complex molecule synthesis enabled by...

56
Complex Molecule Synthesis Enabled by Photochemistry Joseph Badillo March 23, 2016 MacMillan Group Meeting O Me Me Me Me O hv

Upload: phamdung

Post on 18-Jul-2018

237 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: Complex Molecule Synthesis Enabled by Photochemistrychemlabs.princeton.edu/.../uploads/sites/6/Photochemistry-JJBs.pdf · Complex Molecule Synthesis Enabled by Photochemistry. why

Complex Molecule Synthesis Enabled by Photochemistry

Joseph Badillo

March 23, 2016

MacMillan Group Meeting

OMe

MeMe

Me

O

hv

March 23, 2017
Page 2: Complex Molecule Synthesis Enabled by Photochemistrychemlabs.princeton.edu/.../uploads/sites/6/Photochemistry-JJBs.pdf · Complex Molecule Synthesis Enabled by Photochemistry. why

Complex Molecule Synthesis Enabled by PhotochemistryOutline

� General outline

1) Why are photochemical reactions interesting?

2) 2+2 cycloaddtions and cyclobutane ring-opening reactions

3) Norrish type I and II applications to complex architectures

7) Photoredox applications to complex molecule synthesis

4) Oxa-di-!-methane rearrangement

8) Summary

5) Paternò−Büchi reaction

6) meta-photocycloaddition reaction in total synthesis

Page 3: Complex Molecule Synthesis Enabled by Photochemistrychemlabs.princeton.edu/.../uploads/sites/6/Photochemistry-JJBs.pdf · Complex Molecule Synthesis Enabled by Photochemistry. why

Complex Molecule Synthesis Enabled by Photochemistrywhy photochemistry?

� Why are photochemical reactions interesting?

1) Since excited states are rich in energy, highly endothermic reactions are possible. Such as highly strained (up-hill) targets!

2) In the excited state antibonding orbitals are occupied, which allow for reactions to occur that are not possible in the ground state

3) Photochemical reactions have the potentail to be Green as they only consume photons

Page 4: Complex Molecule Synthesis Enabled by Photochemistrychemlabs.princeton.edu/.../uploads/sites/6/Photochemistry-JJBs.pdf · Complex Molecule Synthesis Enabled by Photochemistry. why

Complex Molecule Synthesis Enabled by PhotochemistryThermal vs photochemical topography

� Reactant (R) goes through intermediate (I) to form product (P)

Karkas, M. D.; Porco, J. A.; Stephenson, C. R. J. Chem. Rev. 2016, 116, 9683.

Page 5: Complex Molecule Synthesis Enabled by Photochemistrychemlabs.princeton.edu/.../uploads/sites/6/Photochemistry-JJBs.pdf · Complex Molecule Synthesis Enabled by Photochemistry. why

Complex Molecule Synthesis Enabled by Photochemistrytypical absorption range of organic compounds

� Most organic molecules absorb light in the UV-region

Simple alkenes 190 - 200 nm

Acyclic diene 220 - 250 nm

Cyclic diene 250- 270 nm

Styrene 270 - 300 nm

Saturated ketones 270 - 280 nm

α,β-Unsaturated ketones 280 - 300 nm

Aromatic compounds 250 - 280 nm

Common photocatalysts 350 - 440 nm

Ultra Violet(UV)

Visible

Page 6: Complex Molecule Synthesis Enabled by Photochemistrychemlabs.princeton.edu/.../uploads/sites/6/Photochemistry-JJBs.pdf · Complex Molecule Synthesis Enabled by Photochemistry. why

Complex Molecule Synthesis Enabled by PhotochemistryEnergy absorbed from light

� Energy as a function of wavelength is hyperbolic

A molecule absorbing blue light, with a wavelength of400 nm, absorbs about 71 kcal of energy

Purves, W. K., G. H. Orians, H. C. Heller, and D. Sadava. 1998. Life: The Science of Biology (Fifth Edition). Sinauer Associates, Sunderland, MA.

Page 7: Complex Molecule Synthesis Enabled by Photochemistrychemlabs.princeton.edu/.../uploads/sites/6/Photochemistry-JJBs.pdf · Complex Molecule Synthesis Enabled by Photochemistry. why

Complex Molecule Synthesis Enabled by Photochemistry2 basic laws governing photochemical reactions

� Stark-Einstein law (Law of Photochemical Equivalence): Each reactant molecule absorbs a single photon to provide an activated species to form products

� Grotthus-Draper law (Principle of Photochemical Activation): Only the light which is absorbed by a system can bring about chemical change

one photon (hv)

A A� B

productmolecule

excitedmolecule

reactantmolecule

Page 8: Complex Molecule Synthesis Enabled by Photochemistrychemlabs.princeton.edu/.../uploads/sites/6/Photochemistry-JJBs.pdf · Complex Molecule Synthesis Enabled by Photochemistry. why

Complex Molecule Synthesis Enabled by Photochemistryreactivity of excited state intermediates

AB✻

+ M

physical quenching

AB + e

ionization

A + B dissociation

AE + B or ABE direct reaction

AB + E or AB + E

+ E

charge transfer

isomerization

AB + CD‡

intermolecularenergy transfer

AB†intramolecularenergy transfer

luminescenceAB + hv

+ CD

For more physics details see: Physical Organic Photochemistry - Scott Simonovich Group Meeting (2011)

AB

BA

Page 9: Complex Molecule Synthesis Enabled by Photochemistrychemlabs.princeton.edu/.../uploads/sites/6/Photochemistry-JJBs.pdf · Complex Molecule Synthesis Enabled by Photochemistry. why

Complex Molecule Synthesis Enabled by PhotochemistryOutline

� General outline

1) Why are photochemical reactions interesting?

