comparing accelerated testing and outdoor exposure · 2014. 1. 24. · mod module temperature t amb...

30
COMPARING ACCELERATED TESTING AND OUTDOOR EXPOSURE Michael Köhl Fraunhofer Institute for Solar Energy Systems ISE 3rd PV Rollout Conference Workshops – 2013 requirements for bankable pv modules and pv power plants Metro Atlanta Chamber, USA - February 25th, 2013 www.ise.fraunhofer.de © Fraunhofer ISE

Upload: others

Post on 27-Feb-2021

3 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: Comparing Accelerated Testing and Outdoor Exposure · 2014. 1. 24. · mod module temperature T amb ambient temperature wind velocity H solar radiation U1 U0 a-Si 1 10,7 25,7 a-Si

COMPARING ACCELERATED TESTING AND OUTDOOR EXPOSURE

Michael Koumlhl

Fraunhofer Institute for Solar Energy Systems ISE

3rd PV Rollout Conference Workshops ndash 2013

requirements for bankable pv modules

and pv power plants

Metro Atlanta Chamber USA - February 25th 2013

wwwisefraunhoferde

copy Fraunhofer ISE

Challengeslt

The durability is very good for most of the actual premium c-Si modules on the market (less than 1 loss in performance per year)

But new materials and designs have to be developed in order to decrease costs

bull Accelerated service life tests are needed for optimisation of the durability and convincing investors

bull The longer the desired lifetime the higher the needed acceleration factor the bigger the unsecurity of the tests

bull The tests should be based on real stress in the field because usually the materials and their degradation processes are not known

copy Fraunhofer ISE

Stress-factors at operation of PV-modules

Moisture causes hydrolysis and corrosion (Acetic acid from EVA)

Electrical potentials introduce leakage currents and reduction of cell efficiency

UV ndash irradiation causes destruction of polymeric components

Photo-degradation

Temperature cycling static oder dynamic mechanical loads lead to

Cell-breakage inter-connecture breakage delamination

Salt heat (high temperatures)

copy Fraunhofer ISE

Example for development of Accelerated Life Testingltbased on real stresses during operation of PV-moduleslt

Moisture causes hydrolysis and corrosion

Electrical potentials introduce leakage currents and reduction of cell efficiency

UV ndash irradiation causes destruction of polymeric components

Photo-degradation

Temperature cycling static oder dynamic mechanical loads lead to tensions

Cell-breakage inter-connecture breakage delamination

Salt heat (high temperatures)

copy Fraunhofer ISE

1 Monitoring climatic conditions Ambient climate and sample temperatures as 1min averaged time series

Corrosivity salt concentration as yearly or monthly dose

City or reference

Freiburg Germany

Alpine

Zugspitze

Germany

Arid

Sede Boqer

Israel

Tropical

Serpang

Indonesia (operated by TUumlV Rheinland

Maritime

Pozo Izquierdo

Gran Canaria

copy Fraunhofer ISE

Tamb

2 Monitoring micro-climatic stress factors

Module temperature monitoring during outdoor exposure

Macro ndash climate =gt Micro ndash climate

Ambient temperature Average module temperature (c-Si)

Tropics

temperature [degC] temperature [degC] -20 -10 0 10 20 30 40 50 60 70

0

200

400

600

800

1000

1200

1400

1600

-20 -10 0 10 20 30 40 50 60 0

200

400

600

800

1000

1200

1400

1600

frequ

ency

[h]

TavgDesert

Alpes

copy Fraunhofer ISE

v

3 Modeling micro-climatic stress factors Physical modeling of module temperature for each of the different module types using David

Faimanlsquos approach (could be King Fuenteshelliphellipas well)

Macro ndash climate =gt Micro ndash climate

Irradiation wind ambient temperature =gt Tmod

Neglected IR-radiation exchange and natural convection

HT T mod amb 10 UU v

Tmod module temperature

Tamb ambient temperature

wind velocity

H solar radiation

U1 U0 a-Si 1 107 257 a-Si 3 58 258 a-Si 4 43 261

CIS 1 31 230 CIS 2 41 250 CdTe 54 234 c-Si 62 300

The parameters U are module-specific but location independent

MKoehl etal Modelling of the nominal operating cell temperature copy Fraunhofer ISE based on outdoor weathering Sol Energy Mat Sol Cells (2011)

60

3 Modeling micro-climatic stress factors

Module-temperature as time-series based on ambient climate data and as histograms (one year)

tem

pera

ture

[degC

]

Tair5000

50

module

4000

3500

300040

Freu

ency

0 20 40 60 8

a-Si 1 a-Si 2 a-Si 3 a-Si 4 CIS 1 CIS 2 CdTe c-Si

T 4500

2500

2000

1500

1000

30

20 500

0 10

222 223 224 225 time [d] Temperature in degC

copy Fraunhofer ISE

Rel

wat

er c

once

ntra

tion

[au

]

3 Modeling micro-climatic stress factors

Simulation of module humidity by FEM

Damp-heat testing 85rh 85degC J Wirth Diplomarbeit Diploma Thesis University of Freiburg 20

copy Fraunhofer ISE J P Huumllsmann et alsu bmitted to Solar Energy MaterialsampSolar Cells

3 Modeling micro-climatic stress factors

Phenomenological modelling of moisture impact

1) Humidity at the module surface

rh (Tmod) = rh (Tamb) Psat (Tmod) Psat (Tamb)

102) Put more weight on high moisture levels

rheff =1 (1+ 100exp(-94 rh)) 08

06

04

3) Humidity level at test conditions (85rh) 02

ti = ti rheff 085 00

222 223 224 225 0

20

40

60

80

100

rH [

]

air

rH micro climate

rH

time [d]

0 02 04 06 08 1

M Koehl et al Solar Energy Materials amp Solar Cells 99 (2012) 282ndash291 copy Fraunhofer ISE

4 Time-transformation functions for major degradation processes

4) Process kinetics depend on module temperature (Time Transformation Function)

ttest = Lifetime (years) 6i ti(rheff Tmodi) exp [-(Ea R)(1Ttest - 1Tmodi)]

