comparison with previous analysis and historical data · of feeding the planet this century” 1....

22
Supplemental Material for Aggarwal et al. “How much does climate change add to the challenge of feeding the planet this century1. Comparison with previous analysis and historical data Largest and only global meta-analysis of climate change impacts on agriculture primarily dealt with quantification of adaptation benefits and impact responses with temperature and precipitation (1). The study analyzed 1700 published data points but did not segregate analysis by timeslice. Although direct comparison of the study with current research is difficult as primary objective of both studies is different, impact responses with common indicators are comparable. Comparison with other regional meta-analysis is erroneous due to bias from region- specific conditions (2) (3). Unlike previous research, we found more equitable impacts between tropic and temperate regions after adaptation. We also, found minor regional differences in impacts (especially after inclusion of adaptation). Another recently published study compared different methods with temperature increase (4), although direct comparison cannot be made as impacts are not segregated by timeslice, approximate idea can be inferred with temperature changes. Comparing assessments with observed data is difficult, due to underlying uncertainty of current assessment methodologies in replication observed effects (5). Still, numerous studies have documented observed climatic impacts on crop production (6) (7). Since the metaanalysis used in this research is varied and include global analysis from diverse regions, direct comparison with field experiments may not be possible nor advisable. Instead, comparison with regionally aggregated studies can be attempted and yield responses of different crops are in agreement with results from this research (8). Since this research is first in identifying impact trends with time and no other study to compare, indirect comparison can be made to changing climate projections with time in Figure 1.4 of IPCC AR5, which shows change in mean temperature with time by different assessment reports (9). 2. Caveats Inclusion of diverse studies and global datasets had greatly increased the sample size in this research which is statistically robust, but cause potential for biases and limitations. Most apparent bias based on number of entries per study, geographical spread of data and agricultural importance has been corrected. Inclusion of assessments with different methods and procedures helps in preventing skewing of data towards a fundamental method. However, due to specific assumptions in different studies, their comparison is often difficult. Meta-analysis technique using weighting studies by variance, and bootstrapped regressions helped in eliminating a part of this uncertainty. Another important limitation was this research focused on assessing impacts of climate change, without consideration of extreme events which can destabilize food systems and depress yields greatly in the future (10).

Upload: others

Post on 09-Aug-2020

1 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: Comparison with previous analysis and historical data · of feeding the planet this century” 1. Comparison with previous analysis and historical data Largest and only global meta-analysis

Supplemental Material for Aggarwal et al. “How much does climate change add to the challenge

of feeding the planet this century”

1. Comparison with previous analysis and historical data Largest and only global meta-analysis of climate change impacts on agriculture primarily dealt

with quantification of adaptation benefits and impact responses with temperature and

precipitation (1). The study analyzed 1700 published data points but did not segregate analysis

by timeslice. Although direct comparison of the study with current research is difficult as

primary objective of both studies is different, impact responses with common indicators are

comparable. Comparison with other regional meta-analysis is erroneous due to bias from region-

specific conditions (2) (3). Unlike previous research, we found more equitable impacts between

tropic and temperate regions after adaptation. We also, found minor regional differences in

impacts (especially after inclusion of adaptation). Another recently published study compared

different methods with temperature increase (4), although direct comparison cannot be made as

impacts are not segregated by timeslice, approximate idea can be inferred with temperature

changes.

Comparing assessments with observed data is difficult, due to underlying uncertainty of current

assessment methodologies in replication observed effects (5). Still, numerous studies have

documented observed climatic impacts on crop production (6) (7). Since the metaanalysis used

in this research is varied and include global analysis from diverse regions, direct comparison

with field experiments may not be possible nor advisable. Instead, comparison with regionally

aggregated studies can be attempted and yield responses of different crops are in agreement with

results from this research (8). Since this research is first in identifying impact trends with time

and no other study to compare, indirect comparison can be made to changing climate projections

with time in Figure 1.4 of IPCC AR5, which shows change in mean temperature with time by

different assessment reports (9).

2. Caveats

Inclusion of diverse studies and global datasets had greatly increased the sample size in this

research which is statistically robust, but cause potential for biases and limitations. Most

apparent bias based on number of entries per study, geographical spread of data and agricultural

importance has been corrected. Inclusion of assessments with different methods and procedures

helps in preventing skewing of data towards a fundamental method. However, due to specific

assumptions in different studies, their comparison is often difficult. Meta-analysis technique

using weighting studies by variance, and bootstrapped regressions helped in eliminating a part of

this uncertainty. Another important limitation was this research focused on assessing impacts of

climate change, without consideration of extreme events which can destabilize food systems and

depress yields greatly in the future (10).

Page 2: Comparison with previous analysis and historical data · of feeding the planet this century” 1. Comparison with previous analysis and historical data Largest and only global meta-analysis

Supplementary Table 1: Assumptions in baseline and projection periods

Time Periods Baseline Midpoint Projection Midpoint Year gap

Broad

Timeslice

2010s 1975 2015 40 Near -2020s

2020s 1975 2025 50 Near -2020s

2030s 1975 2035 60 Near -2020s

2040s 1975 2045 70 Medium- 2050s

2050s 1975 2055 80 Medium- 2050s

2060s 1975 2065 90 Medium- 2050s

2070s 1975 2075 100 Far- 2080s

2080s 1975 2085 110 Far- 2080s

2090s 1975 2095 120 Far- 2080s

2100s 1975 2105 130 Far- 2080s

Supplementary Table 2: Geographical Representation in the analysis

Country Cereal Production (Metric Tonnes)

% of Total World production- 2014 Data Points

India 295,360,000 16.3 536

United States of America 442,849,090 24.4 455

China 559,315,083 30.8 422

Canada 51,301,401 2.8 234

Australia 38,423,006 2.1 230

Supplementary Table 3: Literature consulted for Current and Future Yield Rate Analysis

1. Ray, D. K., Mueller, N. D., West, P. C. & Foley, J. A. Yield Trends Are Insufficient to Double Global Crop Production by 2050. PLoS One 8, e66428 (2013).

2. Alexandratos, N., & Bruinsma, J. (2012). World agriculture towards 2030/2050: the 2012 revision (No. 12-03, p. 4). Rome, FAO: ESA Working paper.

3. FAO (2016). The state of food and agriculture . Food & Agriculture Organization of the UN (FAO)

4. Fischer R.A., Byerlee D. and Edmeades G.O. 2014. Crop yields and global food security: will yield increase continue to feed the world? ACIAR Monograph No. 158. Australian Centre for International Agricultural Research: Canberra. xxii + 634 pp

5. Nelson G.C., Rosegrant M.W., Palazzo A., Gray I., Ingerstoll C., Robertson R. 2010. Food security, farming, and climate change to 2050: scenarios, results, policy options. Research Monograph. International Food Policy Research Institute, Washington, DC. doi:10:2499/9780896291867.

6. Conforti, P. (2011). Looking ahead in world food and agriculture: perspectives to 2050. Food and Agriculture Organization of the United Nations (FAO).

7. Linehan V., Thorpe S., Gunning-Trant C., Heyhoe E., Harle K., Hormis M. et al. 2013. Global food production and prices to 2050: scenario analysis under policy assumptions. Conference paper 13.6. Australian Bureau of Agricultural and Resource Economics and Sciences: Canberra.

Page 3: Comparison with previous analysis and historical data · of feeding the planet this century” 1. Comparison with previous analysis and historical data Largest and only global meta-analysis

8. Tweetin S.R. and Thompson L. 2009. Long-term global agricultural output supply–demand balance, and real farm and food prices. Farm Policy Journal 61, 1–15.