2) 2+2 cycloaddtions and cyclobutane ring-opening reactions

3) Norrish type I and II applications to complex architectures

7) Photoredox applications to complex molecule synthesis

4) Oxa-di-!-methane rearrangement

8) Summary

5) Paternò−Büchi reaction

6) meta-photocycloaddition reaction in total synthesis

Page 10: Complex Molecule Synthesis Enabled by Photochemistrychemlabs.princeton.edu/.../uploads/sites/6/Photochemistry-JJBs.pdf · Complex Molecule Synthesis Enabled by Photochemistry. why

Complex Molecule Synthesis Enabled by Photochemistryfirst report on the [2 + 2] photocycloaddition

� In 1908 Ciamician and Silber observed carvone camphor formation from carvone when exposed to sunlight for one year

OMe

Me

carvone

Me

Me

O

carvone camphor

MeO

Me

not observed

hv

Ciamician, G.; Silber, P. Chemische Lichwirkungen. Ber. Dtsch. Chem. Ges. 1908, 41, 1928.

Page 11: Complex Molecule Synthesis Enabled by Photochemistrychemlabs.princeton.edu/.../uploads/sites/6/Photochemistry-JJBs.pdf · Complex Molecule Synthesis Enabled by Photochemistry. why

Complex Molecule Synthesis Enabled by Photochemistryphotoexcitation of enones

� α,β-unsaturated carbonyl compounds are often employed due to ease of excitability

Crimmins, M. T.; Reinhold, T. L. Org. React. 1993, 44, 297.

Ohv

O

••

✻ O

••

singlet triplet

RO

••

R

triplet exciplex

OR• •

OR• •

triplet 1,4-biradical singlet 1,4-biradical

spin inversion

OR

ISC

Page 12: Complex Molecule Synthesis Enabled by Photochemistrychemlabs.princeton.edu/.../uploads/sites/6/Photochemistry-JJBs.pdf · Complex Molecule Synthesis Enabled by Photochemistry. why

Complex Molecule Synthesis Enabled by Photochemistryphotoexcitation of enones

� Regioselectivity in [2 + 2] photocycloadditions

Crimmins, M. T.; Reinhold, T. L. Org. React. 1993, 44, 297.

O

hv

OR

O

+

head-to-headR

head-to-tail

R+

HN

O

hv HN

OR

HN

O

+

head-to-head

R

head-to-tail

R+

MeMe

MeMe

MeMe

A BR

OEt

CN

rr (A: B)

5:95

82:18

Page 13: Complex Molecule Synthesis Enabled by Photochemistrychemlabs.princeton.edu/.../uploads/sites/6/Photochemistry-JJBs.pdf · Complex Molecule Synthesis Enabled by Photochemistry. why

Complex Molecule Synthesis Enabled by PhotochemistryTotal synthesis of (−)-littoralisone

� [2 + 2] photocycloaddition enables the the total sysnthesis of (−)-littoralisone

Mangion, I. K.; MacMillan, D. W. C. J. Am. Chem. Soc. 2005, 127, 3696.

Me

Me

OH

Me

(−)-citronellol

12 steps

O

H

HMe O

O

OBn

OBn

OBn

O

OO

O

OBn

O

H

HMe O

O

OH

OH

OH

OO

OH

HO

O

hv (!"= 350 nm)rt, 2h, C6H6

then H2, Pd/C84% yield

(−)-littoralisone

13 steps13% yield overall

Page 14: Complex Molecule Synthesis Enabled by Photochemistrychemlabs.princeton.edu/.../uploads/sites/6/Photochemistry-JJBs.pdf · Complex Molecule Synthesis Enabled by Photochemistry. why

Complex Molecule Synthesis Enabled by Photochemistry[2 + 2] cycloadditions using allenes

� Optically active allenes can be employed with retention of steroechemisitry

Carreira, E. M.; Hastings, C. A.; Shepard, M. S.; Yerkey, L. A.; Millward, D. B. J. Am. Chem. Soc. 1994, 116, 6622.

hv (!"≧ 300 nm)

rt, 4h, cyclohexane88% yieldO

O

•H

H

t-Bu

O

92% ee

OO

92% ee

O

H

t-Bu

Page 15: Complex Molecule Synthesis Enabled by Photochemistrychemlabs.princeton.edu/.../uploads/sites/6/Photochemistry-JJBs.pdf · Complex Molecule Synthesis Enabled by Photochemistry. why

Complex Molecule Synthesis Enabled by Photochemistry[2 + 2] photocycloaddition, followed by ring-opening

� Exploiting the inherent ring strain found in cyclobutanes to access medium-sized rings

Karkas, M. D.; Porco, J. A.; Stephenson, C. R. J. Chem. Rev. 2016, 116, 9683.

m n

mn

photoexcited olefin cyclobutanem

n

a

b

c

d

ring-opening at positions a-dgive rise to different size rings

Page 16: Complex Molecule Synthesis Enabled by Photochemistrychemlabs.princeton.edu/.../uploads/sites/6/Photochemistry-JJBs.pdf · Complex Molecule Synthesis Enabled by Photochemistry. why

Complex Molecule Synthesis Enabled by Photochemistry[2 + 2] photocycloaddition, followed by ring-opening

� Three common stratagies for cyclobutane ring opening

Karkas, M. D.; Porco, J. A.; Stephenson, C. R. J. Chem. Rev. 2016, 116, 9683.

O

RX

O

R

Grob fragmentation

RO

O

radical fragmentation

O

RO

O

R

De Mayo reaction

O

Page 17: Complex Molecule Synthesis Enabled by Photochemistrychemlabs.princeton.edu/.../uploads/sites/6/Photochemistry-JJBs.pdf · Complex Molecule Synthesis Enabled by Photochemistry. why

Complex Molecule Synthesis Enabled by PhotochemistrySynthesis of (±)-epikessane

� A [2 + 2] cycloaddition followed by Grob fragmentaion enables the synthesis of (±)-epikessane

Liu, H.-J.; Lee, S. P. Tetrahedron Lett. 1977, 3699.