Ea = activation energy for the rate dominating degradation process

copy Fraunhofer ISE

5 Modeling corresponding ALT ndash conditions for micro-climatic stress factors

Testing time at 85rh85degC for 25 years lifetime

100000

100

1000

10000

test

ing

time

85

degC [h

]

tropical arid alpine

20 40 60 80 100 120

Example

Time to failure 85degC85rh

3000h

Ea gt 35 kJmol for alpine climates

Ea gt 50 kJmol for arid climates

Ea gt 60 kJmol for tropical climates

Activation energy [kJmol]Type approval test would be sufficient for Ea gt 80 kJmol

copy Fraunhofer ISE

6 Evaluation of the parameters for time-transformation functions by ALT

Testing of c-Si modules from 7 different manufacturers

Nor

mal

ised

pow

er

mpp

Damp-Heat at 85degC and 85 rel humidity Damp-Heat at 90degC and 85 rel humidity

11 11

10 10

Nor

mal

ised

pow

er

mpp

09 09

08 08

07 07

06 06

05

04

05

04

03 03

02 02

01 -500 0 500 1000 1500 2000 2500 3000 3500 4000 4500 -500 0 500 1000 1500 2000 2500 3000 3500 4000 4500

Exposure time h Exposure time h

01

copy Fraunhofer ISE

6 Evaluation of the parameters for time-transformation functions by ALT

Damp-heat testing at 85rh85degC module 1 und module 2

Exposure time hlt

-500 0 500 1000 1500 2000 2500 3000 3500 4000 4500 03

04

05

06

07

08

09

10

11

Module 1

Module 2

No

rmal

ised

po

wer

m

pp

2400h 3300h

85degC

copy Fraunhofer ISE

6 Evaluation of the parameters for time-transformation functions by ALT Damp-heat testing at 85rh85degC and 90degC module 1 und module 2

Exposure time h

-500 0 500 1000 1500 2000 2500 3000 3500 4000 4500 03

04

05

06

07

08

09

10

11

Module 1

Module 2

No

rmal

ised

po

wer

m

pp

2400h 3300h

copy Fraunhofer ISE

6 Evaluation of the parameters for time-transformation functions by ALT Damp-heat testing at 85rh85degC and 90degC module 1 und module 2

Exposure time h

-500 0 500 1000 1500 2000 2500 3000 3500 4000 4500 03

04

05

06

07

08

09

10

11

Module 1 65 kJmol Module 2 33 kJmol

No

rmal

ised

po

wer

m

pp

2400h 3300h

a = exp [-(Ea R)(1T1 ndash 1T2)]

copy Fraunhofer ISE

6 Evaluation of the parameters for time-transformation functions by ALT

P = G(1+ (G001-1) exp(-(t-tind (T))k(T)) ) 120120

100100 T=85degC 080080 Tind=2100h 060060 K=00082h 040040 G=026 020020

000000 0 1000 2000 3000 4000 5000 0 1000 2000 3000 4000 5000

1212

11 T=90degC 0808 Tind=1500h 0606 K=00115h 0404 G=026 0202

00 0 1000 2000 3000 4000 5000 0 1000 2000 3000 4000 5000

copy Fraunhofer ISE

0 100 100

0 080 080

0 060 060

0 040 040

0 020 020

0 000 0000 1000 2000 3000 4000 5000 0 1000 2000 3000 4000 5000 0 1000 2000 3000 4000 5000

0 1000 2000 3000 4000 5000

1200

1000

0800

0600

0400

0200

0000 0 1000 2000 3000 4000 5000

etime (85degC) [h] 2412 2576 2821 3047 3160 3227 3548 ivation energy [kJmol] 70 73 30 68 26 55 53

mate class A A C A C B B

Qualification for different stress levels or climate zones allows diversification of PV-modules

copy Fraunhofer ISE

Displacement on cell (cm)

Inte

nsity

(arb

uni

ts)

Degradation of the modules

Polymer Analysis by Raman-Spectroscopie

Comparison of the Vinyl-Band (red) and the fluorescence-background (black) unaged and after 4000h damp-heat-testing

Elektroluminescence-picture 70 14 of the degraded cells 65

60 12

55

50 10

45 08

40

35 06

30

25 04

20

15 02

10

5 00

0 -1 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Location above the cell [cm]

Average Ref_I(1660) Average 4000h dh_I(1660)

Average Ref_I(2863)I(2913) Average 4000h dh_I(2863)I(2913)

Inte

nsi

ty [

arb

un

its]

C Peike etal Non-destructive degradation analysis of encapsulants in PV modules copy Fraunhofer ISE by Raman Spectroscopy Sol En Mat Sol Cells (2011)

6 Evaluation of the service life time for different climates

Testing time at 85rh85degC for 25 years lifetime 100000

Climate classes

A Most severe moisture stress

B Moderate moisture stress

C Low moisture stress

test

ing

time

85

degC [h

]

tropical arid alpine

20 40 60 80 100 120

Activation energy [kJmol]

10000

1000

100

Assumptions

The measured stress levels are representative

The model for the kinetics is valid

The constant load DH test reflects reality

copy Fraunhofer ISE

4

100

1000

10000

Test

ing

time

8

5 C

[h]

tropical arid alpine

Nor

mal

ised

pow

er

mpp

7 Modeling expected degradation for validation by outdoor exposure

Power reduction after 3 years outdoor exposure lt 3

Exposure time has to be doubled

Equivalent to 3 years operation 11

10

09

08

07

06

05

04

03

02

01 0 20 40 60 80 100 -500 0 500 1000 1500 2000 2500 3000 3500 4000 C B A

Activation energy [kJmol] Exposure time h

copy Fraunhofer ISE

-66

7 Degradation effects during outdoor exposure

Changes of the electrical performance at the outdoor exposure site

Test site Tropical Arid Urban Alpine Average

Module 1 -15 -06 -09 -11 -10 2 -01 -11 -08 -47 -17 3 -10 -01 -05 13 -01 4 -32 -01 17 -21 5 -01 -22 -18 -08 -12

Average -12 -08 -05 -24 -12

After 3 years operation hardly out of the error bars

copy Fraunhofer ISE

7 Degradation effects during outdoor exposure

After 3 years on the alpes

copy Fraunhofer ISE

7 Degradation effects during outdoor exposure

Degradation of module materials - UV-induced fluorescencelt2 a alpine outdoor exposure 2 a desert outdoor exposure

Combination of electroluminescence and fluorescence

J Schlothauer et al Fluorescence imaging a powerful tool for the investigation of polymer copy Fraunhofer ISE

degradation in PV modules Photovoltaics International journal November 2010

7 Degradation effects during outdoor exposure

Browning and photo-bleaching - UV-induced fluorescencelt

Combination of electroluminescence and fluorescenc

2 a desert outdoor exposure

copy Fraunhofer ISE

7 Degradation effects during outdoor exposure

a) Tropical

b) Arid

c) Moderate

d) Alpine

Effect of outdoor weathering on fluorescence spectra

UV

-rad

iatio

n

Moi

stur

e le

vel

Module types

J Schlothauer et al Degradation of the encapsulant polymer in outdoor weathered photovoltaic copy Fraunhofer ISE modules Spatially resolved inspection Solar Energy MaterialsampSolar Cells 102 (2012) 75ndash85