9. Van Dijk, M., & Meijerink, G. W. (2014). A review of global food security scenario and assessment studies: results, gaps and research priorities. Global Food Security, 3(3), 227-238.

10. Bijl, D. L., Bogaart, P. W., Dekker, S. C., Stehfest, E., de Vries, B. J., & van Vuuren, D. P. (2017). A physically-based model of long-term food demand. Global Environmental Change, 45, 47-62.

11. Hertel, T. W., & Baldos, U. L. C. (2016). Global Change and the Food System in 2050. In Global Change and the Challenges of Sustainably Feeding a Growing Planet (pp. 141-160). Springer International Publishing.

12. Hertel, T. W., Baldos, U. L. C., & van der Mensbrugghe, D. (2016). Predicting Long-Term Food Demand, Cropland Use, and Prices. Annual Review of Resource Economics, 8, 417-441.

13. Hall, C., Dawson, T. P., Macdiarmid, J. I., Matthews, R. B., & Smith, P. (2017). The impact of population growth and climate change on food security in Africa: looking ahead to 2050. International Journal of Agricultural Sustainability, 15(2), 124-135.

14. Bodirsky, B. L., Rolinski, S., Biewald, A., & Weindl, I. (2015). Global Food Demand Scenarios for the 21 st Century. PLoS ONE, 1–27. https://doi.org/10.5281/zenodo.31008

15. Valin, H., Sands, R. D., van der Mensbrugghe, D., Nelson, G. C., Ahammad, H., Blanc, E., … Willenbockel, D. (2014). The future of food demand: understanding differences in global economic models. Agricultural Economics, 45(1), 51–67. https://doi.org/10.1111/agec.12089

16. Müller, C., & Robertson, R. D. (2014). Projecting future crop productivity for global economic modeling. Agricultural Economics, 45(1), 37–50. https://doi.org/10.1111/agec.12088

17. Tilman, D., Balzer, C., Hill, J., & Befort, B. L. (2011). Global food demand and the sustainable intensification of agriculture. Proceedings of the National Academy of Sciences, 108(50), 20260–20264. https://doi.org/10.1073/pnas.1116437108

18. Davis, K. F., Gephart, J. A., Emery, K. A., Leach, A. M., Galloway, J. N., & D’Odorico, P. (2016). Meeting future food demand with current agricultural resources. Global Environmental Change, 39, 125–132. https://doi.org/10.1016/j.gloenvcha.2016.05.004

19. Hunter, M. C., Smith, R. G., Schipanski, M. E., Atwood, L. W., & Mortensen, D. A. (2017). Agriculture in 2050: Recalibrating targets for sustainable intensification. BioScience, 67(4), 386–391. https://doi.org/10.1093/biosci/bix010

Supplementary Table 4: Data break-up with different categories

Total Data Points 27208

Number of Studies 158

Timeslice

2020s 9022

2050s 9133

2080s 9053

Spatial Scale

Page 4: Comparison with previous analysis and historical data · of feeding the planet this century” 1. Comparison with previous analysis and historical data Largest and only global meta-analysis

Global 25159

Regional 1017

National 424

Site 608

Crop Type

Major Cereals (Maize, Rice and Wheat) 26481

Other Crops 727

Publication Year

Pre-2000 4579

Post-2000 22629

Adaptation

Without Adaptation 1509

With Adaptation 25699

CO2 Fertilization

With CO2 26150

Without CO2 1058

Supplementary Table 5: Data break-up with adaptation types

Adaptation Type Data Points

Conservation Tillage 4

Dynamic irrigation and nutrient application 7476

Dynamic Irrigation application 2189

Dynamic nutrient application 297

Planting Date, Cultivar, Fertilizer, Irrigation 6307

Fertilizer 26

Cultivar 49

Cultivar, Technology 1

Irrigation 85

Planting Date 78

Planting Date , Fertilizer and Irrigation 60

Planting Date, Cultivar 5168

Planting Date, Cultivar, Fertilizer 7

Planting Date, Cultivar, Irrigation 3913

Planting Date, Irrigation 15

Technology 24

Page 5: Comparison with previous analysis and historical data · of feeding the planet this century” 1. Comparison with previous analysis and historical data Largest and only global meta-analysis

Supplementary Figure 1: Change in Modelling approach with time

Page 6: Comparison with previous analysis and historical data · of feeding the planet this century” 1. Comparison with previous analysis and historical data Largest and only global meta-analysis

Supplementary Figure 2: Average Impacts (with adaptation) for 2050s and 2080s

Page 7: Comparison with previous analysis and historical data · of feeding the planet this century” 1. Comparison with previous analysis and historical data Largest and only global meta-analysis

Supplementary Figure 3: Country-level average impacts with adaptation from meta-analysis

(blue) and paired adaptation (green) along latitude. Confidence bands for rice and wheat not

shown due to very few data points in paired study.

Page 8: Comparison with previous analysis and historical data · of feeding the planet this century” 1. Comparison with previous analysis and historical data Largest and only global meta-analysis

Supplementary Figure 4: Climate Change Impact on Food gap, with current supply rates. The

figure shows Food gap (difference in demand and supply of the crop) and impacts of climate

change after adaptation. Current supply rates are shown by color mapping (highest green to

lowest red) and crop area by size of the point (4: > 1 million ha, 3: 1 to 10,00,000 ha, 2: 10 to

1,00,000 ha and 1: <1,00,000 ha). Three contour lines shows Net impacts as a percentage of

food gap at -20, -10 and -5 % levels. Please note, axis of three crops are unequal and

independently expanded to accommodate all country labels.

Supplementary Figure 5: Boxplot of country-wise impacts derived by simple averaging of the

data and weighing procedure used in the meta-analysis. All crops and timeslices combined. P

value indicates statistically significant difference between the groups, based on Kruskal-Wallis

test.

Page 9: Comparison with previous analysis and historical data · of feeding the planet this century” 1. Comparison with previous analysis and historical data Largest and only global meta-analysis

Supplementary Figure 6: Global variation in estimates due to carbon fertilization effects.

Distribution of data under studies including carbon fertilization and excluding carbon

fertilization is shown, outliers are removed for clarity. Please note very less number of data

points are available for studies which estimated impacts with adaptation, and without fertilization

effects (n= 56, covering 8 countries) therefore country-level estimates are not shown.

Page 10: Comparison with previous analysis and historical data · of feeding the planet this century” 1. Comparison with previous analysis and historical data Largest and only global meta-analysis

Supplementary Figure 7: Scatterplot of average impacts of climate change with different

adaptation types along latitude for rice and wheat. Results are derived from multiple data points

across different time-slices and are relative to a baseline of 1960-90 (See SI for details). Each dot

represents centroid of a single country (See SI for details). Solid lines show best fits of with

latitude. Shaded bands indicate 95 % confidence interval. Adaptation type of dynamic irrigation

for wheat has very few data points and country level estimates are thereby not shown.

Page 11: Comparison with previous analysis and historical data · of feeding the planet this century” 1. Comparison with previous analysis and historical data Largest and only global meta-analysis

List of References for Meta-analysis

1. Abashina, E. V, & Sirotenko, O. D. (1986). An applied dynamic model of crop formation for modeling agrometeorological support systems. Trudy ARRI-AM, (21), 13–33.

2. Abou-Hadid, A.F., 2006: Assessment of Impacts, Adaptation, and Vulnerability to Climate Change

in North Africa: Food Production and Water Resources. AIACC Final Report Project No. AF 90,

Washington, DC, USA, 128 pp

3. Abraha, M.G. and M.J. Savage, 2006: Potential impacts of climate change on grain yield of maize

for the midlands of KwaZulu-Natal, South Africa. Agriculture Ecosystems and Environment,

115(1-4), 150-160.