O

AcO

+MeO2C

AcO

O H

H

CO2Me

OAc

1) hv (! > 300 nm)C6H6

2) p-TsOH, C6H6

steps

H

H OH

OH

Me

p-TsCl

rt, 18 hpyridine

60% (2-steps)

83%Me

H

HO

Grob fragmentation

steps O

Me

H

H

Me

Me

Me

(±)-epikessane

Page 18: Complex Molecule Synthesis Enabled by Photochemistrychemlabs.princeton.edu/.../uploads/sites/6/Photochemistry-JJBs.pdf · Complex Molecule Synthesis Enabled by Photochemistry. why

Complex Molecule Synthesis Enabled by Photochemistry[2 + 2] photocycloaddition, followed by ring-opening

� Three common stratagies for cyclobutane ring opening

Karkas, M. D.; Porco, J. A.; Stephenson, C. R. J. Chem. Rev. 2016, 116, 9683.

O

RX

O

R

Grob fragmentation

RO

O

radical fragmentation

O

RO

O

R

De Mayo reaction

O

Page 19: Complex Molecule Synthesis Enabled by Photochemistrychemlabs.princeton.edu/.../uploads/sites/6/Photochemistry-JJBs.pdf · Complex Molecule Synthesis Enabled by Photochemistry. why

Complex Molecule Synthesis Enabled by Photochemistryradical fragmentation

Crimmins, M. T.; Huang, S.; Guise-Zawacki, L. E. Tetrahedron Lett. 1996, 37, 6519.

OHC Me1)

2) MeOCH2Cl

Li CO2Et

MeOCH2OMe

EtO2C

EtO2C ZnI

CuCN, LiCl, Me3SiCl65% 60%

OCH2OMe

OCO2Et

Me

! = 365 nmhexanes

80%

OCO2Et

MeOCH2O

Me

1) 10% HCl, EtOH

2) (imid)2C=S, NEt381%

OCO2Et

O

Me

SNN

Bu3SnH, AIBN

C6H6, 80 °C76%

O

EtO2CMe

radical fragmentation

Page 20: Complex Molecule Synthesis Enabled by Photochemistrychemlabs.princeton.edu/.../uploads/sites/6/Photochemistry-JJBs.pdf · Complex Molecule Synthesis Enabled by Photochemistry. why

Complex Molecule Synthesis Enabled by Photochemistryradical fragmentation

Crimmins, M. T.; Huang, S.; Guise-Zawacki, L. E. Tetrahedron Lett. 1996, 37, 6519.

OHC Me1)

2) MeOCH2Cl

Li CO2Et

MeOCH2OMe

EtO2C

EtO2C ZnI

CuCN, LiCl, Me3SiCl65% 60%

OCH2OMe

OCO2Et

Me

! = 365 nmhexanes

80%

OCO2Et

MeOCH2O

Me

1) 10% HCl, EtOH

2) (imid)2C=S, NEt381%

OCO2Et

MeBu3SnH, AIBN

C6H6, 80 °C76%

O

EtO2CMe

radical fragmentation

Page 21: Complex Molecule Synthesis Enabled by Photochemistrychemlabs.princeton.edu/.../uploads/sites/6/Photochemistry-JJBs.pdf · Complex Molecule Synthesis Enabled by Photochemistry. why

Complex Molecule Synthesis Enabled by Photochemistryradical fragmentation

Crimmins, M. T.; Huang, S.; Guise-Zawacki, L. E. Tetrahedron Lett. 1996, 37, 6519.

OMe

Me

R

I

Bu3SnH, C6H6

AIBN, 80 °C

Bu3SnH, C6H6

AIBN, 80 °CR = CO2Me

MeMe

O

CO2Me

75% yield

O

Me

Me

H

R = H

80% yield

OMe

Me

R

O

Me

Me

H

+ H•

Page 22: Complex Molecule Synthesis Enabled by Photochemistrychemlabs.princeton.edu/.../uploads/sites/6/Photochemistry-JJBs.pdf · Complex Molecule Synthesis Enabled by Photochemistry. why

Complex Molecule Synthesis Enabled by Photochemistryradical fragmentation

Crimmins, M. T.; Huang, S.; Guise-Zawacki, L. E. Tetrahedron Lett. 1996, 37, 6519.

OMe

Me

R

I

Bu3SnH, C6H6

AIBN, 80 °C

Bu3SnH, C6H6

AIBN, 80 °CR = CO2Me

MeMe

O

CO2Me

75% yield

O

Me

Me

H

R = H

80% yield

OMe

Me

R

O

Me

Me

H

+ H•

OMe

Me

R• R

OMe

Me

+ H•

Page 23: Complex Molecule Synthesis Enabled by Photochemistrychemlabs.princeton.edu/.../uploads/sites/6/Photochemistry-JJBs.pdf · Complex Molecule Synthesis Enabled by Photochemistry. why

Complex Molecule Synthesis Enabled by Photochemistry[2 + 2] photocycloaddition, followed by ring-opening

� Three common stratagies for cyclobutane ring opening

Karkas, M. D.; Porco, J. A.; Stephenson, C. R. J. Chem. Rev. 2016, 116, 9683.

O

RX

O

R

Grob fragmentation

RO

O

radical fragmentation

O

RO

O

R

De Mayo reaction

O

Page 24: Complex Molecule Synthesis Enabled by Photochemistrychemlabs.princeton.edu/.../uploads/sites/6/Photochemistry-JJBs.pdf · Complex Molecule Synthesis Enabled by Photochemistry. why

Complex Molecule Synthesis Enabled by PhotochemistrySynthesis of (−)-perhydrohistrionicotoxin

� De Mayo fragmentaion enables the synthesis of (−)-perhydrohistrionicotoxin

Winkler, J. D.; Hershberger, P. M. J. Am. Chem. Soc. 1989, 111, 4852.