1

2

3

5

4

7

6

Methodology for design of Accelerated Service Life Testing

Monitoring climatic conditions

Monitoring micro-climatic stress factors

Modeling micro-climatic stress factors

Time-transformation functions for major degradation processes

Modeling corresponding ALT ndash conditions for micro-climatic stress factors

Evaluation of sample-dependent parameters for time-transformation functions

Modeling of expected degradation for outdoor exposure and validation of the tests

copy Fraunhofer ISE

Conclusions

Accelerated Damp-heat service life tests have been proposed

bull Based on monitored climatic data

bull Modelled micro-climatic stress conditions

bull Modelled kinetic of the degradation processes

but final validation was not achieved yet

copy Fraunhofer ISE

Conclusions and outlook

Accelerated Damp-heat service life tests have been proposed

bull Based on monitored climatic data

bull Modelled micro-climatic stress conditions

bull Modelled kinetic of the degradation processes

but final validation was not achieved yet

Tests for other stress factors (UV temperature cycling potential induced degradation etc) and their combinations are under development

Global stress mapping will allow qualification of diversified specialised products for different climatic zones

copy Fraunhofer ISE

Thank you for your Attentionlt

Fraunhofer Institute for Solar Energy Systems ISE

Michael Koumlhl

wwwisefraunhoferde

michaelkoehlisefraunhoferde

copy Fraunhofer ISE

Page 2: Comparing Accelerated Testing and Outdoor Exposure · 2014. 1. 24. · mod module temperature T amb ambient temperature wind velocity H solar radiation U1 U0 a-Si 1 10,7 25,7 a-Si

Challengeslt

The durability is very good for most of the actual premium c-Si modules on the market (less than 1 loss in performance per year)

But new materials and designs have to be developed in order to decrease costs

bull Accelerated service life tests are needed for optimisation of the durability and convincing investors

bull The longer the desired lifetime the higher the needed acceleration factor the bigger the unsecurity of the tests

bull The tests should be based on real stress in the field because usually the materials and their degradation processes are not known

copy Fraunhofer ISE

Stress-factors at operation of PV-modules

Moisture causes hydrolysis and corrosion (Acetic acid from EVA)

Electrical potentials introduce leakage currents and reduction of cell efficiency

UV ndash irradiation causes destruction of polymeric components

Photo-degradation

Temperature cycling static oder dynamic mechanical loads lead to

Cell-breakage inter-connecture breakage delamination

Salt heat (high temperatures)

copy Fraunhofer ISE

Example for development of Accelerated Life Testingltbased on real stresses during operation of PV-moduleslt

Moisture causes hydrolysis and corrosion

Electrical potentials introduce leakage currents and reduction of cell efficiency

UV ndash irradiation causes destruction of polymeric components

Photo-degradation

Temperature cycling static oder dynamic mechanical loads lead to tensions

Cell-breakage inter-connecture breakage delamination

Salt heat (high temperatures)

copy Fraunhofer ISE

1 Monitoring climatic conditions Ambient climate and sample temperatures as 1min averaged time series

Corrosivity salt concentration as yearly or monthly dose

City or reference

Freiburg Germany

Alpine

Zugspitze

Germany

Arid

Sede Boqer

Israel

Tropical

Serpang

Indonesia (operated by TUumlV Rheinland

Maritime

Pozo Izquierdo

Gran Canaria

copy Fraunhofer ISE

Tamb

2 Monitoring micro-climatic stress factors

Module temperature monitoring during outdoor exposure

Macro ndash climate =gt Micro ndash climate

Ambient temperature Average module temperature (c-Si)

Tropics

temperature [degC] temperature [degC] -20 -10 0 10 20 30 40 50 60 70

0

200

400

600

800

1000

1200

1400

1600

-20 -10 0 10 20 30 40 50 60 0

200

400

600

800

1000

1200

1400

1600

frequ

ency

[h]

TavgDesert

Alpes

copy Fraunhofer ISE

v

3 Modeling micro-climatic stress factors Physical modeling of module temperature for each of the different module types using David

Faimanlsquos approach (could be King Fuenteshelliphellipas well)

Macro ndash climate =gt Micro ndash climate

Irradiation wind ambient temperature =gt Tmod

Neglected IR-radiation exchange and natural convection

HT T mod amb 10 UU v

Tmod module temperature

Tamb ambient temperature

wind velocity

H solar radiation

U1 U0 a-Si 1 107 257 a-Si 3 58 258 a-Si 4 43 261

CIS 1 31 230 CIS 2 41 250 CdTe 54 234 c-Si 62 300

The parameters U are module-specific but location independent

MKoehl etal Modelling of the nominal operating cell temperature copy Fraunhofer ISE based on outdoor weathering Sol Energy Mat Sol Cells (2011)

60

3 Modeling micro-climatic stress factors

Module-temperature as time-series based on ambient climate data and as histograms (one year)

tem

pera

ture

[degC

]

Tair5000

50

module

4000

3500

300040

Freu

ency

0 20 40 60 8

a-Si 1 a-Si 2 a-Si 3 a-Si 4 CIS 1 CIS 2 CdTe c-Si

T 4500

2500

2000

1500

1000

30

20 500

0 10

222 223 224 225 time [d] Temperature in degC

copy Fraunhofer ISE

Rel

wat

er c

once

ntra

tion

[au

]

3 Modeling micro-climatic stress factors

Simulation of module humidity by FEM

Damp-heat testing 85rh 85degC J Wirth Diplomarbeit Diploma Thesis University of Freiburg 20

copy Fraunhofer ISE J P Huumllsmann et alsu bmitted to Solar Energy MaterialsampSolar Cells

3 Modeling micro-climatic stress factors

Phenomenological modelling of moisture impact

1) Humidity at the module surface

rh (Tmod) = rh (Tamb) Psat (Tmod) Psat (Tamb)

102) Put more weight on high moisture levels

rheff =1 (1+ 100exp(-94 rh)) 08

06

04

3) Humidity level at test conditions (85rh) 02

ti = ti rheff 085 00

222 223 224 225 0

20

40

60

80

100

rH [

]

air

rH micro climate

rH

time [d]