4. Aggarwal, P.K. and R.K. Mall, 2002: Climate change and rice yields in diverse agro- environments

of India. II. Effect of uncertainties in scenarios and crop models on impact assessment. Climatic

Change, 52(3), 331-343.

5. Aggarwal, P. K., & Sinha, S. K. (1993). Effect of Probable Increase in Carbon Dioxide and Temperature on Wheat Yields in India. Journal of Agricultural Meteorology, 48(5), 811–814. https://doi.org/10.2480/agrmet.48.811

6. Adams, R. M., Rosenzweig, C., Peart, R. M., Ritchie, J. T., McCarl, B. A., Glyer, J. D., … Allen, L. H. (1990). Global climate change and US agriculture. Nature, 345(6272), 219–224. https://doi.org/10.1038/345219a0

7. Ahmed, K. F., Wang, G., Yu, M., Koo, J., & You, L. (2015). Potential impact of climate change on cereal crop yield in West Africa. Climatic Change, 133(2), 321–334. https://doi.org/10.1007/s10584-015-1462-7

8. Akong'a, J., Т.Е. Downing, N.T. Konijn, D.N. Mungai, H.R. Muturi, and H.L. Potter, 1988: The

effects of climatic variations on agriculture in Central and Eastem Kenya. In: The Impact of

Climatic Variations on Agriculture . Vol. 2, Assessments in Semi-Arid Regions [Parry, M.L., T.R.

Carter, and N.T. Konijn (eds.)]. Kluwer Academic Press, Dordrecht, Netherlands, pp. 123-270.

9. Alexandrov, V. A., & Hoogenboom, G. (2000). The impact of climate variability and change on crop yield in Bulgaria. Agricultural and Forest Meteorology, 104(4), 315–327. https://doi.org/10.1016/S0168-1923(00)00166-0

10. Alexandrov, V., 1999. Vulnerability and adaptation of agronomic systems in Bulgaria. Climate Research 12: 161-173.

11. Alexandrov, V., Schneider, M., Koleva, E., & Moisselin, J.-M. (2004). Climate variability and change in Bulgaria during the 20th century. Theoretical and Applied Climatology, 79(3–4), 133–149. https://doi.org/10.1007/s00704-004-0073-4

12. Alexandrov, V., J. Eitzinger, V. Cajic and M. Oberforster, 2002. Potential impact of climate change on selected agricultural crops in north-eastern Austria. Global Change Biology 8: 372-389.

13. Amien, I., Rejekiningrum, P., Pramudia, A., & Susanti, E. (1996). Effects of interannual climate variability and climate change on rice yield in Java, Indonesia. Water, Air, and Soil Pollution, 92, 29–39.

14. Anwar, M. R., O’Leary, G., McNeil, D., Hossain, H., & Nelson, R. (2007). Climate change impact on rainfed wheat in south-eastern Australia. Field Crops Research, 104(1–3), 139–147. https://doi.org/10.1016/j.fcr.2007.03.020

15. Araya, A., Hoogenboom, G., Luedeling, E., Hadgu, K. M., Kisekka, I., & Martorano, L. G. (2015). Assessment of maize growth and yield using crop models under present and future climate in

Page 12: Comparison with previous analysis and historical data · of feeding the planet this century” 1. Comparison with previous analysis and historical data Largest and only global meta-analysis

southwestern Ethiopia. Agricultural and Forest Meteorology, 214–215, 252–265. https://doi.org/10.1016/j.agrformet.2015.08.259

16. Arndt, C., Strzepeck, K., Tarp, F., Thurlow, J., Fant IV, C., & Wright, L. (2011). Adapting to climate change: An integrated biophysical and economic assessment for Mozambique. Sustainability Science, 6(1), 7–20. https://doi.org/10.1007/s11625-010-0118-9

17. Arnell, N. W., Brown, S., Gosling, S. N., Gottschalk, P., Hinkel, J., Huntingford, C., … Zelazowski, P. (2016). The impacts of climate change across the globe: A multi-sectoral assessment. Climatic Change, 134(3), 457–474. https://doi.org/10.1007/s10584-014-1281-2

18. Arthur, L. M., & Abizadeh, F. (1988). Potential Effects of Climate Change on Agriculture in the Prairie Region of Canada. Western Journal of Agricultural Economics, 13(2), 216–224.

19. Baethgen, W.E., 1994: Impact of climate change on barley in Uruguay: yield changes and analysis of nitrogen management systems. In: Implication s of Climate Change for International Agriculture: Crop Modeling Study [Rosenzweig, C. and A. Iglesias (eds.)]. U.S. Environmental Protection Agency, Uruguay chapter, Washington, DC, pp. 1-13.

20. Semenov MA, Barrow EM (1997) Use of a stochastic weather generator in the development of

climate change scenarios. Clim Change 35:397–414

21. Berg, A., De Noblet-Ducoudré, N., Sultan, B., Lengaigne, M., & Guimberteau, M. (2013). Projections of climate change impacts on potential C4 crop productivity over tropical regions. Agricultural and Forest Meteorology, 170(January 2016), 89–102. https://doi.org/10.1016/j.agrformet.2011.12.003

22. Boomiraj, K., Wani, S. P., & Aggarwal, P. K. (2011). Impact of climate change on dryland sorghum in India. In Proceedings of the National Symposium, NASC Complex, New Delhi, India, 1-2 February 2010 (pp. 292–304).

23. Brassard, J.P., Singh, B., 2007. Effects of climate change and CO 2 increase on potential agricultural production in Southern Québec , Canada. Clim. Res. 34, 105–117.

24. Brassard, J.-P., Singh, B., 2008. Impacts of climate change and CO2 increase on agricultural production and adaptation options for Southern Qu{é}bec, Canada. Mitig. Adapt. Strateg. Glob. Chang. 13, 241–265. doi:10.1007/s11027-007-9109-2

25. Brklacich, M., Smit, B., 1992. Implications of changes in climatic averages and variability on food production opportunities in Ontario, Canada. Clim. Change 20, 1–21. doi:10.1007/BF00144106

26. Brown, R.A., Rosenberg, N.J., 1999. Climate change impacts on the potential productivity of corn and winter wheat in their primary united states growing regions. Clim. Change 41, 73–107. doi:10.1023/A:1005449132633

27. Buan, R.D., Maglinao, a R., Evangelista, P.P., Pajuelas, B.G., 1996. Vulnerability of rice and corn to climate change in the Philippines. Water Air Soil Pollut. 92, 41–51.

28. Butt, T.A., McCarl, B.A., Angerer, J., Dyke, P.T., Stuth, J.W., 2005. The economic and food security implications of climate change in Mali. Clim. Change 68, 355–378.

29. Byjesh, K., Kumar, S.N., Aggarwal, P.K., 2010. Simulating impacts, potential adaptation and vulnerability of maize to climate change in India. Mitig. Adapt. Strateg. Glob. Chang. 15, 413–431. doi:10.1007/s11027-010-9224-3

30. Stevanović, M., Popp, A., Lotze-Campen, H., Dietrich, J.P., Müller, C., Bonsch, M., Schmitz, C., Bodirsky, B., Humpenöder, F., Weindl, I., 2016. High-end climate change impacts on agricultural welfare. Sci. Adv. 1–10. doi:10.1126/sciadv.1501452

31. Carbone, G.J., Kiechle, W., Locke, C., Mearns, L.O., McDaniel, L., Downton, M.W., 2003. Response of soybean and sorghum to varying spatial scales of climate change scenarios in the southeastern United States. Clim. Change 60, 73–98. doi:10.1023/A:1026041330889

Page 13: Comparison with previous analysis and historical data · of feeding the planet this century” 1. Comparison with previous analysis and historical data Largest and only global meta-analysis

32. Izaurralde, R.C., Rosenberg, N.J., Brown, R.A., Thomson, A.M., 2003. Integrated assessment of Hadley Center (HadCM2) climate-change impacts on agricultural productivity and irrigation water supply in the conterminous United States. Agric. For. Meteorol. 117, 97–122. doi:10.1016/S0168-1923(03)00024-8

33. van Bussel, L.G.J., Ewert, F., Zhao, G., Hoffmann, H., Enders, A., Wallach, D., Asseng, S., Baigorria, G.A., Basso, B., Biernath, C., Cammarano, D., Chryssanthacopoulos, J., Constantin, J., Elliott, J., Glotter, M., Heinlein, F., Kersebaum, K.C., Klein, C., Nendel, C., Priesack, E., Raynal, H., Romero, C.C., Rötter, R.P., Specka, X., Tao, F., 2016. Spatial sampling of weather data for regional crop yield simulations. Agric. For. Meteorol. 220, 101–115.