OH OH

O

NH2

O

L-glutamic acid

steps HN

O

O

n-C5H11

Me

MeOO

hv (! > 300 nm)

0 °C, 30 minCH3CN

O

OHN

H H

n-C5H11

OOH

Me

Me

O

OHN

H H

n-C5H11

OOH

Me

Me

then NaBH4

61% (2-steps)

NaH

rt, 30 minTHF95 %

O

HN

O

n-C5H11

O

steps

HO

HNn-C5H11

n-C4H9

(−)-perhydrohistrionicotoxinDe Mayo reaction

Page 25: Complex Molecule Synthesis Enabled by Photochemistrychemlabs.princeton.edu/.../uploads/sites/6/Photochemistry-JJBs.pdf · Complex Molecule Synthesis Enabled by Photochemistry. why

Complex Molecule Synthesis Enabled by PhotochemistrySynthesis of (−)-perhydrohistrionicotoxin

� De Mayo fragmentaion enables the synthesis of (−)-perhydrohistrionicotoxin

Winkler, J. D.; Hershberger, P. M. J. Am. Chem. Soc. 1989, 111, 4852.

OH OH

O

NH2

O

L-glutamic acid

steps HN

O

O

n-C5H11

Me

MeOO

hv (! > 300 nm)

0 °C, 30 minCH3CN

O

OHN

H H

n-C5H11

OOH

Me

Me

O

OHN

H

n-C5H11

OO

Me

Me

then NaBH4

61% (2-steps)

O

HN

O

n-C5H11

O

steps

HO

HNn-C5H11

n-C4H9

(−)-perhydrohistrionicotoxinDe Mayo reaction

− acetone

Page 26: Complex Molecule Synthesis Enabled by Photochemistrychemlabs.princeton.edu/.../uploads/sites/6/Photochemistry-JJBs.pdf · Complex Molecule Synthesis Enabled by Photochemistry. why

Complex Molecule Synthesis Enabled by PhotochemistryCargill rearrangement

� Ring expansion of cyclobutanes via the Cargill rearrangement

Karkas, M. D.; Porco, J. A.; Stephenson, C. R. J. Chem. Rev. 2016, 116, 9683.

O

H+

H+ OH

OH− H+

O

bicyclo [3.2.1] octan-8-one

O

bicyclo [3.3.0] octan-6-one

− H+

Page 27: Complex Molecule Synthesis Enabled by Photochemistrychemlabs.princeton.edu/.../uploads/sites/6/Photochemistry-JJBs.pdf · Complex Molecule Synthesis Enabled by Photochemistry. why

Me

Complex Molecule Synthesis Enabled by PhotochemistryCargill rearrangement

� Pirrung’s synthesis of (±)-isocomene using the Cargill rearrangment

Pirrung, M. C. J. Am. Chem. Soc. 1979, 101, 7130.

O

Me

Me

Me

hv (! = 350 nm)

hexane77%

O

Me p-TsOH

reflux, 2h, C6H6

O

Me

Me

MeMe

Me

O

+

90%

1:5 rr

2 steps

Me

Me

Me

Me

(±)-isocomene

tricyclo[6.3.0.0] undecanone

Me

from major

Cargill rearrangement

[3.3.0] octane [3.2.1] octane

Page 28: Complex Molecule Synthesis Enabled by Photochemistrychemlabs.princeton.edu/.../uploads/sites/6/Photochemistry-JJBs.pdf · Complex Molecule Synthesis Enabled by Photochemistry. why

Complex Molecule Synthesis Enabled by Photochemistrytricyclic aziridines from pyrroles

� [2 + 2] photocycloaddition/rearrangement of pyrroles to form aziridines

Maskill, K. G.; Knowles, J. P.; Elliott, L. D.; Alder, R. W.; Booker-Milburn, K. I. Angew. Chem., Int. Ed. 2013, 52, 1499.

hv (!"= 254 nm)

rt, 6h, CH3CN59% yield

N

Me

Me CO2Et

MeO

N

O

Me

Me

Me

EtO2C

H

N

Me

Me

Me

O CO2Et

N

Me

Me

Me

O CO2Et

•• N

Me

Me

Me

O CO2Et

12 mM in [email protected] mL/min

1 h, 0.91 g, 51%(22 g/day)

Flow:

Page 29: Complex Molecule Synthesis Enabled by Photochemistrychemlabs.princeton.edu/.../uploads/sites/6/Photochemistry-JJBs.pdf · Complex Molecule Synthesis Enabled by Photochemistry. why

Complex Molecule Synthesis Enabled by PhotochemistryOutline

� General outline

1) Why are photochemical reactions interesting?

2) 2+2 cycloaddtions and cyclobutane ring-opening reactions

3) Norrish type I and II applications to complex architectures

7) Photoredox applications to complex molecule synthesis

4) Oxa-di-!-methane rearrangement

8) Summary

5) Paternò−Büchi reaction

6) meta-photocycloaddition reaction in total synthesis

Page 30: Complex Molecule Synthesis Enabled by Photochemistrychemlabs.princeton.edu/.../uploads/sites/6/Photochemistry-JJBs.pdf · Complex Molecule Synthesis Enabled by Photochemistry. why

Complex Molecule Synthesis Enabled by PhotochemistryNorrish type I reaction

� Possible products generated by Norrish type I cleavage

Ohv

O•

O

••

− CO ••

C−H abstraction fragmentation

O

orO● Me

n n nn n

n n

O● +

(n = 0)cyclization

O••

n

Karkas, M. D.; Porco, J. A.; Stephenson, C. R. J. Chem. Rev. 2016, 116, 9683.

oxacarbene

Page 31: Complex Molecule Synthesis Enabled by Photochemistrychemlabs.princeton.edu/.../uploads/sites/6/Photochemistry-JJBs.pdf · Complex Molecule Synthesis Enabled by Photochemistry. why

Me

Complex Molecule Synthesis Enabled by PhotochemistryNorrish type I reaction

� Norrish type I cleavage followed by HAT for the synthesis of (±)-boschnialactone

Callant, P.; Storme, P.; Van der Eycken, E.; Vandewalle, M. Tetrahedron Lett. 1983, 24, 5797.