0 02 04 06 08 1

M Koehl et al Solar Energy Materials amp Solar Cells 99 (2012) 282ndash291 copy Fraunhofer ISE

4 Time-transformation functions for major degradation processes

4) Process kinetics depend on module temperature (Time Transformation Function)

ttest = Lifetime (years) 6i ti(rheff Tmodi) exp [-(Ea R)(1Ttest - 1Tmodi)]

Ea = activation energy for the rate dominating degradation process

copy Fraunhofer ISE

5 Modeling corresponding ALT ndash conditions for micro-climatic stress factors

Testing time at 85rh85degC for 25 years lifetime

100000

100

1000

10000

test

ing

time

85

degC [h

]

tropical arid alpine

20 40 60 80 100 120

Example

Time to failure 85degC85rh

3000h

Ea gt 35 kJmol for alpine climates

Ea gt 50 kJmol for arid climates

Ea gt 60 kJmol for tropical climates

Activation energy [kJmol]Type approval test would be sufficient for Ea gt 80 kJmol

copy Fraunhofer ISE

6 Evaluation of the parameters for time-transformation functions by ALT

Testing of c-Si modules from 7 different manufacturers

Nor

mal

ised

pow

er

mpp

Damp-Heat at 85degC and 85 rel humidity Damp-Heat at 90degC and 85 rel humidity

11 11

10 10

Nor

mal

ised

pow

er

mpp

09 09

08 08

07 07

06 06

05

04

05

04

03 03

02 02

01 -500 0 500 1000 1500 2000 2500 3000 3500 4000 4500 -500 0 500 1000 1500 2000 2500 3000 3500 4000 4500

Exposure time h Exposure time h

01

copy Fraunhofer ISE

6 Evaluation of the parameters for time-transformation functions by ALT

Damp-heat testing at 85rh85degC module 1 und module 2

Exposure time hlt

-500 0 500 1000 1500 2000 2500 3000 3500 4000 4500 03

04

05

06

07

08

09

10

11

Module 1

Module 2

No

rmal

ised

po

wer

m

pp

2400h 3300h

85degC

copy Fraunhofer ISE

6 Evaluation of the parameters for time-transformation functions by ALT Damp-heat testing at 85rh85degC and 90degC module 1 und module 2

Exposure time h

-500 0 500 1000 1500 2000 2500 3000 3500 4000 4500 03

04

05

06

07

08

09

10

11

Module 1

Module 2

No

rmal

ised

po

wer

m

pp

2400h 3300h

copy Fraunhofer ISE

6 Evaluation of the parameters for time-transformation functions by ALT Damp-heat testing at 85rh85degC and 90degC module 1 und module 2

Exposure time h

-500 0 500 1000 1500 2000 2500 3000 3500 4000 4500 03

04

05

06

07

08

09

10

11

Module 1 65 kJmol Module 2 33 kJmol

No

rmal

ised

po

wer

m

pp

2400h 3300h

a = exp [-(Ea R)(1T1 ndash 1T2)]

copy Fraunhofer ISE

6 Evaluation of the parameters for time-transformation functions by ALT

P = G(1+ (G001-1) exp(-(t-tind (T))k(T)) ) 120120

100100 T=85degC 080080 Tind=2100h 060060 K=00082h 040040 G=026 020020

000000 0 1000 2000 3000 4000 5000 0 1000 2000 3000 4000 5000

1212

11 T=90degC 0808 Tind=1500h 0606 K=00115h 0404 G=026 0202

00 0 1000 2000 3000 4000 5000 0 1000 2000 3000 4000 5000

copy Fraunhofer ISE

0 100 100

0 080 080

0 060 060

0 040 040

0 020 020

0 000 0000 1000 2000 3000 4000 5000 0 1000 2000 3000 4000 5000 0 1000 2000 3000 4000 5000

0 1000 2000 3000 4000 5000

1200

1000

0800

0600

0400

0200

0000 0 1000 2000 3000 4000 5000

etime (85degC) [h] 2412 2576 2821 3047 3160 3227 3548 ivation energy [kJmol] 70 73 30 68 26 55 53

mate class A A C A C B B

Qualification for different stress levels or climate zones allows diversification of PV-modules

copy Fraunhofer ISE

Displacement on cell (cm)

Inte

nsity

(arb

uni

ts)

Degradation of the modules

Polymer Analysis by Raman-Spectroscopie

Comparison of the Vinyl-Band (red) and the fluorescence-background (black) unaged and after 4000h damp-heat-testing

Elektroluminescence-picture 70 14 of the degraded cells 65

60 12

55

50 10

45 08

40

35 06

30

25 04

20

15 02

10

5 00

0 -1 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Location above the cell [cm]

Average Ref_I(1660) Average 4000h dh_I(1660)

Average Ref_I(2863)I(2913) Average 4000h dh_I(2863)I(2913)

Inte

nsi

ty [

arb

un

its]

C Peike etal Non-destructive degradation analysis of encapsulants in PV modules copy Fraunhofer ISE by Raman Spectroscopy Sol En Mat Sol Cells (2011)

6 Evaluation of the service life time for different climates

Testing time at 85rh85degC for 25 years lifetime 100000

Climate classes

A Most severe moisture stress

B Moderate moisture stress

C Low moisture stress

test

ing

time

85

degC [h

]

tropical arid alpine

20 40 60 80 100 120

Activation energy [kJmol]

10000

1000

100

Assumptions

The measured stress levels are representative

The model for the kinetics is valid

The constant load DH test reflects reality

copy Fraunhofer ISE

4

100

1000

10000

Test

ing

time

8

5 C

[h]

tropical arid alpine

Nor

mal

ised

pow

er

mpp

7 Modeling expected degradation for validation by outdoor exposure

Power reduction after 3 years outdoor exposure lt 3

Exposure time has to be doubled

Equivalent to 3 years operation 11

10

09

08

07

06

05

04

03

02

01 0 20 40 60 80 100 -500 0 500 1000 1500 2000 2500 3000 3500 4000 C B A

Activation energy [kJmol] Exposure time h

copy Fraunhofer ISE

-66

7 Degradation effects during outdoor exposure

Changes of the electrical performance at the outdoor exposure site

Test site Tropical Arid Urban Alpine Average

Module 1 -15 -06 -09 -11 -10 2 -01 -11 -08 -47 -17 3 -10 -01 -05 13 -01 4 -32 -01 17 -21 5 -01 -22 -18 -08 -12

