comparison of measured and modeled snow brightness temperature using various field techniques for...

24
Comparison of Measured and Modeled Snow Brightness Temperature Using Various Field Techniques for Grain Size Measurement Edward KIM NASA Goddard Space Flight Center Michael DURAND Ohio State University Noah MOLOTCH University of Colorado, Boulder Daniel F. BERISFORD Jet Propulsion Laboratory Steven MARGULIS University of California Los Angeles Zoe COURVILLE Cold Regions Research and Engineering Laboratory

Upload: huy

Post on 26-Feb-2016

39 views

Category:

Documents


1 download

DESCRIPTION

Comparison of Measured and Modeled Snow Brightness Temperature Using Various Field Techniques for Grain Size Measurement. Edward KIM  NASA Goddard Space Flight Center Michael DURAND Ohio State University Noah MOLOTCH University of Colorado, Boulder - PowerPoint PPT Presentation

TRANSCRIPT

Page 1: Comparison of Measured and Modeled Snow Brightness Temperature  Using Various Field Techniques  for Grain Size Measurement

Comparison of Measured and Modeled Snow Brightness Temperature Using Various Field Techniques

for Grain Size Measurement

Edward KIM  NASA Goddard Space Flight CenterMichael DURAND Ohio State UniversityNoah MOLOTCH University of Colorado, BoulderDaniel F. BERISFORD Jet Propulsion LaboratorySteven MARGULIS University of California Los AngelesZoe COURVILLE Cold Regions Research and Engineering Laboratory

Page 2: Comparison of Measured and Modeled Snow Brightness Temperature  Using Various Field Techniques  for Grain Size Measurement

Outline

• Problem statement• Our approach• Description of snow field 

measurements• EM models• Microwave radiometer• Tb comparison results• Summary & Conclusions

Page 3: Comparison of Measured and Modeled Snow Brightness Temperature  Using Various Field Techniques  for Grain Size Measurement

The Problem with Snow Remote Sensing and “Grain Size”

• For microwave remote sensing of snow, accurate grain size numbers are extremely important to have because…

• the microwave signature of snow is highly sensitive to grain size• Unfortunately “grain size” is not easy to quantify accurately, 

especially in the field• So what is the “best” way to measure grain size in the field for 

use in microwave snow emission models?

Page 4: Comparison of Measured and Modeled Snow Brightness Temperature  Using Various Field Techniques  for Grain Size Measurement

How to determine a “best” grain size field measurement technique?

• What do we really need?• What do we already have?• How do we compare (and will 

anyone else believe our results)?– What are we going to use as “truth”?

• What is practical?

Page 5: Comparison of Measured and Modeled Snow Brightness Temperature  Using Various Field Techniques  for Grain Size Measurement

Our Approach• Field Measurements

– Small campaign: 6 days, 1 snow pit per day– Limited set of techniques; side-by-side– Stereology chosen as “truth”– Location: Storm Peak Lab, Steamboat, Colorado, USA

• Brightness Temperature Comparison– Try 2 EM models, both multi-layer– Grain size & stratigraphy info fed into EM models– Models output brightness temperatures (Tb)– Compare model Tb vs. observed Tb

Page 6: Comparison of Measured and Modeled Snow Brightness Temperature  Using Various Field Techniques  for Grain Size Measurement

Grain Size Measurement Techniques

• Hand lens• NIR photography• Spectroscopy– Contact– New probe

• Stereology

Page 7: Comparison of Measured and Modeled Snow Brightness Temperature  Using Various Field Techniques  for Grain Size Measurement

Hand lens grain size measurements

• Plenty of precedent (e.g., CLPX)• Non-repeatable (e.g., two pits one meter apart; different days, plus 

user variations; ‘B’ pit was in the radiometer FOV)

Pex & Dmax related as inDurand, Kim, Margulis, 2008

Pit BPit A

Page 8: Comparison of Measured and Modeled Snow Brightness Temperature  Using Various Field Techniques  for Grain Size Measurement

NIR Camera grain size

• Repeatable (in theory)• Empirically-based (transferability?)

Matzl and Schneebeli, 2006

Mätzler, 2002

PackDepth ~1m

1m

Page 9: Comparison of Measured and Modeled Snow Brightness Temperature  Using Various Field Techniques  for Grain Size Measurement

Contact Spectroscopy

• Measures reflectance across entire VIS/IR range

• Reflectance varies with grain size (see plot at right)

• Vertical resolution ~2cm• Requires commercial 

spectrometer ($$)• Requires dark tarp to block 

unwanted background light

Page 10: Comparison of Measured and Modeled Snow Brightness Temperature  Using Various Field Techniques  for Grain Size Measurement

Spectral Profiler Probe Prototype• Sends an optical package 

into a slotted sleeve inserted into the snowpack to perform contact spectroscopy in-situ, w/o snowpit.

• Black tarp not shown to block light at base.

Page 11: Comparison of Measured and Modeled Snow Brightness Temperature  Using Various Field Techniques  for Grain Size Measurement

Spectral Profiler Probe

• Send optics down hole• Lateral reflectance spectra• Fiber optic sends signal to 

spectrometer on surface• No snowpit needed!