34. Challinor, A.J., Wheeler, T., Hemming, D., Upadhyaya, H.D., 2009. Ensemble yield simulations: Crop and climate uncertainties, sensitivity to temperature and genotypic adaptation to climate change. Clim. Res. 38, 117–127. doi:10.3354/cr00779

35. Chhetri, N.B., Easterling, W.E., Terando, A., Mearns, L., 2010. Modeling Path Dependence in Agricultural Adaptation to Climate Variability and Change. Ann. Assoc. Am. Geogr. 100, 894–907. doi:10.1080/00045608.2010.500547

36. Chipanshi, A.C., Chanda, R., Totolo, O., 2003. Vulnerability assessment of the maize and sorghum crops to climate change in Botswana. Clim. Change 61, 339–360. doi:10.1023/B:CLIM.0000004551.55871.eb

37. Ciscar, J.-C., Iglesias, A., Feyen, L., Szabó, L., Regemorter, D. Van, Amelung, B., Nicholls, R., Watkiss, P., Christensen, O.B., Dankers, R., Garrote, L., Goodess, C.M., Hunt, A., Moreno, A., Richards, J., Soria, A., 2011. Physical and economic consequences of climate change in Europe. Proc. Natl. Acad. Sci. 108, 2678–2683. doi:10.1073/pnas.1011612108/-/DCSupplemental.www.pnas.org/cgi/doi/10.1073/pnas.1011612108

38. Corobov, R., 2003. Estimations of climate change impacts on crop production in the Republic of Moldova. GeoJournal 57, 195–202.

39. Cuculeanu, V., Tuinea, P., Bălteanu, D., 2002. Climate change impacts in Romania: Vulnerability and adaptation options. GeoJournal 57, 203–209. doi:10.1023/B:GEJO.0000003613.15101.d9

40. Cuculeanu, V., Marica, A., Simota, C., 1999. Climate change impact on agricultural crops and adaptation options in Romania. Clim. Res. 12, 153–160. doi:10.3354/cr012153

41. Deb, P., Babel, M.S., 2015. Assessment of impacts of climate change and adaptation measures for maize production in East Sikkim, India. J. Hydrol. Meteorol. 9, 1–21. doi:10.3126/jhm.v9i1.15579

42. Deryng, D., Sacks, W.J., Barford, C.C., Ramankutty, N., 2011. Simulating the effects of climate and agricultural management practices on global crop yield. Global Biogeochem. Cycles 25, doi:10.1029/2009GB003765

43. Dhakhwa, G.B., Campbell, C.L., LeDuc, S.K., Cooter, E.J., 1997. Maize growth: assessing the effects of global warming and CO2 fertilization with crop models. Agric. For. Meteorol. 87, 253–272. doi:http://dx.doi.org/10.1016/S0168-1923(97)00030-0

44. Downing, T.E., 1992. Climate change and vulnerable places: global food security and country studies in Zimbabwe, Kenya, Senegal and Chile. Environmental Change Unit, University of Oxford.

45. Droogers, P., 2004. Adaptation to climate change to enhance food security and preserve environmental quality: example for southern Sri Lanka. Agric. Water Manag. 66, 15–33. doi:10.1016/j.agwat.2003.09.005

46. Easterling, W.E., Mearns, L.O., Hays, C.J., Marx, D., 2001. Comparison of Agricultural Impacts of Climate Change Calculated From High and Low Resolution Climate Change Scenarios : Part II. the Uncertainty Due To Spatial Scale. Clim. Change 51, 173–197.

Page 14: Comparison with previous analysis and historical data · of feeding the planet this century” 1. Comparison with previous analysis and historical data Largest and only global meta-analysis

47. Easterling, W.E., Mearns, L.O., Hays, C.J., Marx, D., 2001. Comparison of Agricultural Impacts of Climate Change Calculated From High and Low Resolution Climate Change Scenarios : Part II. Accounting for Adaptation and CO2 Direct Effects. Clim. Change 51, 173–197.

48. Edmonds, J.A., Sands, R.D., 2005. Climate change impacts for the conterminous USA: An integrated assessment summary. Clim. Change 69, 12–150. doi:10.1007/1-4020-3876-3_9

49. Eid, H.M.. 1994: Impact of climate change on simulated wheat and maize yields in Egypt. In:

Implications of Climate Change for International Agriculture: Crop Modeling Study [Rosenzweig.

С and A. Iglesias (eds.)]. U.S. Environmental Protection Agency. Egypt chapter, Washington, DC,

pp. 1-14

50. El Maayar, M., Sonnentag, O., 2009. Crop model validation and sensitivity to climate change scenarios. Clim. Res. 39, 47–59. doi:10.3354/cr00791

51. El-Shaer, H.M., Rosenzweig, C., Iglesias, A., Eid, M.H., Hillel, D., 1997. Impact of climate change on possible scenarios for Egyptian agriculture in the future. Mitig. Adapt. Strateg. Glob. Chang. 1, 233–250. doi:10.1007/BF00517805

52. Ewert, F., Rounsevell, M.D.A., Reginster, I., Metzger, M.J., Leemans, R., 2005. Future scenarios of European agricultural land use: I. Estimating changes in crop productivity. Agric. Ecosyst. Environ. 107, 101–116. doi:10.1016/j.agee.2004.12.003

53. EPA, "U.S. Environmental Protection Agency," The Potential Effects of Global Climate Change on the United States: Report to Congress. EPA230-05-89-050, December 1989

54. Fischer, G., Shah, M., Velthuizen, H. Van, 2002. Climate Change and Agricultural Vulnerability, IIASA.

55. Gbetibouo, G.A., Hassan, R.M., 2005. Measuring the economic impact of climate change on major South African field crops: A Ricardian approach. Glob. Planet. Change 47, 143–152. doi:10.1016/j.gloplacha.2004.10.009

56. Giannakopoulos, C., Le Sager, P., Bindi, M., Moriondo, M., Kostopoulou, E., Goodess, C.M., 2009. Climatic changes and associated impacts in the Mediterranean resulting from a 2 °C global warming. Glob. Planet. Change 68, 209–224. doi:10.1016/j.gloplacha.2009.06.001

57. Gifford, R.M., 1988. Direct effects of higher carbon dioxide concentrations on vegetation,

Agriculture, pp. 506-519.

58. Ju, H., van der Velde, M., Lin, E., Xiong, W., Li, Y., 2013. The impacts of climate change on agricultural production systems in China. Clim. Change 120, 313–324. doi:10.1007/s10584-013-0803-7

59. Hatfield, J.L., Boote, K.J., Kimball, B.A., Ziska, L.H., Izaurralde, R.C., Ort, D., Thomson, A.M., Wolfe, D., 2011. Climate impacts on agriculture: Implications for crop production. Agron. J. 103, 351–370. doi:10.2134/agronj2010.0303

60. Howden, M., Jones, R., 2001. Costs and benefits of CO2 increase and climate change on the

Australian wheat industry. Report to the Science, Impacts & Adaptation Section of the AGO.

