complex analysis 1994

Upload: rsureshkannan

Post on 06-Apr-2018

219 views

Category:

Documents


0 download

TRANSCRIPT

  • 8/3/2019 Complex Analysis 1994

    1/27

    This document contains text automatically extracted from a PDF or image file. Formatting may havebeen lost and not all text may have been recognized.

    To remove this note, right-click and select "Delete table".

  • 8/3/2019 Complex Analysis 1994

    2/27

    UPSCCivilServicesMain1994-Mathematics

  • 8/3/2019 Complex Analysis 1994

    3/27

    ComplexAnalysisSunderLalRetired Professor of MathematicsPanjab University

    ChandigarhMarch1,2010Question1(a)SupposethatzisthepositionvectorofaparticlemovingontheellipseC:z=acost+ibsintwhere,a,barepositiveconstants,a>bandtistime.Determinewhere1.thevelocityhasthegreatestmagnitude.2.theaccelerationhastheleastmagnitude.Solution.See1996,question1(a).Question1(b)Howmanyzeroesdoesthepolynomialp(z)=z4+2z3+3z+4possess(i)inthefirstquadrant,(ii)inthefourthquadrant.Solution.1.p(1)=0.p(2)=20,thereforetheintermediatevaluetheoremshowsthatthereexistsx,3

  • 8/3/2019 Complex Analysis 1994

    4/27

    B(0,R)

  • 8/3/2019 Complex Analysis 1994

    5/27

    WenowconsiderthecontourOABOwhereOAisstraightlinejoining(0,0)and(R,0),ABisthearcofthecirclex2+y2=R2inthefirstquadrant,andBOisthelinejoin-ing(0,R)to(0,0).O(0,0)

    A(R,0)BytheArgumentPrinciple,thenumberofzerosof(thechangeintheargumentofp(z)whenzmovesalongp(z)inthecontourthefirstOABOquadrantoriented=anti-21

    clockwiseasR).

    ChangeintheargumentalongOA:OnOA,p(z)=x4+2x3+3x+4>0argp(z)=0

    foreveryxonOA.ThereforeaszmovesfromOtoA,thechangeintheargumentofp(z)i.e.OA

    argp(z)=0.ChangeintheargumentalongBO:OnBO,z=iyandp(z)=y4+4+i(3y2y3).Thereforeargp(z)=tan1).BO

    (3y2y3

    y4+4argp(z)=tan1(3yy4+2y34)]0

    =00=0

    ChangeinargumentalongAB:OnarcAB,z=Rei,02

    ,sothat]p(z)=R4e4i+2R3e3i+3Rei+4=R4e4iR4e4iasR.Thus

  • 8/3/2019 Complex Analysis 1994

    6/27

    AB

    [1+Rei2

    +R3e3i3+R4e4i4argp(z)]HenceOABO

    argp(z)=2=as4

    R0

    2

    =2.1,sop(z)hasexactlyonezerointhefirstquadrant.

    Sincep(z)isapolynomialwithrealcoefficients,itfollowsthatifisazeroofp(z)and

    itliesinthefirstquadrant,thenisalsoazeroofp(z)anditliesinthefourthquadrant.Thusp(z)hasonezeroineachofthefirstandthefourthquadrants.Question1(c)Testforuniformconvergenceintheregion|z|1theseriesn=1

    cosnzn3Solution.Bydefinitioncosnz=enyeinx+enyeinx21Alternately,p(z)=z4

    einz+2einz=()

    1+z2

    +z33

  • 8/3/2019 Complex Analysis 1994

    7/27

  • 8/3/2019 Complex Analysis 1994

    8/27

    andtherefore

  • 8/3/2019 Complex Analysis 1994

    9/27

    n=1

    cosnzn3=

    n=1

    enyeinx2n3+n=1

    enyeinx2n3Case1:y>0.

    n=1

    enyeinx2n3

    n=1

    2n31showingthatthefirsttermisabsolutelyconvergent.Butthesecondtermisnotconvergent,becauseitsn-thterm

    enyeinx

  • 8/3/2019 Complex Analysis 1994

    10/27

    2n3

    0asninfact

    enyeinx

    2n3

    asnwheny>0.Thereforen=1

    cosnz

    n3isnotevenconvergentwheny>0.Case2:y

  • 8/3/2019 Complex Analysis 1994

    11/27

    M-test,that|fn

    which(z)|

  • 8/3/2019 Complex Analysis 1994

    12/27

    1.Thefunctione2zisanalyticeverywhereinthecomplexplane.TheTaylorseriesofe2zwithcenterz=1isgivenbye2z=dne2z

    dznn=0

    atz=1n!n=0

    2ne2n!(z1)n3

    (z1)n=

  • 8/3/2019 Complex Analysis 1994

    13/27

    (z1)n3

  • 8/3/2019 Complex Analysis 1994

    14/27

    =(ze21)3+(z2e2

    1)2+2!(z4e21)+n=0

    (n2n+3e2+3)!(z1)nwhichistherequiredLaurentseriesof(ze2z1)3withcenterz=1.Itisvalidinthering1