Average -12 -08 -05 -24 -12

After 3 years operation hardly out of the error bars

copy Fraunhofer ISE

7 Degradation effects during outdoor exposure

After 3 years on the alpes

copy Fraunhofer ISE

7 Degradation effects during outdoor exposure

Degradation of module materials - UV-induced fluorescencelt2 a alpine outdoor exposure 2 a desert outdoor exposure

Combination of electroluminescence and fluorescence

J Schlothauer et al Fluorescence imaging a powerful tool for the investigation of polymer copy Fraunhofer ISE

degradation in PV modules Photovoltaics International journal November 2010

7 Degradation effects during outdoor exposure

Browning and photo-bleaching - UV-induced fluorescencelt

Combination of electroluminescence and fluorescenc

2 a desert outdoor exposure

copy Fraunhofer ISE

7 Degradation effects during outdoor exposure

a) Tropical

b) Arid

c) Moderate

d) Alpine

Effect of outdoor weathering on fluorescence spectra

UV

-rad

iatio

n

Moi

stur

e le

vel

Module types

J Schlothauer et al Degradation of the encapsulant polymer in outdoor weathered photovoltaic copy Fraunhofer ISE modules Spatially resolved inspection Solar Energy MaterialsampSolar Cells 102 (2012) 75ndash85

1

2

3

5

4

7

6

Methodology for design of Accelerated Service Life Testing

Monitoring climatic conditions

Monitoring micro-climatic stress factors

Modeling micro-climatic stress factors

Time-transformation functions for major degradation processes

Modeling corresponding ALT ndash conditions for micro-climatic stress factors

Evaluation of sample-dependent parameters for time-transformation functions

Modeling of expected degradation for outdoor exposure and validation of the tests

copy Fraunhofer ISE

Conclusions

Accelerated Damp-heat service life tests have been proposed

bull Based on monitored climatic data

bull Modelled micro-climatic stress conditions

bull Modelled kinetic of the degradation processes

but final validation was not achieved yet

copy Fraunhofer ISE

Conclusions and outlook

Accelerated Damp-heat service life tests have been proposed

bull Based on monitored climatic data

bull Modelled micro-climatic stress conditions

bull Modelled kinetic of the degradation processes

but final validation was not achieved yet

Tests for other stress factors (UV temperature cycling potential induced degradation etc) and their combinations are under development

Global stress mapping will allow qualification of diversified specialised products for different climatic zones

copy Fraunhofer ISE

Thank you for your Attentionlt

Fraunhofer Institute for Solar Energy Systems ISE

Michael Koumlhl

wwwisefraunhoferde

michaelkoehlisefraunhoferde

copy Fraunhofer ISE

Page 3: Comparing Accelerated Testing and Outdoor Exposure · 2014. 1. 24. · mod module temperature T amb ambient temperature wind velocity H solar radiation U1 U0 a-Si 1 10,7 25,7 a-Si

Stress-factors at operation of PV-modules

Moisture causes hydrolysis and corrosion (Acetic acid from EVA)

Electrical potentials introduce leakage currents and reduction of cell efficiency

UV ndash irradiation causes destruction of polymeric components

Photo-degradation

Temperature cycling static oder dynamic mechanical loads lead to

Cell-breakage inter-connecture breakage delamination

Salt heat (high temperatures)

copy Fraunhofer ISE

Example for development of Accelerated Life Testingltbased on real stresses during operation of PV-moduleslt

Moisture causes hydrolysis and corrosion

Electrical potentials introduce leakage currents and reduction of cell efficiency

UV ndash irradiation causes destruction of polymeric components

Photo-degradation

Temperature cycling static oder dynamic mechanical loads lead to tensions

Cell-breakage inter-connecture breakage delamination

Salt heat (high temperatures)

copy Fraunhofer ISE

1 Monitoring climatic conditions Ambient climate and sample temperatures as 1min averaged time series

Corrosivity salt concentration as yearly or monthly dose

City or reference

Freiburg Germany

Alpine

Zugspitze

Germany

Arid

Sede Boqer

Israel

Tropical

Serpang

Indonesia (operated by TUumlV Rheinland

Maritime

Pozo Izquierdo

Gran Canaria

copy Fraunhofer ISE

Tamb

2 Monitoring micro-climatic stress factors

Module temperature monitoring during outdoor exposure

Macro ndash climate =gt Micro ndash climate

Ambient temperature Average module temperature (c-Si)

Tropics

temperature [degC] temperature [degC] -20 -10 0 10 20 30 40 50 60 70

0

200

400

600

800

1000

1200

1400

1600

-20 -10 0 10 20 30 40 50 60 0

200

400

600

800

1000

1200

1400

1600

frequ

ency

[h]

TavgDesert

Alpes

copy Fraunhofer ISE

v

3 Modeling micro-climatic stress factors Physical modeling of module temperature for each of the different module types using David

Faimanlsquos approach (could be King Fuenteshelliphellipas well)

Macro ndash climate =gt Micro ndash climate

Irradiation wind ambient temperature =gt Tmod

Neglected IR-radiation exchange and natural convection

HT T mod amb 10 UU v

Tmod module temperature

Tamb ambient temperature

wind velocity

H solar radiation

U1 U0 a-Si 1 107 257 a-Si 3 58 258 a-Si 4 43 261

CIS 1 31 230 CIS 2 41 250 CdTe 54 234 c-Si 62 300

The parameters U are module-specific but location independent

MKoehl etal Modelling of the nominal operating cell temperature copy Fraunhofer ISE based on outdoor weathering Sol Energy Mat Sol Cells (2011)

60

3 Modeling micro-climatic stress factors

Module-temperature as time-series based on ambient climate data and as histograms (one year)

tem

pera

ture

[degC

]

Tair5000

50

module

4000

3500

300040

Freu

ency

0 20 40 60 8

a-Si 1 a-Si 2 a-Si 3 a-Si 4 CIS 1 CIS 2 CdTe c-Si

T 4500

2500

2000

1500

1000

30

20 500

0 10

222 223 224 225 time [d] Temperature in degC

copy Fraunhofer ISE

Rel

wat

er c

once

ntra

tion

[au

]

3 Modeling micro-climatic stress factors

Simulation of module humidity by FEM

Damp-heat testing 85rh 85degC J Wirth Diplomarbeit Diploma Thesis University of Freiburg 20

copy Fraunhofer ISE J P Huumllsmann et alsu bmitted to Solar Energy MaterialsampSolar Cells

3 Modeling micro-climatic stress factors

Phenomenological modelling of moisture impact

1) Humidity at the module surface

rh (Tmod) = rh (Tamb) Psat (Tmod) Psat (Tamb)