61. Howden M, Jones RN. Risk assessment of climate change impacts on Australia’s wheat industry.

In: New directions for a diverse planet: proceedings of the 4th international crop science

congress, Brisbane, Australia, Sept. 26 – Oct. 1; 2004. p. 1848

62. Hulme, M., Barrow, E.M., Arnell, N.W., Harrison, P. a., Johns, T.C., Downing, T.E., 1999. Relative impacts of human-induced climate change and natural climate variability. Nature 397, 688–691. doi:10.1038/17789

63. Prabhjot-Kaur, Hundal, S.S., 2006. Effect of possible futuristic climate change scenarios on productivity of some kharif and rabi crops in the central agroclimatic zone of Punjab. J. Agric. Phys. 6, 21–27.

Page 15: Comparison with previous analysis and historical data · of feeding the planet this century” 1. Comparison with previous analysis and historical data Largest and only global meta-analysis

64. Iglesias, a., Minguez, M.I., 1997. Modelling crop-climate interactions in Spain: Vulnerability and adaptation of different agricultural systems to climate change. Mitig. Adapt. Strateg. Glob. Chang. 1, 273–288. doi:10.1007/BF00517807

65. Iqbal, M. a, Eitzinger, J., Formayer, H., Hassan, a, Heng, L.K., 2011. A simulation study for assessing yield optimization and potential for water reduction for summer-sown maize under different climate change scenarios. J. Agric. Sci. 149, 129–143. doi:10.1017/S0021859610001243

66. Izaurralde, R.C., Rosenberg, N.J., Brown, R.A., Thomson, A.M., 2003. Integrated assessment of Hadley Center (HadCM2) climate-change impacts on agricultural productivity and irrigation water supply in the conterminous United States. Agric. For. Meteorol. 117, 97–122. doi:10.1016/S0168-1923(03)00024-8

67. Jin, Z., D. Ge, H. Chen, and J. Fang. 1994. “Effects of Climate Change on Rice Production and

Strategies for Adaptation in Southern China.” In Cynthia Rosenzweig and Ana Iglesias, eds., Im-

plications of Climate Change for International Agriculture: Crop Modeling Study. EPA 230-B-94-

003. Washington, D.C.: U. S. Environmental Protection Agency.

68. Jones, P.G., Thornton, P.K., 2003. The potential impacts of climate change on maize production in Africa and Latin America in 2055. Glob. Environ. Chang. 13, 51–59. doi:10.1016/S0959-3780(02)00090-0

69. Kaiser, H. M., Riha, S. J., Wilks, D. S., and Sampath, R.: 1995, ‘Adaptation toGlobal Climate

Change at the Farm Level’, in Kaiser, H. M. and Drennen, T. E. (eds.), Agricultural Dimensions

ofGlobal Change, St. Lucie Press, Florida.

70. Kapetanak, G., Rosenzweig, C., 1997. Impact of climate change on maize yield in central and northern greece: a simulation study with CERES-maize. Mitig. Adapt. Strateg. Glob. Chang. 1, 251–271.

71. Karim, Z., Hussain, S.G. and Ahmed, M., 1996. Assessing Impacts of Climatic Variations on

Foodgrains Production in Bangladesh. Journal of Water, Air, and Soil Pollution, 92: 53–62.

72. Faisal, I. M. and Parveen, S. (2004).Food security in the face of climate change, population

growth, and resource constraints: Implications for Bangladesh. Environmental management:

34(4): 487-498.

73. Kassie, M., Teklewold, H., Jaleta, M., Marenya, P., Erenstein, O., 2015. Understanding the

adoption of a portfolio of sustainable intensification practices in eastern and southern Africa.

Land Use Policy 42, 400–411.

74. Kettunen, L. , Mukula, J., Pohjonen, V. , Rantanen, O. and Varjo, U. 1988, 'The Effects of Climatic

Variations on Agriculture in Finland'. In: The Impact of Climatic Variations on Agriculture:

Volume 1, Assessments in Cool Temperate and Cold Regions, M.L. Parry, T.R. Carter and N.T.

Konijn (eds.). Kluwer, Dordrecht, The Netherlands, pp. 511-614.

75. Krishnan, P., Swain, D.K., Chandra Bhaskar, B., Nayak, S.K., Dash, R.N., 2007. Impact of elevated CO2 and temperature on rice yield and methods of adaptation as evaluated by crop simulation studies. Agric. Ecosyst. Environ. 122, 233–242. doi:10.1016/j.agee.2007.01.019

76. Lal, M., 2011. Implications of climate change in sustained agricultural productivity in South Asia. Reg. Environ. Chang. 11, 79–94. doi:10.1007/s10113-010-0166-9

77. Lashkari, A., Alizadeh, A., Rezaei, E.E., Bannayan, M., 2012. Mitigation of climate change impacts on maize productivity in northeast of Iran: A simulation study. Mitig. Adapt. Strateg. Glob. Chang. 17, 1–16. doi:10.1007/s11027-011-9305-y

78. Li, X., Takahashi, T., Suzuki, N., Kaiser, H.M., 2011. The impact of climate change on maize yields in the United States and China. Agric. Syst. 104, 348–353. doi:10.1016/j.agsy.2010.12.006

Page 16: Comparison with previous analysis and historical data · of feeding the planet this century” 1. Comparison with previous analysis and historical data Largest and only global meta-analysis

79. Erda, L., Wei, X., Hui, J., Yinlong, X., Yue, L., Liping, B., Liyong, X., 2005. Climate change impacts on crop yield and quality with CO2 fertilization in China. Philos. Trans. R. Soc. Lond. B. Biol. Sci. 360, 2149–54. doi:10.1098/rstb.2005.1743

80. Lal, M., Singh, K.K., Rathore, L.S., Srinivasan, G., Saseen- dran, S.A., 1998. Vulnerability of rice

and wheat yields in NW India to future changes in climate. Agr. For. Meteorol. 89, 101/114.

81. Liu, S., Mo, X., Lin, Z., Xu, Y., Ji, J., Wen, G., Richey, J., 2010. Crop yield responses to climate change in the Huang-Huai-Hai Plain of China. Agric. Water Manag. 97, 1195–1209. doi:10.1016/j.agwat.2010.03.001

82. Liu, J., Fritz, S., van Wesenbeeck, C.F.A., Fuchs, M., You, L., Obersteiner, M., Yang, H., 2008. A spatially explicit assessment of current and future hotspots of hunger in Sub-Saharan Africa in the context of global change. Glob. Planet. Change 64, 222–235. doi:10.1016/j.gloplacha.2008.09.007

83. Liu, B., Asseng, S., Müller, C., Ewert, F., Elliott, J., Lobell, D.B., Martre, P., Ruane, A.C., Wallach, D., Jones, J.W., Rosenzweig, C., Aggarwal, P.K., Alderman, P.D., Anothai, J., Basso, B., Biernath, C., Cammarano, D., Challinor, A., Deryng, D., Sanctis, G. De, Doltra, J., Fereres, E., Folberth, C., Garcia-Vila, M., Gayler, S., Hoogenboom, G., Hunt, L.A., Izaurralde, R.C., Jabloun, M., Jones, C.D., Kersebaum, K.C., Kimball, B.A., Koehler, A.-K., Kumar, S.N., Nendel, C., O’Leary, G., Olesen, J.E., Ottman, M.J., Palosuo, T., Prasad, P.V.V., Priesack, E., Pugh, T.A.M., Reynolds, M., Rezaei, E.E., Rötter, R.P., Schmid, E., Semenov, M.A., Shcherbak, I., Stehfest, E., Stöckle, C.O., Stratonovitch, P., Streck, T., Supit, I., Tao, F., Thorburn, P., Waha, K., Wall, G.W., Wang, E., White, J.W., Wolf, J., Zhao, Z., Zhu, Y., 2016. Similar estimates of temperature impacts on global wheat yield by three independent methods. Nat. Clim. Chang. 1, 1–8. doi:10.1038/nclimate3115