  • 8/3/2019 Complex Analysis 1994

    15/27

    ,f(3)=332,...,f(n)(3)=n=0

    (1)n(n3n+2n!+1)!(z3)n=n=0

    (1)n(n3n+2+1)(z3)nThus

    1z2(z3)2==n=0

    (1)n(n3n+2+1)(z3)n2=32(z1

    3)233(z23)+m=0

    (1)m(m3m+4+3)(z3)mistherequiredLaurentseriesof1z2(z3)2

    withcenterz=3validin0

  • 8/3/2019 Complex Analysis 1994

    16/27

    1!1dzdpoles.

    ((zsin2n)2ezz).Nowz=n

    ddz((zn)2ezsin2z)=sin2z[(zn)2ez+2(zn)ez](zn)2ez2sinzcoszsin4z=ez(zsin3zn)(

    (zn)sinz+2sinz2(zn)cosz)4

    because

    dne2zdzn=2ne2z.Thus

    e2z(z1)3=e2(z1)3

    +

  • 8/3/2019 Complex Analysis 1994

    17/27

    2e2(z1)2

    +

    4e22!(z1)

    +

    n=3

    2ne2n!

  • 8/3/2019 Complex Analysis 1994

    18/27

    1

  • 8/3/2019 Complex Analysis 1994

    19/27

    Usingd((zznlimn)2ez

    zsinzn)cosn=(1)n,wegetdz=sin2zz=n

    =enznlim(zn)sin3z((zn)sinz+2sinz2(zn)cosz)=en(1)nznlim(zn)(sinz2cosz)sin2z

    +2sinz=en(1)nznlimsinz2cosz+(z2sinzn)(coszcosz+2sinz)+2cosz=enznlimsinz+(zn)(cosz2sinz+2sinz)==enenznlimcosz+cosz+2sinz+2cosz(zn)(sinz+2cosz)Thustheresidueatz=nofezcsc2zisen.Question2(c)Bymeansofcontourintegrationevaluate

  • 8/3/2019 Complex Analysis 1994

    20/27

    0

    (loge

    u)2

    u2

    +1du.

    Solution.CconsistingWetakef(z)ofthe=line(logz2+1z)2

    joiningandthe(R,0)contourto(r,0),thesemicircleofradiusrwithcen-ter(0,0),thelinejoining(r,0)to(R,0)and

    asemicircleofradiusRwithcenter(0,0).Thecontourliesintheupperhalfplaneandisorientedanticlockwise.Wehaveavoidedthebranchpointz=0ofthemultiplevaluedfunctionlogz.A(R,0)B(r,0)C(r,0)D(R,0)(EventuallyweshallletR,r0).(1)On,z=Reiand|1+z2||z|21=R21.Thus

  • 8/3/2019 Complex Analysis 1994

    21/27

    (log(Rei))2

    R21

    f(z)dz

    iReid00

    |logRR2+1i|2Rd=

    0((logR)2+)ButR21R

    RR21((logR)2+2)d=R2R

    133((logR)2+33

    )

  • 8/3/2019 Complex Analysis 1994

    22/27

    0asR,thereforeR

    lim

    f(z)dz=05

  • 8/3/2019 Complex Analysis 1994

    23/27

    (2)On,z=rei,|z|2+11|z|2=1r2.Thus

  • 8/3/2019 Complex Analysis 1994

    24/27

    0

    (logr)2+2

    1r2((logr)2+33f(z)dzrd=1r

    r2)Buttherightside0asr0,itfollowsthatr0lim

    f(z)dz=0.(3)f(z)hasasimpleatz=ioff(z)is(logi)22i

    pole=1at(zi=iinthetheupperhalfplane(insideC)andtheresidue2i2

  • 8/3/2019 Complex Analysis 1994

    25/27

    )2

    =2i8

    .ThusR,r0

    limC

    R

    f(z)dz=R,r0limr

    r

    f(x)dx+f(xei)dxeiR=2i2i8becauseonthelineCD,z=x,andonthelineAB,z=xei.Hence0

    (log(xei))2

    1+x2e2i0

    (logx)21+x234

    Now(log(xei))2=(logx)22+2ilogx,so2dx+dx=0

  • 8/3/2019 Complex Analysis 1994

    26/27

    (logx)21+x2dx20

    dx1+x20

    34Equatingrealparts,andnotingthat+2i

    1logx+x2dx=0

    dx1+x2=tan1x]

    0

    =2,weget20

    (logx)2

    1+x2323434

  • 8/3/2019 Complex Analysis 1994

    27/27

    sothatdx==0

    (logx)21+x2dx=38.Notethatbyequatingimaginaryparts,weget0

    1logx+x2dx=0.6