competitionof mean perpendicular and parallel flows in a

20
Competition of Mean Perpendicular and Parallel Flows in a Linear Device J.C. Li, P.H. Diamond, R. Hong, G. Tynan University of California San Diego, USA This material is based upon work supported by the U.S. Department of Energy, Office of Science, Office of Fusion Energy Sciences, under Award Numbers DE-FG02-04ER54738. 1 Festival de Théorie 2017, Aix-en-Provence, France

Upload: others

Post on 21-May-2022

1 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: Competitionof Mean Perpendicular and Parallel Flows in a

Competition ofMeanPerpendicularandParallelFlowsinaLinearDevice

J.C.Li,P.H.Diamond,R.Hong,G.TynanUniversityofCaliforniaSanDiego,USA

ThismaterialisbaseduponworksupportedbytheU.S.DepartmentofEnergy,OfficeofScience,OfficeofFusionEnergySciences,underAwardNumbersDE-FG02-04ER54738.

1

FestivaldeThéorie 2017,Aix-en-Provence,France

Page 2: Competitionof Mean Perpendicular and Parallel Flows in a

Background• Intrinsic axialandazimuthalflowsobservedinlineardevice(CSDX)• IncreaseBà scanmeanflows-𝑉" and𝑉∥• Dynamical competitionbetweenmeanperpendicularandparallelflows• [SeeGeorgeTynan’stalkearlier]

2

– Dynamical: 𝑉" and𝑉∥ exchangeenergywiththebackgroundturbulence,andeachother.à Energybalancebetween𝑉" and𝑉∥à TradeoffbetweenV" andV∥

Page 3: Competitionof Mean Perpendicular and Parallel Flows in a

KeyQuestionsandWhy

• What’sthecouplingbetweenmean perpendicularandparallelflows(𝑉" and𝑉∥)?– Howdotheyinteract?à Howdotheycompeteforenergyfromturbulence?

– Canwehaveareducedmodelofthecouplingbetween𝑉" and𝑉∥?• Whyshouldwecare?– Lineardevice(CSDX)studiessuggestapportionmentofturbulenceenergybetween𝑉" and 𝑉∥

– RelevanttoL-Htransition• Both𝑉"& and𝑉∥ increase,duringtransition.• Thecouplingofthetwoisrelevanttotransitionthresholdanddynamics.

3

Page 4: Competitionof Mean Perpendicular and Parallel Flows in a

OutlineoftheRest

4

• Currentstatusofmodel• Explorationof𝑉" and𝑉∥ competition– Turbulentenergybranching between𝑉∥ and𝑉"– Reynoldspowerratio𝑃∥( 𝑃"(⁄ decreasesas𝑉" increasesà tradeoffbetween𝑉" and𝑉∥

– 𝑃∥( 𝑃"(⁄ maximumoccurswhen 𝛻𝑉∥ isbelowthePSFI(parallelshearflowinstability)thresholdà saturationofintrinsic𝑉∥

• Wave-flowresonanceeffects– Areshearsuppression“rules”alwayscorrect?– 𝑉"& weakensresonanceà flowshearenhancesinstability

– Implicationforzonalflowdynamics

Page 5: Competitionof Mean Perpendicular and Parallel Flows in a

Currentstatusofmodel

• Conventionalwisdomof𝑉" → 𝑉∥ coupling:– 𝑉"& breaksthesymmetryin𝑘∥,butrequiresfinitemagneticshear– Notapplicable inlineardevice(straightmagneticfield)

• 𝑉∥ → 𝑉" couplingviaparallelcompression:– 3Dcoupleddrift-ionacousticwavesystem [Wangetal,PPCF2012]– CouplingbetweenfluctuatingPVandparallelcompression 𝑞.𝛻∥𝑣.∥breaksPVconservationà Sink/sourceforfluctuatingpotentialenstrophy densityà Zonalflowgeneration