84. Lobell, D.B., Burke, M.B., 2010. On the use of statistical models to predict crop yield responses to climate change. Agric. For. Meteorol. 150, 1443–1452. doi:10.1016/j.agrformet.2010.07.008

85. Lobell, D.B., Tebaldi, C., 2014. Getting caught with our plants down: the risks of a global crop yield slowdown from climate trends in the next two decades. Environ. Res. Lett. 9, 074003. doi:10.1088/1748-9326/9/7/074003

86. Lobell, D.B., Burke, M.B., Tebaldi, C., Mastrandrea, M.D., Falcon, W.P., Naylor, R.L., 2008. Prioritizing Climate Change Adaptation Needs for Food Security in 2030. Science (80-. ). 319, 607–610. doi:10.1126/science.1152339

87. Luo, Q., Bellotti, W., Williams, M., Bryan, B., 2005. Potential impact of climate change on wheat yield in South Australia. Agric. For. Meteorol. 132, 273–285.

88. Magrin, G.O., Travasso, M.I., Dı´az, R.A., Rodrı´guez, R.O., 1997. Vulnerability of the agricultural

systems of Argentina to climate change. Clim. Res. 9, 31/36.

89. Maracchi, G., Sirotenko, O., Bindi, M., 2005. Impacts of present and future climate variability on agriculture and forestry in the temperate regions: Europe. Clim. Change 70, 117–135. doi:10.1007/s10584-005-5939-7

90. Reyenga, P.J., Howden, S.M., Meinke, H., McKeon, G.M., 1999. Modelling global change impacts on wheat cropping in south-east Queensland, Australia. Environ. Model. Softw. 14, 297–306. doi:http://dx.doi.org/10.1016/S1364-8152(98)00081-4

91. Menzhulin, G.V., Koval, L.A., Badenko, A.L., 1995. Potential effects of global warming and carbon

dioxide on wheat production in the Commonwealth of Independent States. In: Rosenzweig, C.,

et al. (Eds.), Climate Change and Agriculture: Analysis of Potential International Impact. ASA

Special Publication 59, Madison, WI, pp. 275/292.

Page 17: Comparison with previous analysis and historical data · of feeding the planet this century” 1. Comparison with previous analysis and historical data Largest and only global meta-analysis

92. Mereu, V., Carboni, G., Gallo, A., Cervigni, R., Spano, D., 2015. Impact of climate change on staple food crop production in Nigeria. Clim. Change 132, 321–336. doi:10.1007/s10584-015-1428-9

93. Moriondo, M., Giannakopoulos, C., Bindi, M., 2011. Climate change impact assessment: The role of climate extremes in crop yield simulation. Clim. Change 104, 679–701. doi:10.1007/s10584-010-9871-0

94. Motha, R.P., Baier, W., 2005. Climate Variability on Agriculture in the Temperate Regions: North America. Clim. Change 70, 137–164. doi:10.1007/s10584-005-5940-1

95. Muchena, P., Iglesias, A., 1995. In: Rosenzweig, C., et al. (Eds.), Climate Change and Agriculture:

Analysis of Potential International Impacts, American Society of Agronomy Special Publication

59, Madison, Wisconsin. pp. 229–239.

96. Müller, C., Bondeau, A., Popp, A., Waha, K., Fader, M., 2010. Climate Change Impacts on Agricultural Yields, Background note to the World Development Report.

97. Nelson, G.C., Rosegrant, M.W., Koo, J., Robertson, R., Sulser, T., Zhu, T., Ringler, C., Msangi, S., Palazzo, A., Batka, M., Magalhaes, M., Valmonte-Santos, R., Ewing, M., Lee, D., 2009. Climate change: impact on agriculture and costs of adaptation. doi:10.2499/089629535

98. Bindi, M., Olesen, J.E., 2011. The responses of agriculture in Europe to climate change. Reg. Environ. Chang. 11, 151–158. doi:10.1007/s10113-010-0173-x

99. Osborne, T., Rose, G., Wheeler, T., 2013. Variation in the global-scale impacts of climate change on crop productivity due to climate model uncertainty and adaptation. Agric. For. Meteorol. 170, 183–194. doi:http://dx.doi.org/10.1016/j.agrformet.2012.07.006

100. Panturat, S. & A. Eddy, 1990. Some impacts of rice yield from changes in the variance of precipitation. Clim. Bull. 24:16-26

101. Parry, M.L., 2002. Scenarios for climate impact and adaptation assessment. Glob. Environ. Chang. 12, 149–153. doi:10.1016/S0959-3780(02)00038-9

102. Pashiardis, S. and Michaelides, S. 1989, 'Modelling the Growth and Development of

Hordeum Vulgare L.: "A Dynamic Simulation Approach for Practical Applications in a Semi-Arid

Mediterranean Environment"'. The agro-meteorology of barley-based farming systems, Tunis, 6-

10 March 1989.

103. Olesen, J.E., Trnka, M., Kersebaum, K.C., Skjelvåg, A.O., Seguin, B., Peltonen-Sainio, P., Rossi, F., Kozyra, J., Micale, F., 2011. Impacts and adaptation of European crop production systems to climate change. Eur. J. Agron. 34, 96–112. doi:10.1016/j.eja.2010.11.003

104. Piao, S., Ciais, P., Huang, Y., Shen, Z., Peng, S., Li, J., Zhou, L., Liu, H., Ma, Y., Ding, Y., Friedlingstein, P., Liu, C., Tan, K., Yu, Y., Zhang, T., Fang, J., 2010. The impacts of climate change on water resources and agriculture in China. Nature 467, 43–51. doi:10.1038/nature09364

105. Porter JR, Semenov MA (2005) Crop responses to climatic variation. Philos Trans R Soc

Lond, B 360 (1463):2021–2036

106. Qian, B., De Jong, R., Huffman, T., Wang, H., Yang, J., 2016. Projecting yield changes of spring wheat under future climate scenarios on the Canadian Prairies. Theor. Appl. Climatol. 123, 651–669. doi:10.1007/s00704-015-1378-1

107. Qureshi, A. and D. Hobble, 1994: Climate Change in Asia: Thematic Overview. Asian

Development Bank, Manila, Philippines, 351 pp.