• Prototype unit; 1st field trial, so analysis still in progress

probe carrier body

drive tube

optical camera

spectral reflectance probe

nylon brush

aluminum sleeve

fiber optic to spectrometer

Page 12: Comparison of Measured and Modeled Snow Brightness Temperature  Using Various Field Techniques  for Grain Size Measurement

Stereology grain size (1/4)

• 3D cast of actual snow grain structure made with dimethyl phthalate• Frozen in field with dry ice (stop metamorphism)• Shipped to CRREL for processing in cold room• Relatively well-known technique, but logistically intensive

Perla & Davis, 1980’s & earlier references Matzl and Schneebeli, 2010

Page 13: Comparison of Measured and Modeled Snow Brightness Temperature  Using Various Field Techniques  for Grain Size Measurement

Stereology grain size (2/4)

Time consuming laboratory work to cut and photograph: 20 slices / sample

Red line = 1mm

Page 14: Comparison of Measured and Modeled Snow Brightness Temperature  Using Various Field Techniques  for Grain Size Measurement

Stereology grain size (3/4)

• Cycloids overlaid on image for estimating surface area• Time-consuming manual counting work• Yields SSA directly, but then need to convert to pex for MEMLS

Matzl and Schneebeli, 2010

Red line = 1mm

L=total length of cycloid linesI=# of intersections crossedv=ice volume fractionDo= optical equiv. grain size

Page 15: Comparison of Measured and Modeled Snow Brightness Temperature  Using Various Field Techniques  for Grain Size Measurement

Stereology grain size (4/4)

• Image is classified as air or ice• Draw line through image, compute autocorrelation, do for each vertical line• Exponential is fit to true autocorrelation function

Wiesmann et al., 1998

Page 16: Comparison of Measured and Modeled Snow Brightness Temperature  Using Various Field Techniques  for Grain Size Measurement

EM models

• MEMLS• Multi-layer HUT

Page 17: Comparison of Measured and Modeled Snow Brightness Temperature  Using Various Field Techniques  for Grain Size Measurement

MEMLS sensitivity of Tb to grain size 

• Vertically averaged optical equivalent grain size from pit

• Run MEMLS• Sensitivity is the tangent 

to the curve• For this grain size (vertical 

line), sensitivity is similar for 19 & 37 GHz

• To achieve 5K Tb accuracy, need 10% grain size accuracy, so for typical grain size, this means 

Page 18: Comparison of Measured and Modeled Snow Brightness Temperature  Using Various Field Techniques  for Grain Size Measurement

Radiometric measurements

• Brightness measured daily for three days at 19 and 37 GHz, v-pol

Page 19: Comparison of Measured and Modeled Snow Brightness Temperature  Using Various Field Techniques  for Grain Size Measurement

Results & Discussion

• Grain size & stratigraphy info fed into EM models

• Models output brightness temperatures (Tb)• Compare model Tb vs. observed Tb

Page 20: Comparison of Measured and Modeled Snow Brightness Temperature  Using Various Field Techniques  for Grain Size Measurement

MEMLS (pex) vs. observations

• Bias and mean absolute error < 5 K• No empirical tuning factors required!• Based on laboratory work

Page 21: Comparison of Measured and Modeled Snow Brightness Temperature  Using Various Field Techniques  for Grain Size Measurement

• 19v observed: 249 K• 19v modeled: 230 K 

(similar for SPL5 and SPL6)

•  • 37v observed: 230 K• 37v modeled: 153 

K (similar for SPL5 and SPL6)

•  • The 19v is off by 20 K, and 

the 37v is off by 80 K. Averaged together, and you have 50 K. 

Multi-layer HUT results

Page 22: Comparison of Measured and Modeled Snow Brightness Temperature  Using Various Field Techniques  for Grain Size Measurement

MEMLS results

Page 23: Comparison of Measured and Modeled Snow Brightness Temperature  Using Various Field Techniques  for Grain Size Measurement

Multi-layer HUT results

• Note: HUT is set up to use hand lens Dmax measurements, so we’ve compared that to MEMLS hand lens, and then to MEMLS stereology as a reference

Page 24: Comparison of Measured and Modeled Snow Brightness Temperature  Using Various Field Techniques  for Grain Size Measurement

Summary & Conclusions• Used hand lens, spectroscopy, NIR, & stereology methods to measure grain 

size; stereology was our ‘truth’• Used the grain size/correlation length to drive EM models (MEMLS, multi-

layer HUT)• Compared EM model Tb’s vs. observed Tb’s (‘truth’)• Using lab-based methods, Tb errors are 5-8 K• Using field-based methods, Tb errors are ~10 K• For error <=5K, need grain size accurate to ~10% ==> 20-100um• Using pex directly from stereology, no tuning empirical factor is required• Using SSA, an empirical factor (0.74) is required to get the right Tb – 

attested to in literature (Mätzler, 2002)• Need further examination of multi-layer HUT to understand apparent cold 

bias