Page 6: Competitionof Mean Perpendicular and Parallel Flows in a

SectionII:Explorationof𝑉"-𝑉∥ Coupling

• Hasegawa-Wakatani driftwaveà nearadiabaticelectron:

𝑛. = 1 − 𝑖𝛿 𝜙, 𝛿 ≪ 1

• Slabgeometry

6

• Goal:studyhowextrinsicflowsaffectReynoldspowers

à generationofintrinsicflows

à turbulentenergybranchingbetweenintrinsicV" andV∥

• Analogoustoincrementstudy

Page 7: Competitionof Mean Perpendicular and Parallel Flows in a

BottomLine:𝛻𝑛9 isthePrimaryInstabilityDrive

• KHisnotimportant– 𝑉"&& driveweakerthan𝛻𝑛9drive,i.e. 𝑘:𝜌<=𝑉"&& ≪ 𝜔∗@

7

• PSFIstableinCSDX

• Otherpotentialdrives:– 𝑉"&& à Kelvin-Helmholtzinstability– 𝛻𝑉∥ à Parallelshearflowinstability

Page 8: Competitionof Mean Perpendicular and Parallel Flows in a

Definition:ReynoldsPower

• MeanflowevolutionisdrivenbyReynoldspower12𝜕 𝑉∥

=

𝜕𝑡 ∼ −𝜕𝜕𝑥 𝑣.F𝑣.∥ 𝑉∥

– ParallelReynoldspowerofasingleeigenmode

𝑃∥( = G 𝑑𝑥 −𝜕𝜕𝑥 𝑣.F,I∗ 𝑣.∥,I 𝑉∥

JK

9

– PerpendicularReynoldspowerofasingleeigenmode

𝑃"( = G 𝑑𝑥 −𝜕𝜕𝑥 𝑣.F,I∗ 𝑣.:,I 𝑉"

JK

9

• Effectsofextrinsic𝑉∥ and𝑉" ontheratio𝑃∥( 𝑃"(⁄ arestudied

8

Page 9: Competitionof Mean Perpendicular and Parallel Flows in a

Couplingof𝑉" and𝑉∥ ↔ RatioofReynoldsPowers

• Ratio𝑃∥( 𝑃"(⁄ decreaseswith𝑉"à Energybranchingof𝑉∥ reducedà 𝑉" reducesgenerationof𝑉∥à Competition between𝑉" and𝑉∥

• Increase𝑉∥ à 𝑃∥( 𝑃"(⁄ turnoverbefore 𝛻𝑉∥ hitsPSFIthresholdàMaxenergybranchingof𝑉∥ belowPSFIthresholdà 𝑉∥ saturatesbelow PSFIthreshold

Page 10: Competitionof Mean Perpendicular and Parallel Flows in a

SectionIII:RevisitingWave-FlowResonance

• Areconventionalshearsuppression“rules”alwayscorrect?– 𝐸×𝐵 flowshearsuppressesinstabilityß Isitcorrectwithresonance?– Wave-flowresonanceeffectisoftenoverlooked,thoughwasmentionedin

pastworks.• Findings:

– Wave-flowresonancestabilizesdriftwaveinstability– Perpendicularflowshearweakenstheresonance,andthusdestabilizes the

instability• Implicationsforzonalflowsaturation:

– Collisionless zonalflowsaturation(withoutinvolvingtertiaryinstabilities,suchasKH)setbyresonance,𝐷X ∼ 𝜔I − 𝑘:𝑉"

Y=

10

[Li&Diamond,manuscriptinpreparation]

Page 11: Competitionof Mean Perpendicular and Parallel Flows in a

Wave-flowresonance

• Hasegawa-Wakatani driftwavemodel,withextrinsic𝑉"