102) Put more weight on high moisture levels

rheff =1 (1+ 100exp(-94 rh)) 08

06

04

3) Humidity level at test conditions (85rh) 02

ti = ti rheff 085 00

222 223 224 225 0

20

40

60

80

100

rH [

]

air

rH micro climate

rH

time [d]

0 02 04 06 08 1

M Koehl et al Solar Energy Materials amp Solar Cells 99 (2012) 282ndash291 copy Fraunhofer ISE

4 Time-transformation functions for major degradation processes

4) Process kinetics depend on module temperature (Time Transformation Function)

ttest = Lifetime (years) 6i ti(rheff Tmodi) exp [-(Ea R)(1Ttest - 1Tmodi)]

Ea = activation energy for the rate dominating degradation process

copy Fraunhofer ISE

5 Modeling corresponding ALT ndash conditions for micro-climatic stress factors

Testing time at 85rh85degC for 25 years lifetime

100000

100

1000

10000

test

ing

time

85

degC [h

]

tropical arid alpine

20 40 60 80 100 120

Example

Time to failure 85degC85rh

3000h

Ea gt 35 kJmol for alpine climates

Ea gt 50 kJmol for arid climates

Ea gt 60 kJmol for tropical climates

Activation energy [kJmol]Type approval test would be sufficient for Ea gt 80 kJmol

copy Fraunhofer ISE

6 Evaluation of the parameters for time-transformation functions by ALT

Testing of c-Si modules from 7 different manufacturers

Nor

mal

ised

pow

er

mpp

Damp-Heat at 85degC and 85 rel humidity Damp-Heat at 90degC and 85 rel humidity

11 11

10 10

Nor

mal

ised

pow

er

mpp

09 09

08 08

07 07

06 06

05

04

05

04

03 03

02 02

01 -500 0 500 1000 1500 2000 2500 3000 3500 4000 4500 -500 0 500 1000 1500 2000 2500 3000 3500 4000 4500

Exposure time h Exposure time h

01

copy Fraunhofer ISE

6 Evaluation of the parameters for time-transformation functions by ALT

Damp-heat testing at 85rh85degC module 1 und module 2

Exposure time hlt

-500 0 500 1000 1500 2000 2500 3000 3500 4000 4500 03

04

05

06

07

08

09

10

11

Module 1

Module 2

No

rmal

ised

po

wer

m

pp

2400h 3300h

85degC

copy Fraunhofer ISE

6 Evaluation of the parameters for time-transformation functions by ALT Damp-heat testing at 85rh85degC and 90degC module 1 und module 2

Exposure time h

-500 0 500 1000 1500 2000 2500 3000 3500 4000 4500 03

04

05

06

07

08

09

10

11

Module 1

Module 2

No

rmal

ised

po

wer

m

pp

2400h 3300h

copy Fraunhofer ISE

6 Evaluation of the parameters for time-transformation functions by ALT Damp-heat testing at 85rh85degC and 90degC module 1 und module 2

Exposure time h

-500 0 500 1000 1500 2000 2500 3000 3500 4000 4500 03

04

05

06

07

08

09

10

11

Module 1 65 kJmol Module 2 33 kJmol

No

rmal

ised

po

wer

m

pp

2400h 3300h

a = exp [-(Ea R)(1T1 ndash 1T2)]

copy Fraunhofer ISE

6 Evaluation of the parameters for time-transformation functions by ALT

P = G(1+ (G001-1) exp(-(t-tind (T))k(T)) ) 120120

100100 T=85degC 080080 Tind=2100h 060060 K=00082h 040040 G=026 020020

000000 0 1000 2000 3000 4000 5000 0 1000 2000 3000 4000 5000

1212

11 T=90degC 0808 Tind=1500h 0606 K=00115h 0404 G=026 0202

00 0 1000 2000 3000 4000 5000 0 1000 2000 3000 4000 5000

copy Fraunhofer ISE

0 100 100

0 080 080

0 060 060

0 040 040

0 020 020

0 000 0000 1000 2000 3000 4000 5000 0 1000 2000 3000 4000 5000 0 1000 2000 3000 4000 5000

0 1000 2000 3000 4000 5000

1200

1000

0800

0600

0400

0200

0000 0 1000 2000 3000 4000 5000

etime (85degC) [h] 2412 2576 2821 3047 3160 3227 3548 ivation energy [kJmol] 70 73 30 68 26 55 53

mate class A A C A C B B

Qualification for different stress levels or climate zones allows diversification of PV-modules

copy Fraunhofer ISE

Displacement on cell (cm)

Inte

nsity

(arb

uni

ts)

Degradation of the modules

Polymer Analysis by Raman-Spectroscopie

Comparison of the Vinyl-Band (red) and the fluorescence-background (black) unaged and after 4000h damp-heat-testing

Elektroluminescence-picture 70 14 of the degraded cells 65

60 12

55

50 10

45 08

40

35 06

30

25 04

20

15 02

10

5 00

0 -1 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Location above the cell [cm]

Average Ref_I(1660) Average 4000h dh_I(1660)

Average Ref_I(2863)I(2913) Average 4000h dh_I(2863)I(2913)

Inte

nsi

ty [

arb

un

its]

C Peike etal Non-destructive degradation analysis of encapsulants in PV modules copy Fraunhofer ISE by Raman Spectroscopy Sol En Mat Sol Cells (2011)

6 Evaluation of the service life time for different climates

Testing time at 85rh85degC for 25 years lifetime 100000

Climate classes

A Most severe moisture stress

B Moderate moisture stress

C Low moisture stress

test

ing

time

85

degC [h

]

tropical arid alpine

20 40 60 80 100 120

Activation energy [kJmol]

10000

1000

100

Assumptions

The measured stress levels are representative

The model for the kinetics is valid

The constant load DH test reflects reality

copy Fraunhofer ISE

4

100

1000

10000

Test

ing

time

8

5 C

[h]

tropical arid alpine

Nor

mal

ised

pow

er

mpp

7 Modeling expected degradation for validation by outdoor exposure

Power reduction after 3 years outdoor exposure lt 3

Exposure time has to be doubled

Equivalent to 3 years operation 11

10

09

08

07

06

05

04

03

02

01 0 20 40 60 80 100 -500 0 500 1000 1500 2000 2500 3000 3500 4000 C B A

Activation energy [kJmol] Exposure time h

copy Fraunhofer ISE

-66

7 Degradation effects during outdoor exposure

Changes of the electrical performance at the outdoor exposure site

Test site Tropical Arid Urban Alpine Average

Module 1 -15 -06 -09 -11 -10 2 -01 -11 -08 -47 -17 3 -10 -01 -05 13 -01 4 -32 -01 17 -21 5 -01 -22 -18 -08 -12