108. Reilly, J., Tubiello, F., McCarl, B., Abler, D., Darwin, R., Fuglie, K., Hollinger, S., Izaurralde, C., Jagtap, S., Jones, J., Mearns, L., Ojima, D., Paul, E., Paustian, K., Riha, S., Rosenberg, N.,

Page 18: Comparison with previous analysis and historical data · of feeding the planet this century” 1. Comparison with previous analysis and historical data Largest and only global meta-analysis

Rosenzweig, C., 2003. U.S. Agriculture and Climate Change: New Results. Clim. Change 57, 43–69. doi:10.1023/A:1022103315424

109. Ren, X., Weitzel, M., O’Neill, B., Lawrence, P., Meiyappan, P., Levis, S., Balistreri, E.J., Dalton, M., 2015. Avoided economic impacts of climate change on agriculture: Integrating a land surface model (CLM) with a global economic model (iPETS). Clim. Change. doi:10.1007/s10584-016-1791-1

110. Reyenga, P.J., Howden, S.M., Meinke, H., McKeon, G.M., 1999. Modelling global change impacts on wheat cropping in south-east Queensland, Australia. Environ. Model. Softw. 14, 297–306. doi:http://dx.doi.org/10.1016/S1364-8152(98)00081-4

111. Rose, G., Osborne, T., Greatrex, H., Wheeler, T., 2016. Impact of progressive global warming on the global-scale yield of maize and soybean. Clim. Change 134, 417–428. doi:10.1007/s10584-016-1601-9

112. Rosenzweig, C., Elliott, J., Deryng, D., Ruane, A.C., Müller, C., Arneth, A., Boote, K.J., Folberth, C., Glotter, M., Khabarov, N., Neumann, K., Piontek, F., Pugh, T. a M., Schmid, E., Stehfest, E., Yang, H., Jones, J.W., 2014. Assessing agricultural risks of climate change in the 21st century in a global gridded crop model intercomparison. Proc. Natl. Acad. Sci. 111, 3268–3273. doi:10.1073/pnas.1222463110

113. Rosenzweig, Cynthia, and Ana Iglesias. 2000. Potential Impacts of Climate Change on

World Food Supply, v 1 (1995 – 2110). Palisades, NY: Socioeconomic Data and Applications

Center (SEDAC), Columbia University. Available at

http://sedac.ciesin.columbia.edu/data/set/crop-climate-potential-impacts-world-food-supply

114. R€otter, R., Veeneklaas, F., Van Diepen, C., 1995. Impacts of changes in climate and

socio-economic factors on land use in the Rhine basin: projections for the decade 2040e49.

Stud. Environ. Sci. 65, 947e950.

115. Rowhanji, P., Lobell, D., Lindermann, M., and Ramankutty, N. 2011. Climate variability

and crop production in Tanzania. Agriculture and Forest Meteorology 151(4): 449-460

116. Salni, A.D., Nanda, R., 1987. Analysis of temperature and photo- period response to

flowering in wheat. Indian Agric. Sci. 57, 351-359.

117. Sala OE, Paruelo JM (1994) Impacts of global climate change on maize production in

Argentina. In. Rosenzweig C, Igle- sias A (eds) Implications of climate change for international

agriculture: crop modelling study. US EPA 230-B-94-003, Washington DC

118. Wolfram, S., Lobell, D.B., 2010. Robust negative impacts of climate change on African agriculture. Environ. Res. Lett. 5, 1–8. doi:10.1088/1748-9326/5/1/014010

119. Schlenker, W., Roberts, M.J., 2009. Nonlinear temperature effects indicate severe damages to U.S. crop yields under climate change. Proc. Natl. Acad. Sci. 106, 15594–15598. doi:10.1073/pnas.0906865106

120. Brklacich, M., Smit, B., 1992. Implications of changes in climatic averages and variability on food production opportunities in Ontario, Canada. Clim. Change 20, 1–21. doi:10.1007/BF00144106

121. Shen, S.-H., Yang, S.-B., Zhao, Y.-X., Xu, Y.-L., Zhao, X.-Y., Wang, Z.-Y., Liu, J., Zhang, W.-W., 2011. Simulating the rice yield change in the middle and lower reaches of the Yangtze River under SRES B2 scenario. Acta Ecol. Sin. 31, 40–48.

122. Sinha SK, Swaminathan MS (1991) Deforestation, climate change and sustainable

nutrition security—a case-study of India. Clim Change 19(1–2):201–209

123. Sinha, S.K. 1989, Impact of climate change on agriculture in India. Personal

communication, 10pp

Page 19: Comparison with previous analysis and historical data · of feeding the planet this century” 1. Comparison with previous analysis and historical data Largest and only global meta-analysis

124. Siqueira, O. J., Farias, J. R. B., and Sans, L. M. A.: 1994, ‘Potential Effects of Global

Climate Change on Brazilian Agriculture: Applied Simulation Studies for Wheat, Maize, and

Soybeans’, in Implications of Climate Change for International Agriculture: Crop Modeling

Study,EPA 230-B-94-003

125. Abashina, E. V, Sirotenko, O.D., 1986. An applied dynamic model of crop formation for modeling agrometeorological support systems. Tr. VNIISKhM 13–33.

126. Smit, B., Brklacich, M., Steward, R.B., McBride, R., Brown, M., Bond, D., 1989. Sensitivity of crop yields and land resource potential to climatic change in Ontario, Canada. Clim. Change 14, 153–174.

127. Southworth, J., Randolph, J.C., Habeck, M., Doering, O.C., Pfeifer, R.A., Rao, D.G., Johnston, J.J., 2000. Consequences of future climate change and changing climate variability on maize yields in the midwestern United States. Agric. Ecosyst. Environ. 82, 139–158. doi:10.1016/S0167-8809(00)00223-1

128. Squire, G.R. and Unsworth, M.H. 1988, 'Effects of C02 and Climatic Change on

Agriculture', Contract Report to Department of the Environment, Department of Physiology and

Environmental Science, University of Nottingham.

129. Iglesias, Ana, and Cynthia Rosenzweig. 2010. Effects of Climate Change on Global Food

Production under Special Report on Emissions Scenarios (SRES) Emissions and Socioeconomic

Scenarios: Data from a Crop Modeling Study. Palisades, NY: Socioeconomic Data and

Applications Center (SEDAC), Columbia University. Available at

http://sedac.ciesin.columbia.edu/mva/cropclimate

130. Srivastava, A., Naresh Kumar, S., Aggarwal, P.K., 2010. Assessment on vulnerability of sorghum to climate change in India. Agric. Ecosyst. Environ. 138, 160–169. doi:10.1016/j.agee.2010.04.012

131. Sugihara, S., 1991: A simulation of rice production in Japan by rice-weather production

model. Kikogaku-Kishogaku Kenkyu Hokoku , 16, 32-37.

132. Tao, F., Zhang, Z., 2013. Climate change, high-temperature stress, rice productivity, and water use in Eastern China: A new superensemble-based probabilistic projection. J. Appl. Meteorol. Climatol. 52, 531–551. doi:10.1175/JAMC-D-12-0100.1

133. Tao F, Yokozawa M, Zhang Z (2009a) Modelling the impacts of weather and climate

variability on crop productivity over a large area: a new process-based model development,

optimization, and uncertainties analysis. Agricultural and Forest Meteorology, 149, 831–850.

134. Terjung, W.H., Ji, H-Y., Hayes, J.T., O'Rourke, P.A. and Todhunter, P.E. 1984, 'Actual and

potential yield for rain fed and irrigated maize in China'. International Journal of

Biometeorology, 28, pp. 115-135.

135. Thomson, A.M., Brown, R.A., Rosenberg, N.J., Izaurralde, R.C., Benson, V., 2005. Climate Change Impacts for the Conterminous USA: An Integrated Assessment. Clim. Change 69, 43–65. doi:10.1007/s10584-005-3612-9

136. Thornton, P.K., Jones, P.G., Alagarswamy, G., Andresen, J., 2009. Spatial variation of crop yield response to climate change in East Africa. Glob. Environ. Chang. 19, 54–65. doi:10.1016/j.gloenvcha.2008.08.005

137. Thornton, P.K., P.G. Jones, P.J. Ericksen, and A.J. Challinor. 2011. Agriculture and food

systems in sub-Saharan Africa in a 4°C+ world. Philosophical Transactions of the Royal Society A:

Mathematical, Physical and Engineering Sciences 369(1934):117–136.