• KHdrivenegligibleà Driftwaveinstabilitydominant• Nearadiabaticelectron:𝑛. = 1 − 𝑖𝛿 𝜙,𝛿 ≪ 1• 𝛿 = 𝜔∗@ − 𝜔I + 𝑘:𝑉" 𝑘∥=𝐷∥=[ = 𝜈@] 𝜔∗@ − 𝜔I + 𝑘:𝑉" 𝑘∥=𝑣^_@=[

• Resonancereducestheeigenmode scaleà Suppressesinstability

11

• Resonance:𝜔I − 𝑘:𝑉" − 𝑘∥𝑉∥𝑘∥ 𝑘:[ ≪ 1à Resonancedominatedby𝜔I − 𝑘:𝑉"

(Widthofeigenmode)

Page 12: Competitionof Mean Perpendicular and Parallel Flows in a

Perpendicularflowsheardestabilizes turbulence

12

• Meanperpendicularflowshearincreasesmodescale𝐿a 𝜌<⁄ àWeakensresonanceà Enhancesinstability

• KHdrivenegligible comparedto𝛻𝑛9

Page 13: Competitionof Mean Perpendicular and Parallel Flows in a

ImplicationsforZonalFlowSaturation• Connectiontocollisionless saturationofZF• ZonalflowevolutionàMeanenstrophy equation:

• Vorticity(𝜌 ≡ 𝛻"=𝜙)flux: 𝑣.c𝜌. = −𝐷Xd Xdc

+ ΓX(@<

𝜕𝜕𝑡 G𝑑𝑟

𝜌 =

2

�= G𝑑𝑟 𝑣.c𝜌.

𝑑 𝜌𝑑𝑟

�− 𝜈] G𝑑𝑟 𝜌 =

�+ ⋯

Conservesenstrophy betweenmeanflowandfluctuations

𝜕𝜕𝑡G𝑑𝑟

𝜌 =

2

�= −G𝑑𝑟𝐷X

𝑑 𝜌𝑑𝑟

=�

�+ G𝑑𝑟ΓX(@<

𝑑 𝜌𝑑𝑟

�− 𝜈] G𝑑𝑟 𝜌 =

�+ ⋯

• 𝜈] → 0à Dimitsshiftregimeà ResonancesaturatesZF,w/oKH• Collisionless dampingbyturbulentviscosity:𝑑 𝜌 𝑑𝑟⁄ ∼ ΓX(@< 𝐷X[• Resonancesets𝐷X à ZFsaturation

ΓX(@< =j𝑘:𝑐<= 𝜙I = 𝛾I𝜔∗@ + 𝛼n 𝜔∗@ − 𝜔I + 𝑘:𝑉"𝜔I − 𝑘:𝑉" + 𝑖𝛼n

= −𝛾I 𝜔∗@

𝜔I − 𝑘:𝑉"=

I

, 𝐷X =j𝑘:=𝑐<= 𝜙I = 𝛾I𝜔I − 𝑘:𝑉"

= �

I

Page 14: Competitionof Mean Perpendicular and Parallel Flows in a

Summary• CSDXexperimentssuggestenergyapportionment betweenmean𝑉" and𝑉∥

• Reynoldspowerratio𝑃∥( 𝑃"(⁄ changesinresponsetoexternalflowincrement– 𝑃∥( 𝑃"(⁄ decreaseswith𝑉" à tradeoffbetween𝑉" and𝑉∥– 𝑃∥( 𝑃"(⁄ maximumoccursbefore 𝛻𝑉∥ hitsPSFIthreshold

• Testingmisconceptionsofshearingeffectsonstability– Wave-flowresonancesuppressesinstability– 𝑉"& weakensresonanceà 𝑉"& enhances instability– Resonanceproducesturbulentviscosity