Average -12 -08 -05 -24 -12

After 3 years operation hardly out of the error bars

copy Fraunhofer ISE

7 Degradation effects during outdoor exposure

After 3 years on the alpes

copy Fraunhofer ISE

7 Degradation effects during outdoor exposure

Degradation of module materials - UV-induced fluorescencelt2 a alpine outdoor exposure 2 a desert outdoor exposure

Combination of electroluminescence and fluorescence

J Schlothauer et al Fluorescence imaging a powerful tool for the investigation of polymer copy Fraunhofer ISE

degradation in PV modules Photovoltaics International journal November 2010

7 Degradation effects during outdoor exposure

Browning and photo-bleaching - UV-induced fluorescencelt

Combination of electroluminescence and fluorescenc

2 a desert outdoor exposure

copy Fraunhofer ISE

7 Degradation effects during outdoor exposure

a) Tropical

b) Arid

c) Moderate

d) Alpine

Effect of outdoor weathering on fluorescence spectra

UV

-rad

iatio

n

Moi

stur

e le

vel

Module types

J Schlothauer et al Degradation of the encapsulant polymer in outdoor weathered photovoltaic copy Fraunhofer ISE modules Spatially resolved inspection Solar Energy MaterialsampSolar Cells 102 (2012) 75ndash85

1

2

3

5

4

7

6

Methodology for design of Accelerated Service Life Testing

Monitoring climatic conditions

Monitoring micro-climatic stress factors

Modeling micro-climatic stress factors

Time-transformation functions for major degradation processes

Modeling corresponding ALT ndash conditions for micro-climatic stress factors

Evaluation of sample-dependent parameters for time-transformation functions

Modeling of expected degradation for outdoor exposure and validation of the tests

copy Fraunhofer ISE

Conclusions

Accelerated Damp-heat service life tests have been proposed

bull Based on monitored climatic data

bull Modelled micro-climatic stress conditions

bull Modelled kinetic of the degradation processes

but final validation was not achieved yet

copy Fraunhofer ISE

Conclusions and outlook

Accelerated Damp-heat service life tests have been proposed

bull Based on monitored climatic data

bull Modelled micro-climatic stress conditions

bull Modelled kinetic of the degradation processes

but final validation was not achieved yet

Tests for other stress factors (UV temperature cycling potential induced degradation etc) and their combinations are under development

Global stress mapping will allow qualification of diversified specialised products for different climatic zones

copy Fraunhofer ISE

Thank you for your Attentionlt

Fraunhofer Institute for Solar Energy Systems ISE

Michael Koumlhl

wwwisefraunhoferde

michaelkoehlisefraunhoferde

copy Fraunhofer ISE

Page 4: Comparing Accelerated Testing and Outdoor Exposure · 2014. 1. 24. · mod module temperature T amb ambient temperature wind velocity H solar radiation U1 U0 a-Si 1 10,7 25,7 a-Si

Example for development of Accelerated Life Testingltbased on real stresses during operation of PV-moduleslt

Moisture causes hydrolysis and corrosion

Electrical potentials introduce leakage currents and reduction of cell efficiency

UV ndash irradiation causes destruction of polymeric components

Photo-degradation

Temperature cycling static oder dynamic mechanical loads lead to tensions

Cell-breakage inter-connecture breakage delamination

Salt heat (high temperatures)

copy Fraunhofer ISE

1 Monitoring climatic conditions Ambient climate and sample temperatures as 1min averaged time series

Corrosivity salt concentration as yearly or monthly dose

City or reference

Freiburg Germany

Alpine

Zugspitze

Germany

Arid

Sede Boqer

Israel

Tropical

Serpang

Indonesia (operated by TUumlV Rheinland

Maritime

Pozo Izquierdo

Gran Canaria

copy Fraunhofer ISE

Tamb

2 Monitoring micro-climatic stress factors

Module temperature monitoring during outdoor exposure

Macro ndash climate =gt Micro ndash climate

Ambient temperature Average module temperature (c-Si)

Tropics

temperature [degC] temperature [degC] -20 -10 0 10 20 30 40 50 60 70

0

200

400

600

800

1000

1200

1400

1600

-20 -10 0 10 20 30 40 50 60 0

200

400

600

800

1000

1200

1400

1600

frequ

ency

[h]

TavgDesert

Alpes

copy Fraunhofer ISE

v

3 Modeling micro-climatic stress factors Physical modeling of module temperature for each of the different module types using David

Faimanlsquos approach (could be King Fuenteshelliphellipas well)

Macro ndash climate =gt Micro ndash climate

Irradiation wind ambient temperature =gt Tmod

Neglected IR-radiation exchange and natural convection

HT T mod amb 10 UU v

Tmod module temperature

Tamb ambient temperature

wind velocity

H solar radiation

U1 U0 a-Si 1 107 257 a-Si 3 58 258 a-Si 4 43 261

CIS 1 31 230 CIS 2 41 250 CdTe 54 234 c-Si 62 300

The parameters U are module-specific but location independent

MKoehl etal Modelling of the nominal operating cell temperature copy Fraunhofer ISE based on outdoor weathering Sol Energy Mat Sol Cells (2011)

60

3 Modeling micro-climatic stress factors

Module-temperature as time-series based on ambient climate data and as histograms (one year)

tem

pera

ture

[degC

]

Tair5000

50

module

4000

3500

300040

Freu

ency

0 20 40 60 8

a-Si 1 a-Si 2 a-Si 3 a-Si 4 CIS 1 CIS 2 CdTe c-Si

T 4500

2500

2000

1500

1000

30

20 500

0 10

222 223 224 225 time [d] Temperature in degC

copy Fraunhofer ISE

Rel

wat

er c

once

ntra

tion

[au

]

3 Modeling micro-climatic stress factors

Simulation of module humidity by FEM

Damp-heat testing 85rh 85degC J Wirth Diplomarbeit Diploma Thesis University of Freiburg 20

copy Fraunhofer ISE J P Huumllsmann et alsu bmitted to Solar Energy MaterialsampSolar Cells

3 Modeling micro-climatic stress factors

Phenomenological modelling of moisture impact

1) Humidity at the module surface

rh (Tmod) = rh (Tamb) Psat (Tmod) Psat (Tamb)