H H

O

HO

hv (! = 254 nm)

rt, 17 h, CH3CN90%

Me

H H

O

HO

••

Me

H

O

HO

Me

HOO

Me

O

OH

1) PCC, CH2Cl2

2) Pd/C, H2

75% (2 steps)

Me

O

O(±)-boschnialactone

Page 32: Complex Molecule Synthesis Enabled by Photochemistrychemlabs.princeton.edu/.../uploads/sites/6/Photochemistry-JJBs.pdf · Complex Molecule Synthesis Enabled by Photochemistry. why

Complex Molecule Synthesis Enabled by PhotochemistryNorrish type I reaction

� Norrish type I excision of carbon monoxide observed in the synthesis of the hamigerans

Ng, D.; Yang, Z.; Garcia-Garibay, M. A. Org. Lett. 2004, 6, 645.Nicolaou, K. C.; Gray, D. L. F.; Tae, J. J. Am. Chem. Soc. 2004, 126, 613.

Me

OOMe

H

i-Pr

OMe

hv Me

O

OMe

H

i-Pr

OMe

••

••

Me

C

OO

Me

H

i-Pr

OMe

••

Me

OMe O

i-Pr

Me

H

� Norrish type I excision of carbon monoxide for the synthesis of α-cuparenone

Me

OMe

O

steps

Me

Me hv ( ! > 300 nm)

-20 °C, 12 h85%

OMe Me

O

Me

MeMe

Me O

α-cuparenone

− CO

Page 33: Complex Molecule Synthesis Enabled by Photochemistrychemlabs.princeton.edu/.../uploads/sites/6/Photochemistry-JJBs.pdf · Complex Molecule Synthesis Enabled by Photochemistry. why

Complex Molecule Synthesis Enabled by PhotochemistryNorrish type II reaction

� Possible products generated by Norrish type II cleavage

OR

Karkas, M. D.; Porco, J. A.; Stephenson, C. R. J. Chem. Rev. 2016, 116, 9683.

A

H

αhv

HOR

A!β

α•

pathway A

pathway B

HOR

A•

•A

+

OHR

HOR

A•

• AR

OH

Page 34: Complex Molecule Synthesis Enabled by Photochemistrychemlabs.princeton.edu/.../uploads/sites/6/Photochemistry-JJBs.pdf · Complex Molecule Synthesis Enabled by Photochemistry. why

Complex Molecule Synthesis Enabled by PhotochemistrySynthesis of ouabagenin

� Norrish type II cyclization in a semisynthesis of ouabagenin

Renata, H.; Zhou, Q.; Baran, P. S. Science 2013, 339, 59.

O

Me

H

OH

Me

H

OOAc

OH

cortisone acetate

stepsMe

H

OH

Me

H

O

O

O

O

hv (! > 230 nm)

rt, 120 haq. SDS solution

68%

H

HOH

Me

H

O

O

O

O

••

H

H

Me

H

O

O

O

O

HO

NIS, Li2CO3

90 W sunlamprt, 20 min

85%C6H6/MeOH (30:1)

H

H

Me

H

O

O

O

O

OI

H

H

Me

OH

HOHO

OHHO

HO

O

O

ouabagenin

Norrish type II

via hypoiodite homolysis

steps

Page 35: Complex Molecule Synthesis Enabled by Photochemistrychemlabs.princeton.edu/.../uploads/sites/6/Photochemistry-JJBs.pdf · Complex Molecule Synthesis Enabled by Photochemistry. why

Complex Molecule Synthesis Enabled by PhotochemistryOutline

� General outline

1) Why are photochemical reactions interesting?

2) 2+2 cycloaddtions and cyclobutane ring-opening reactions

3) Norrish type I and II applications to complex architectures

7) Photoredox applications to complex molecule synthesis

4) Oxa-di-!-methane rearrangement

8) Summary

5) Paternò−Büchi reaction

6) meta-photocycloaddition reaction in total synthesis

Page 36: Complex Molecule Synthesis Enabled by Photochemistrychemlabs.princeton.edu/.../uploads/sites/6/Photochemistry-JJBs.pdf · Complex Molecule Synthesis Enabled by Photochemistry. why

Complex Molecule Synthesis Enabled by PhotochemistryOxa-di-!-methane rearrangement

� General reacativity of the oxa-di-!-methane rearrangement

acyclic substrates

R

O

R

O•• O

R

O

R

cyclic substrates

O O

• O O

H

H

O

Karkas, M. D.; Porco, J. A.; Stephenson, C. R. J. Chem. Rev. 2016, 116, 9683.

hv

hv

Page 37: Complex Molecule Synthesis Enabled by Photochemistrychemlabs.princeton.edu/.../uploads/sites/6/Photochemistry-JJBs.pdf · Complex Molecule Synthesis Enabled by Photochemistry. why

Complex Molecule Synthesis Enabled by PhotochemistryOxa-di-!-methane rearrangement

� Use of the Oxa-di-!-methane rearrangement in the formal total synthesis of (±)-Cedrol

Stork, G.; Clarke, F. H., Jr. J. Am. Chem. Soc. 1955, 77, 1072.

O H

MeO2C

OMeO2C

MeO2C

hv

acetophenone(sensitizer)

CO2MeMe

Me

H

CO2Me

OH

CO2MeMe2CuLi

Et2O75%

76%

H

MeMe

MeMe

MeMe

MeMe Me

OH

(±)-Cedrol

steps

Zimmerman, H. E.; Armesto, D. Chem. Rev. 1996, 96, 3065.

Oxa-di-!-methane rearrangement

Page 38: Complex Molecule Synthesis Enabled by Photochemistrychemlabs.princeton.edu/.../uploads/sites/6/Photochemistry-JJBs.pdf · Complex Molecule Synthesis Enabled by Photochemistry. why

Complex Molecule Synthesis Enabled by PhotochemistryOxa-di-!-methane rearrangement

� Use of the Oxa-di-!-methane rearrangement in the total synthesis of (±)-magellanine

Yen, C.-F.; Liao, C.-C. Angew. Chem., Int. Ed. 2002, 41, 4090.

