6 T7 TTheory

0

1

2

0 20000 40000 60000Mag

netiz

atio

n (B

.M.)

Magnetic field (Oe)

S 7. Reduced magnetization data for 1. Inset; field dependent magnetization data at 1.8 K.

Page 11: complexes Ligand effects on the magnetic anisotropy of ... · Mohamed R. Saber,a,b and Kim R. Dunbara* a Department of Chemistry, TexasA&M University, College Station, Texas77842-3012

11

0

0.5

1

1.5

2

2.5

0 10 20 30 40

Mag

netiz

atio

n (B

.M.)

H/T (kOe/K)

1 T2 T3 T4 T5 T6 T7 TTheory

0

1

2

0 20000 40000 60000M

agne

tizat

ion

(B.M

.)Magnetic field (Oe)

S 8. Reduced magnetization data for 2. Inset; field dependent magnetization data at 1.8 K.

0

1

2

0 10 20 30 40

Mag

netiz

atio

n (B

.M.)

H/T (kOe/K)

1 T2 T3 T4 T5 T6 T7 TTheory

0

1

2

0 20000 40000 60000

Mag

netiz

atio

n (B

.M.)

Magnetic field (Oe)

S 9. Reduced magnetization data for 3. Inset; field dependent magnetization data at 1.8 K.

Page 12: complexes Ligand effects on the magnetic anisotropy of ... · Mohamed R. Saber,a,b and Kim R. Dunbara* a Department of Chemistry, TexasA&M University, College Station, Texas77842-3012

12

0

0.2

1.00 10.00 100.00 1000.00

χ" /

em

u·m

ol-1

ν / Hz

0 2kOe

0

0.2

0.20 2.00 20.00 200.00

χ" /

em

u·m

ol-1

ν / Hz

0 2kOe

S 10. Fequency dependent AC measurements at different fields for 2 (top) 3 (bottom). Optimum field is 1000 Oe.

Page 13: complexes Ligand effects on the magnetic anisotropy of ... · Mohamed R. Saber,a,b and Kim R. Dunbara* a Department of Chemistry, TexasA&M University, College Station, Texas77842-3012

13

-0.25

0.15

0.55

0

0.2

0.4

1.50 2.50 3.50 4.50

χ' /

em

u·m

ol-1

χ" /

em

u·m

ol-1

T/ K

1 Hz 1.5 Khz

-0.2

0.1

0.4

0.7

0

0.1

0.2

0.3

0.4

1.5 15 150 1500

χ' /

em

u·m

ol-1

χ" /

em

u·m

ol-1

ν / Hz

1.8 K 2.9 K

S 11. Temperature (top) and frequency (bottom) dependence of the AC susceptibility for 2. In-phase (open) out-of-phase (solid).

Page 14: complexes Ligand effects on the magnetic anisotropy of ... · Mohamed R. Saber,a,b and Kim R. Dunbara* a Department of Chemistry, TexasA&M University, College Station, Texas77842-3012

14

0

0.1

0.2

0.2 0.3 0.4 0.5 0.6 0.7 0.8

χ" /

em

u·m

ol-1

χ' / emu·mol-1

1.8 K 2.9 K

y = 30.632x - 21.49R² = 0.9993

-12

-10

-8

-6

-4

-2

00.2 0.4 0.6

ln(1

/τ)

T-1 / K-1

S 12. Cole-Cole plots (top) and Arrhenius plot (bottom) for 2 with Ueff = 30.63 K, τ˳ = 4.65x10-10 s .

Page 15: complexes Ligand effects on the magnetic anisotropy of ... · Mohamed R. Saber,a,b and Kim R. Dunbara* a Department of Chemistry, TexasA&M University, College Station, Texas77842-3012

15

-0.6

-0.2

0.2

0.6

0

0.2

0.4

1.50 2.50 3.50 4.50 5.50 6.50

χ' /

em

u·m

ol-1

χ" /

em

u·m

ol-1

T/ K

1 Hz 1.5 Khz

-0.4

0

0.4

0.8

0

0.2

0.4

0.6

0.3 3 30 300

χ' /

em

u·m

ol-1

χ" /

em

u·m

ol-1

ν / Hz

1.8 K 4.1 K

S 13. Temperature (top) and frequency (bottom) dependence of the AC susceptibility for 3. In-phase (open) out-of-phase (solid).

Page 16: complexes Ligand effects on the magnetic anisotropy of ... · Mohamed R. Saber,a,b and Kim R. Dunbara* a Department of Chemistry, TexasA&M University, College Station, Texas77842-3012

16

0

0.2

0.1 0.3 0.5 0.7 0.9

χ" /

em

u·m

ol-1

χ' / emu·mol-1

1.8 K 4.1 K

y = 32.128x - 18.016R² = 0.9993

-12

-10

-8

-6

-4

-2

00.1 0.2 0.3 0.4 0.5 0.6

ln(1

/τ)

T-1 / K-1

S 14. Cole-Cole plots (top) and Arrhenius plot (bottom) for 3 with Ueff = 32.13 K, τ˳ = 1.5x10-8 s .

Page 17: complexes Ligand effects on the magnetic anisotropy of ... · Mohamed R. Saber,a,b and Kim R. Dunbara* a Department of Chemistry, TexasA&M University, College Station, Texas77842-3012

17

[1] (a) D. M. L. Goodgame, M. Goodgame, F. A. Cotton, Inorg. Chem. 1962, 1, 239-245; (b) F. A. Cotton, D. M. Goodgame, O. D. Faut, R. H. Holm, J. Am. Chem. Soc. 1961, 83, 1780-&; (c) A. Mirceva, Vestn. Slov. Kem. Drus. 1987, 34, 449; (d) D. M. L. Goodgame, M. Goodgame, Inorg. Chem. 1965, 4, 139-143.

[2] G. M. Sheldrick., in SADABS: A program for absorption correction with the Bruker SMART system, University of Göttingen, Germany, 2008.

[3] G. M. Sheldrick, in SHELXS-97, Program for Crystal Structure Determination, University of Göttingen, Göttingen, Germany, 1997.

[4] G. M. Sheldrick, Acta Crystallogr. Sec. A 2008, 64, 112-122.