à collisionless saturationofZF,without involvingtertiaryinstabilities

14

Page 15: Competitionof Mean Perpendicular and Parallel Flows in a

Backup

15

Page 16: Competitionof Mean Perpendicular and Parallel Flows in a

DetailsonAcousticCoupling

• 𝑉∥ → 𝑉" couplingviaparallelcompression:– 3Dcoupleddrift-ionacousticwavesystem [Wangetal,PPCF2012]– CouplingbetweenfluctuatingPVandparallelcompression 𝑞.𝛻∥𝑣.∥breaksPVconservationà Sink/sourceforfluctuatingpotentialenstrophy densityà Zonalflowgeneration

– Perpendicularflowdynamics:

𝜕𝜕𝑡 𝑉" − 𝐿n

𝑞.=

2 ∼ −𝜈]𝑉" + 𝐿n𝜕𝜕𝑟 𝑣.F

𝑞.=

2 + 𝜇 𝛻𝑞. = − 𝑞.𝛻∥𝑣.∥

𝑞.𝛻∥𝑣.∥ ∼ −j𝛥𝜔I𝜔I=

I

𝑘∥= 𝜙I = < 0collisionaldamping

PVdiffusion

Page 17: Competitionof Mean Perpendicular and Parallel Flows in a

StationaryZonalFlowProfile• Turbulentviscositysetbyresonance:

17

ΓX(@< =j𝑘:𝑐<= 𝜙I = 𝛾I𝜔∗@ + 𝛼n 𝜔∗@ − 𝜔I + 𝑘:𝑉"𝜔I − 𝑘:𝑉" + 𝑖𝛼n

= −𝛾I 𝜔∗@

𝜔I − 𝑘:𝑉"=

I

,

• Residualvorticityflux:

• Reynoldsforce(i.e.netproduction)=0à Stationaryflowprofile:

𝐷X =j𝑘:=𝑐<= 𝜙I = 𝛾I𝜔I − 𝑘:𝑉"

=

I

Page 18: Competitionof Mean Perpendicular and Parallel Flows in a

ResonanceandInstabilityRelatedtoModeScale

• Eigenmode equationwithresonanteffect:

Effectively,𝑘"=𝜌<=

18

• Modescale:𝐿aY=𝜌<= ≡ 𝜌<= ∫ 𝑑𝑥 𝜕F𝜙 =JK9 ∫ 𝑑𝑥 𝜙 =JK

9 [

• Results:

• Strongresonance𝛾I ≪ 𝜔I − 𝑘:𝑉" ≪ 𝜔∗@

• Eigenmodepeaks(𝐿aY=𝜌<=increases)asresonancebecomesstronger

• Resonancesuppressesdriftwaveinstability

Page 19: Competitionof Mean Perpendicular and Parallel Flows in a

AnalogytoLandauDampingAbsorption

19

Langmuir TurbulenceCollapse Collisionless ZFSaturation

Players Plasmon-Langmuirwaveandion-acousticwave(caviton)

Driftwaveandzonalflow

FinalState (Nearly)emptycavity Dimits statezonalflowdominant

Freeenergysource Langmuirturbulencedriver 𝛻𝑛,𝛻𝑇 drives

Resonanceeffect Landaudampingascavitycollapses Absorptionby𝐷X ∼𝜔I − 𝑘:𝑉"

Y=

Othersaturationmechanisms

Ion-acousticradiationfromemptycavity

Kelvin-Helmholtzrelaxation

Page 20: Competitionof Mean Perpendicular and Parallel Flows in a

20

𝛾I = linearinstability(𝛾J)+resonanceabsorption𝛾( ∼ 𝛾( 𝜔I − 𝑘:𝑉"

Analogytoion-acousticabsorptionduringcollapseofLangmuirwaves

• Resonanceinducescollisionless saturationthrough𝐷X,apartfromKH:

• Revisitpredator-preymodelwithresonanceeffectàMechanismforcollisionless damping,withoutKH

DriftWaveTurbulence

Wave-FlowResonance

𝑉"ΓX(@<

𝐷X

ZFdrive

ZFdissipation

Resonanceeffects

Revisitpredator-preymodel