OMe

OH

PhI(OAc)2

rt, MeOH79%

O

Me

Me

O

O

OMe

OMehv ("#> 300 nm)

rt, acetone92%

O

OMe

OMeMeOH

H

H

(CH2OTMS)2TMSOTf

-78 °C, CH2Cl299%

O

Me

OMeMeOH

H

H

OO AIBNnBu3SnH

80 °C, C6H699% O

Me

OMeMeOH

H

H

OO

steps

H

H

H

OH

MeO

NMe

(±)-magellanine

Oxa-di-!-methane rearrangement

Page 39: Complex Molecule Synthesis Enabled by Photochemistrychemlabs.princeton.edu/.../uploads/sites/6/Photochemistry-JJBs.pdf · Complex Molecule Synthesis Enabled by Photochemistry. why

Complex Molecule Synthesis Enabled by PhotochemistryPaternò−Büchi reaction

� [2 + 2] photocycloaddition of carbonyl compounds with alkenes− the Paternò−Büchi reaction

Karkas, M. D.; Porco, J. A.; Stephenson, C. R. J. Chem. Rev. 2016, 116, 9683.

O

HR+

MeMe

OMe

MeR

hv

O

HR

hv

S1

O

HR

T1

ISC Me Me O

H MeMeR ••

spin inversion

diastereoselectivity depends ontriplet lifetimes

Page 40: Complex Molecule Synthesis Enabled by Photochemistrychemlabs.princeton.edu/.../uploads/sites/6/Photochemistry-JJBs.pdf · Complex Molecule Synthesis Enabled by Photochemistry. why

Complex Molecule Synthesis Enabled by PhotochemistryPaternò−Büchi reaction

� Total synthesis of the pyrrolindinol alkaloid (+)-preussin

Bach, T.; Brummerhop, H.; Harms, K. Chem. - Eur. J. 2000, 6, 3838.

NH

OOH steps

N C9H19

CO2Me

hv ( ! = 350 nm)Ph

O

rt, MeCN, 6 h53%

NC9H19

CO2Me

O

Ph

Pd(OH)2/CH2

rt, 3 h, MeOH

81%

N

OH

CO2Me

C9H19Ph

LiAlH4

reflux, 2 h, THF91%

N

OH

Me

C9H19Ph

(+)-preussin

H

H

Paternò−Büchi reaction

Page 41: Complex Molecule Synthesis Enabled by Photochemistrychemlabs.princeton.edu/.../uploads/sites/6/Photochemistry-JJBs.pdf · Complex Molecule Synthesis Enabled by Photochemistry. why

Complex Molecule Synthesis Enabled by PhotochemistryPaternò−Büchi reaction

� Intramolecular Paternò−Büchi reaction of thiocarbonyl compounds

Padwa, A.; Jacquez, M. N.; Schmidt, A. J. Org. Chem. 2004, 69, 33.

N

O

S

Mehv (! = 300 nm)

rt, 1 h, C6H6

N

O

S

Me73%

N

O

S

hv (! = 300 nm)

rt, 1 h, C6H6

N

O

74%S

Raney-NiN

O

80 °C, 6 hEtOH55%

Page 42: Complex Molecule Synthesis Enabled by Photochemistrychemlabs.princeton.edu/.../uploads/sites/6/Photochemistry-JJBs.pdf · Complex Molecule Synthesis Enabled by Photochemistry. why

Complex Molecule Synthesis Enabled by Photochemistrymeta-photocycloaddition

� Three modes of photocycloaddition of alkenes to benzene rings

Karkas, M. D.; Porco, J. A.; Stephenson, C. R. J. Chem. Rev. 2016, 116, 9683.

+ meta

ortho

para

X

hv+X

HX

H

X

- meta-photocycloadditions are most common

meta-photocycloaddtion pathway

- formation of three σ-bonds and up to six stereocenters in one step- tricyclic product can fragment in several ways

- first reported in 1966 by Wilzbach and Kaplen

Page 43: Complex Molecule Synthesis Enabled by Photochemistrychemlabs.princeton.edu/.../uploads/sites/6/Photochemistry-JJBs.pdf · Complex Molecule Synthesis Enabled by Photochemistry. why

Complex Molecule Synthesis Enabled by Photochemistrymeta-photocycloaddition

� Fragmentation of the meta-photocycloaddition adduct to form complex architectures

Karkas, M. D.; Porco, J. A.; Stephenson, C. R. J. Chem. Rev. 2016, 116, 9683.

HX

H

X

1

28

[A−B]

[2/8]H

X BA

HX

B

A1

82 2

28

1

HX

82

8

B

A1

[A−B]

[1/2]

[A−B]

[1/8]

bicyclo [3.3.0] octane

bicyclo [3.2.1] octane

bicyclo [3.2.1] octane

Powerful method for generating molecular complexity in one step!

Page 44: Complex Molecule Synthesis Enabled by Photochemistrychemlabs.princeton.edu/.../uploads/sites/6/Photochemistry-JJBs.pdf · Complex Molecule Synthesis Enabled by Photochemistry. why

Complex Molecule Synthesis Enabled by Photochemistrymeta-photocycloaddition

� Wender’s total synthesis of (±)-α-cedrene

Wender, P. A.; Howbert, J. J. J. Am. Chem. Soc. 1981, 103, 688.

Me

MeO

MeMe

Me

hv ( ! > 220 nm)

rt, 12 h, C6H6

OMe Me

Me

MeH Me

+Me

MeH

1:165%

Me

Me

OMeH

1) Br22) nBu3SnH

CH2Cl259%

Me

MeH

Me

Me

H O

N2H4

KOH

(HOCH2CH2)2O

Me

MeH

Me

Me

H

(±)-α-cedrene

HMe

OMeH

MeMe

∠A1,3 minimized

H

Me

OMe

MeMe

Me

meta-photocycloaddition

Page 45: Complex Molecule Synthesis Enabled by Photochemistrychemlabs.princeton.edu/.../uploads/sites/6/Photochemistry-JJBs.pdf · Complex Molecule Synthesis Enabled by Photochemistry. why

Complex Molecule Synthesis Enabled by PhotochemistryTotal synthesis of (−)-penifulvin using the olefin meta-photocycloaddition

Gaich, T.; Mulzer, J. J. Am. Chem. Soc. 2009, 131, 452.