Page 20: Comparison with previous analysis and historical data · of feeding the planet this century” 1. Comparison with previous analysis and historical data Largest and only global meta-analysis

138. Thornton, P.K., Jones, P.G., Alagarswamy, G., Andresen, J., Herrero, M., 2010. Adapting to climate change: Agricultural system and household impacts in East Africa. Agric. Syst. 103, 73–82. doi:10.1016/j.agsy.2009.09.003

139. Tingem, M., Rivington, M., Bellocchi, G., Azam-Ali, S., Colls, J., 2008. Effects of climate change on crop production in Cameroon. Clim. Res. 36, 65–77. doi:10.3354/cr00733

140. Tsvetsinskaya, E.A., Mearns, L.O., Mavromatis, T., Gao, W., McDaniel, L., Downton, M.W., 2003. THE EFFECT OF SPATIAL SCALE OF CLIMATIC CHANGE SCENARIOSON SIMULATED MAIZE, WINTER WHEAT, AND RICE PRODUCTIONIN THE SOUTHEASTERNUNITED STATES. Clim. Change 60, 37–72. doi:10.1023/A:1026056215847

141. Tubiello, F.N., Donatelli, M., Rosenzweig, C., Stockle, C.O., 2000. Effects of climate change and elevated CO2 on cropping systems: Model predictions at two Italian locations. Eur. J. Agron. 13, 179–189. doi:10.1016/S1161-0301(00)00073-3

142. Tung, C., Haith, D.A., 1998. Climate change, irrigation, and crop response. JAWRA J. Am. Water Resour. Assoc. 34, 1071–1085.

143. Van Diepen, C.A., Van Keulen, H., Penning de Vries, F.W.T., Noy, I.G.A.M. and Goudriaan,

J. 1987, ‘Simulated variability of wheat and rice yields in current weather conditions and in

future weather when ambient C02 has doubled'. In: Simulation Reports CABO-TT 14,

Wageningen.

144. Van Kooten, G.C, 1991: Economic Issues Relating to Climate Change Effects on Canada.

Working Paper 151, Department of Agricultural Economics, University of British Columbia,

Vancouver, Canada

145. Walker, N.J., Schulze, R.E., 2008. Climate change impacts on agro-ecosystem sustainability across three climate regions in the maize belt of South Africa. Agric. Ecosyst. Environ. 124, 114–124. doi:10.1016/j.agee.2007.09.001

146. Pal, J. S., Giorgi, F., Bi, X., Elguindi, N., Solmon, F., Gao, X., ... & Ashfaq, M. (2007). Regional climate modeling for the developing world: the ICTP RegCM3 and RegCNET. Bulletin of the American Meteorological Society, 88(9), 1395-1410.

147. Mkhabela, M.S., Bullock, P., Raj, S., Wang, S., Yang, Y., 2011. Crop yield forecasting on the Canadian Prairies using MODIS NDVI data. Agric. For. Meteorol. 151, 385–393. doi:10.1016/j.agrformet.2010.11.012

148. Xiong, W., E. Lin, H. Ju and Y. Xu, 2007. Climate change and critical thresholds in China’s

food security. Climatic Change, March 2007, Volume 81, Issue 2, pp 205-221

149. Xiong, W., Conway, D., Lin, E, and Holman, I. 2009. Potential impacts of climate change

and climate variability on China’s rice yield and production. Climate Research 40: 23-35

150. Xiao, G., W. Liu, Q. Xu, Z. Sun, and J. Wang, 2005. Effects of temperature increase and

elevated CO2 concentration, with supplemental irrigation, on the yield of rain-fed spring wheat

in a semiarid region of China. Agricultural Water Management 74: 243-255.

151. Wang, M., Li, Y., Ye, W., Bornman, J., Yan, X. 2011. Effects of climate change on maize

production, and potential adaptation measures: a case study in Jilin Province, China. Climate

Research 46:223-242

152. Winters P., R. Murgai, E. Sadoulet, A.D. Janvry, and G. Frisvold, 1998. Economic and

Welfare Impacts of Climate Change on Developing Countries. Environmental and Resource

Economics 12: 1-24.

Page 21: Comparison with previous analysis and historical data · of feeding the planet this century” 1. Comparison with previous analysis and historical data Largest and only global meta-analysis

153. Yates, D.N. and K.M. Strzepek. 1998. An Assessment of Integrated Climate Change

Impacts on the Agricultural Economy of Egypt. Climatic Change 38: 261-287

154. Zhang, X. C. and W. Z. Liu, 2005. Simulating potential response of hydrology, soil

erosion, and crop productivity to climate change in Changwu tableland region on the Loess

Plateau of China. Agricultural and Forest Meteorology 131: 127-142.

155. Zhao Y., C. Wang, S. Wang, and L.V. Tibig, 2005. Impacts of Present and Future Climate

Variability on Agriculture and Forestry in the Humid and Sub-Humid Tropics. Climatic Change 70:

73-116.

156. Yoshino, M.M., T. Horie, H. Seino, H. Tsujii, T. Uchijima & Z. Uchijima. 1988a. The effects

of climate variations on agriculture in Japan. In: The Impact of Climate Variations on Agriculture.

Vol. 1: Assessments in Cool Temperate and Cold Regions. (M.L. Parry, T.R. Carter & N.T. Konijn,

eds). Kluwer Academic Publishers, Dor- drecht, The Netherlands, pp. 725-865.

157. Yoshino, M., Z. Uchijima & H. Tsujii. 1988b. The implications for agricultural policies and

planning. In: The Impact of climatic Variations on Agriculture. Vol. 1: Assessments in Cool

Temperate and Cold Regions. (M.L. Parry, T.R. Carter & N.T. Konijn. eds). Kluwer Academic

Publishers, Dordrecht. The Netherlands. pp. 853-868.

Page 22: Comparison with previous analysis and historical data · of feeding the planet this century” 1. Comparison with previous analysis and historical data Largest and only global meta-analysis

Supplementary References 1. A. J. Challinor et al., A meta-analysis of crop yield under climate change and adaptation. Nat.

Clim. Chang. 4, 287–291 (2014).

2. J. Knox, A. Daccache, T. Hess, D. Haro, Meta-analysis of climate impacts and uncertainty on crop

yields in Europe. Environ. Res. Lett. 11, 113004 (2016).

3. J. Knox, T. Hess, A. Daccache, T. Wheeler, Climate change impacts on crop productivity in Africa

and South Asia. Environ. Res. Lett. 7, 034032 (2012).

4. C. Zhao et al., Temperature increase reduces global yields of major crops in four independent

estimates. Proc. Natl. Acad. Sci. 114, 9326–9331 (2017).

5. L. Drouet, V. Bosetti, M. Tavoni, Selection of climate policies under the uncertainties in the Fifth

Assessment Report of the IPCC. Nat. Clim. Chang. 5, 937–940 (2015).

6. D. B. Lobell, W. Schlenker, J. Costa-Roberts, Climate Trends and Global Crop Production Since

1980. Science (80-. ). 333, 616–620 (2011).

7. S. Asseng et al., Rising temperatures reduce global wheat production. Nat. Clim. Chang. 5, 143–

147 (2015).

8. D. B. Lobell, C. B. Field, Global scale climate–crop yield relationships and the impacts of recent

warming. Environ. Res. Lett. 2, 014002 (2007).

9. U. Cubasch et al., in Climate Change 2013 - The Physical Science Basis, Intergovernmental Panel

on Climate Change, Ed. (Cambridge University Press, Cambridge, 2013;

http://ebooks.cambridge.org/ref/id/CBO9781107415324A015), pp. 119–158.

10. C. Lesk, P. Rowhani, N. Ramankutty, Influence of extreme weather disasters on global crop

production. Nature. 529, 84–87 (2016).