Me

OH

Me

Me

hv (! > 200)

rt, 2 h, pentanes70% Me

HO

MeMe

Me

HO

MeMe

• •H H

Me

HO

MeMe

H Me

HO

MeMe

H

Me

MeH

OH

Me

MeMe

HMe

H OH

+

Li, EtNH2

-78 C, 7 h, THF72%

Me

MeH

OH

Me

IBX/DMSO

then NaClO292%

Me

MeH

OH

Me

O

O3, CH2Cl2thiourea

78%

Me

MeH

OH

Me

O

O

O Me

MeH

O

Me

O

OH

O H PDC

82%

Me

MeH

O

Me

O

O

O H(−)-penifulvin

Page 46: Complex Molecule Synthesis Enabled by Photochemistrychemlabs.princeton.edu/.../uploads/sites/6/Photochemistry-JJBs.pdf · Complex Molecule Synthesis Enabled by Photochemistry. why

Complex Molecule Synthesis Enabled by PhotochemistryOutline

� General outline

1) Why are photochemical reactions interesting?

2) 2+2 cycloaddtions and cyclobutane ring-opening reactions

3) Norrish type I and II applications to complex architectures

7) Photoredox applications to complex molecule synthesis

4) Oxa-di-!-methane rearrangement

8) Summary

5) Paternò−Büchi reaction

6) meta-photocycloaddition reaction in total synthesis

Page 47: Complex Molecule Synthesis Enabled by Photochemistrychemlabs.princeton.edu/.../uploads/sites/6/Photochemistry-JJBs.pdf · Complex Molecule Synthesis Enabled by Photochemistry. why

Complex Molecule Synthesis Enabled by PhotochemistryPhotoredox catalysis

� Use the use of visible light to enable single-electron transfer between photoexcitable catalysts and organic or organometallic molecules

Prier, C. K.; Rankic, D. A.; MacMillan, D. W. C. Chem. Rev. 2013, 113, 5322.

Ru(bpy)32+ Ru(byp)3

2+

Ru(byp)3+

Ru(byp)33+

*D

D

A

AS

reductivequenching

S

S

S

oxidativequenching

visiblelight

A = acepter, D = doner, S = substate

Ru(bpy)32+

triplet excited state

groundstate

Strong visible light absorptionHigh quantum yield (Φ ≈ 1)

Long-lived excited state (τ = 900 ns)Easy tuning of physical properties

N

NRu

N

N

N

N

Page 48: Complex Molecule Synthesis Enabled by Photochemistrychemlabs.princeton.edu/.../uploads/sites/6/Photochemistry-JJBs.pdf · Complex Molecule Synthesis Enabled by Photochemistry. why

Complex Molecule Synthesis Enabled by PhotochemistryPhotoredox catalysis

� Polar radical crossover cycloaddition (PRCC) for the synthesis of protolichestrenic acid

Zeller, M. A.; Riener, M.; Nicewicz, D. A. Org. Lett. 2014, 16, 4810.

OMe

+Cl

OHO

2.5 mol% Cat.15 mol% PhSSPh

10 mol% 2,6,-lutidine

blue LEDS (! = 450 nm)rt, 96 h, CH2Cl2

69%O

Cl

OMe

O

O

CO2H

O

Me 11

1111

1) RuCl3, NaIO4, rt, 4h2) K2CO3, rt, 24h54% ( 2-steps)

(±)-protolichesterinic acid Me

Me Me

Me

BF4–

Mes-Acr+

N

Page 49: Complex Molecule Synthesis Enabled by Photochemistrychemlabs.princeton.edu/.../uploads/sites/6/Photochemistry-JJBs.pdf · Complex Molecule Synthesis Enabled by Photochemistry. why

Complex Molecule Synthesis Enabled by PhotochemistryPhotoredox catalysis

� Proposed mechanism for the polar radical crossover cycloaddition

Zeller, M. A.; Riener, M.; Nicewicz, D. A. Org. Lett. 2014, 16, 4810.Me

MeMe

Me

N

Mes-Acr+✻

34W LED

B

A

B

A

•−H+

O

OHR

Me

Me

Me

Me

N

•SET

O OA

BR

O

B

A

O

R•

PhS •O

B

A

O

R

SET

HAT

PhSH

PhS

✻E1/2red = +2.06

✻E1/2ox = -0.49

✻E1/2red = +0.16V

BDE = 70 - 80 kcal/mol

H+

Page 50: Complex Molecule Synthesis Enabled by Photochemistrychemlabs.princeton.edu/.../uploads/sites/6/Photochemistry-JJBs.pdf · Complex Molecule Synthesis Enabled by Photochemistry. why

OAc

Complex Molecule Synthesis Enabled by PhotochemistryPhotoredox catalysis

� Overman’s synthesis of (−)-aplyviolene

Schnermann, M. J.; Overman, L. E. Angew. Chem., Int. Ed. 2012, 51, 9576.

Me

Me

Me

O steps

MeMe

H

H

MeO

ON

O

O

(+)-fenchone

+ Cl

O

H

MeO2C

TBSO

NH

Me Me

CO2EtEtO2C

1 mol% [Ru(bpy)3]BF4

blue LEDs, rt, 2.5 hCH2Cl2

61%

DIPEA

MeMe

H

H

MeOTBSO

MeO2C

ClH

MeMe

H

H

MeOTBSTBSO

MeO2C

Me Me

H

H

MeMe2CuCNLi2TBS-Cl

HMPA, -20 °CTHF

76%

steps O

O

O

(−)-aplyviolenestereoselectiveformation of a

quaternary center!

photoredox-conjugate addition

Page 51: Complex Molecule Synthesis Enabled by Photochemistrychemlabs.princeton.edu/.../uploads/sites/6/Photochemistry-JJBs.pdf · Complex Molecule Synthesis Enabled by Photochemistry. why

Complex Molecule Synthesis Enabled by PhotochemistryPhotoredox catalysis

� Photoredox-enabled synthesis of the pyrroloindoline (+)-gliocladin

Furst, L.; Narayanam, J. M. R.; Stephenson, C. R. J. Angew. Chem., Int. Ed. 2011, 50, 9655.

N

NHBoc

CO2Me

CbzBoc-D-tryptophan

methyl ester

steps NCbz

NBocH

BrO

NHMe

1 mol% [Ru(bpy)3]Cl2Bu3N

blue LEDsrt, 12 h, DMF

82%

NH

CHO

NCbz

NBocH

O

NHMe

HNOHC

NCbz

NBocH

O

NHMe

NH

CHO

DPPA = diphenylphosphoryl azidedppp = 1,3-bis (diphenylphosphino) propane

20 mol% Rh(CO)PPh3)3)Cl44 mol% dppp

DPPA

140 °C, 14 hxylenes

85%

NCbz

NBocH

O

NHMe

NH

stepsNH N

H

NH

NMe

O O

O

(+)-gliocladin

Page 52: Complex Molecule Synthesis Enabled by Photochemistrychemlabs.princeton.edu/.../uploads/sites/6/Photochemistry-JJBs.pdf · Complex Molecule Synthesis Enabled by Photochemistry. why

Complex Molecule Synthesis Enabled by PhotochemistryPhotoredox catalysis

� Photoredox-enabled fragmentation of (+)-catharanthine

Beatty, J. W.; Stephenson, C. R. J. J. Am. Chem. Soc. 2014, 136, 10270.

NH

N

CO2Me Et NH

H

CO2Me

NEt

CN

(+)-catharanthine common intermediate

2.5 mol% Pcat

visible light MeOH

TMSCNN

NIr

N

F3C F

F

N

F3CF

F

tBu

tBu

PF6–

Page 53: Complex Molecule Synthesis Enabled by Photochemistrychemlabs.princeton.edu/.../uploads/sites/6/Photochemistry-JJBs.pdf · Complex Molecule Synthesis Enabled by Photochemistry. why

Complex Molecule Synthesis Enabled by PhotochemistryCatalytic cycle for fragmentation

Beatty, J. W.; Stephenson, C. R. J. J. Am. Chem. Soc. 2014, 136, 10270.

NH

N

CO2Me Et NH

H

CO2Me

NEt

CN

Ir3+Ir3+✻

Ir2+

visible light

NH

N

CO2Me Et

NH CO2Me

NEt

NH CO2Me

NEt

CN

SETSET

+ CN

+ H+

(+)-catharanthine common intermediate

Page 54: Complex Molecule Synthesis Enabled by Photochemistrychemlabs.princeton.edu/.../uploads/sites/6/Photochemistry-JJBs.pdf · Complex Molecule Synthesis Enabled by Photochemistry. why

Complex Molecule Synthesis Enabled by PhotochemistryPhotoredox catalysis

� Photoredox-enabled synthesis of (−)-pseudotabersonine, (−)-pseudovincadifformine, and (+)-coronaridine via a common intermediate

Beatty, J. W.; Stephenson, C. R. J. J. Am. Chem. Soc. 2014, 136, 10270.

NH

H

CO2Me

NEt

CN

common intermediate

NH

N

CO2Me Et

(+)-coronaridine

NH

(−)-pseudotabersonine

N

Et

CO2Me NH

N

Et

CO2Me

(−)-pseudovincadifformine

TFAreflux 90%

toluene

NH

H

CO2Me

NEt

CN

H

Pd/C, H2

TFAreflux 48% (2 steps)

toluene

rt, MeOHNH

H

CO2Me

NEt

H1) Pd/C, H2rt, MeOH

2) NaBH4, 0 °C

1 mol% [Ru(bpy)3]Cl2(MeO2C)CBrMe (2 equiv)

visible light, 50 °C58%

flow, tR = 5 min

98%

Page 55: Complex Molecule Synthesis Enabled by Photochemistrychemlabs.princeton.edu/.../uploads/sites/6/Photochemistry-JJBs.pdf · Complex Molecule Synthesis Enabled by Photochemistry. why

Complex Molecule Synthesis Enabled by PhotochemistryOutline

� General outline

1) Why are photochemical reactions interesting?

2) 2+2 cycloaddtions and cyclobutane ring-opening reactions

3) Norrish type I and II applications to complex architectures

7) Photoredox applications to complex molecule synthesis

4) Oxa-di-!-methane rearrangement

8) Summary

5) Paternò−Büchi reaction

6) meta-photocycloaddition reaction in total synthesis

Page 56: Complex Molecule Synthesis Enabled by Photochemistrychemlabs.princeton.edu/.../uploads/sites/6/Photochemistry-JJBs.pdf · Complex Molecule Synthesis Enabled by Photochemistry. why

Complex Molecule Synthesis Enabled by PhotochemistrySummary

Why are photochemical reactions interesting?

Photochemical reactions are “green” as they only consume photons

Highly stained adducts can leveraged to form medium rings with rich functionality

Photochemical reactions enable transformations not possible by thermal conditions

Advantages:

Disadvantages:

Requirement for high energy UV-light

In general, hard to control absolute stereochemistry

Good reviews if you want to learn more:Karkas, M. D.; Porco, J. A.; Stephenson, C. R. J. Chem. Rev. 2016, 116, 9683.Nicholls, T. P.; Leonori, D.; Bissember, A. C. Nat. Prod. Rep. 2016, 33, 1248.

Bach, T.; Hehn, J. P. Angew. Chem., Int. Ed. 2011, 50, 1000.Douglas, J. J.; Sevrin, M. J.; Stephenson, C. R. J. Org. Process Res. Dev. 2016, 20, 1134.