102) Put more weight on high moisture levels

rheff =1 (1+ 100exp(-94 rh)) 08

06

04

3) Humidity level at test conditions (85rh) 02

ti = ti rheff 085 00

222 223 224 225 0

20

40

60

80

100

rH [

]

air

rH micro climate

rH

time [d]

0 02 04 06 08 1

M Koehl et al Solar Energy Materials amp Solar Cells 99 (2012) 282ndash291 copy Fraunhofer ISE

4 Time-transformation functions for major degradation processes

4) Process kinetics depend on module temperature (Time Transformation Function)

ttest = Lifetime (years) 6i ti(rheff Tmodi) exp [-(Ea R)(1Ttest - 1Tmodi)]

Ea = activation energy for the rate dominating degradation process

copy Fraunhofer ISE

5 Modeling corresponding ALT ndash conditions for micro-climatic stress factors

Testing time at 85rh85degC for 25 years lifetime

100000

100

1000

10000

test

ing

time

85

degC [h

]

tropical arid alpine

20 40 60 80 100 120

Example

Time to failure 85degC85rh

3000h

Ea gt 35 kJmol for alpine climates

Ea gt 50 kJmol for arid climates

Ea gt 60 kJmol for tropical climates

Activation energy [kJmol]Type approval test would be sufficient for Ea gt 80 kJmol

copy Fraunhofer ISE

6 Evaluation of the parameters for time-transformation functions by ALT

Testing of c-Si modules from 7 different manufacturers

Nor

mal

ised

pow

er

mpp

Damp-Heat at 85degC and 85 rel humidity Damp-Heat at 90degC and 85 rel humidity

11 11

10 10

Nor

mal

ised

pow

er

mpp

09 09

08 08

07 07

06 06

05

04

05

04

03 03

02 02

01 -500 0 500 1000 1500 2000 2500 3000 3500 4000 4500 -500 0 500 1000 1500 2000 2500 3000 3500 4000 4500

Exposure time h Exposure time h

01

copy Fraunhofer ISE

6 Evaluation of the parameters for time-transformation functions by ALT

Damp-heat testing at 85rh85degC module 1 und module 2

Exposure time hlt

-500 0 500 1000 1500 2000 2500 3000 3500 4000 4500 03

04

05

06

07

08

09

10

11

Module 1

Module 2

No

rmal

ised

po

wer

m

pp

2400h 3300h

85degC

copy Fraunhofer ISE

6 Evaluation of the parameters for time-transformation functions by ALT Damp-heat testing at 85rh85degC and 90degC module 1 und module 2

Exposure time h

-500 0 500 1000 1500 2000 2500 3000 3500 4000 4500 03

04

05

06

07

08

09

10

11

Module 1

Module 2

No

rmal

ised

po

wer

m

pp

2400h 3300h

copy Fraunhofer ISE

6 Evaluation of the parameters for time-transformation functions by ALT Damp-heat testing at 85rh85degC and 90degC module 1 und module 2

Exposure time h

-500 0 500 1000 1500 2000 2500 3000 3500 4000 4500 03

04

05

06

07

08

09

10

11

Module 1 65 kJmol Module 2 33 kJmol

No

rmal

ised

po

wer

m

pp

2400h 3300h

a = exp [-(Ea R)(1T1 ndash 1T2)]

copy Fraunhofer ISE

6 Evaluation of the parameters for time-transformation functions by ALT

P = G(1+ (G001-1) exp(-(t-tind (T))k(T)) ) 120120

100100 T=85degC 080080 Tind=2100h 060060 K=00082h 040040 G=026 020020

000000 0 1000 2000 3000 4000 5000 0 1000 2000 3000 4000 5000

1212

11 T=90degC 0808 Tind=1500h 0606 K=00115h 0404 G=026 0202

00 0 1000 2000 3000 4000 5000 0 1000 2000 3000 4000 5000

copy Fraunhofer ISE

0 100 100

0 080 080

0 060 060

0 040 040

0 020 020

0 000 0000 1000 2000 3000 4000 5000 0 1000 2000 3000 4000 5000 0 1000 2000 3000 4000 5000

0 1000 2000 3000 4000 5000

1200

1000

0800

0600

0400

0200

0000 0 1000 2000 3000 4000 5000

etime (85degC) [h] 2412 2576 2821 3047 3160 3227 3548 ivation energy [kJmol] 70 73 30 68 26 55 53

mate class A A C A C B B

Qualification for different stress levels or climate zones allows diversification of PV-modules

copy Fraunhofer ISE

Displacement on cell (cm)

Inte

nsity

(arb

uni

ts)

Degradation of the modules

Polymer Analysis by Raman-Spectroscopie

Comparison of the Vinyl-Band (red) and the fluorescence-background (black) unaged and after 4000h damp-heat-testing

Elektroluminescence-picture 70 14 of the degraded cells 65

60 12

55

50 10

45 08

40

35 06

30

25 04

20

15 02

10

5 00

0 -1 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Location above the cell [cm]

Average Ref_I(1660) Average 4000h dh_I(1660)

Average Ref_I(2863)I(2913) Average 4000h dh_I(2863)I(2913)

Inte

nsi

ty [

arb

un

its]

C Peike etal Non-destructive degradation analysis of encapsulants in PV modules copy Fraunhofer ISE by Raman Spectroscopy Sol En Mat Sol Cells (2011)

6 Evaluation of the service life time for different climates

Testing time at 85rh85degC for 25 years lifetime 100000

Climate classes

A Most severe moisture stress

B Moderate moisture stress

C Low moisture stress

test

ing

time

85

degC [h

]

tropical arid alpine

20 40 60 80 100 120

Activation energy [kJmol]

10000

1000

100

Assumptions

The measured stress levels are representative

The model for the kinetics is valid

The constant load DH test reflects reality

copy Fraunhofer ISE

4

100

1000

10000

Test

ing

time

8

5 C

[h]

tropical arid alpine

Nor

mal

ised

pow

er

mpp

7 Modeling expected degradation for validation by outdoor exposure

Power reduction after 3 years outdoor exposure lt 3

Exposure time has to be doubled

Equivalent to 3 years operation 11

10

09

08

07

06

05

04

03

02

01 0 20 40 60 80 100 -500 0 500 1000 1500 2000 2500 3000 3500 4000 C B A

Activation energy [kJmol] Exposure time h

copy Fraunhofer ISE

-66

7 Degradation effects during outdoor exposure

Changes of the electrical performance at the outdoor exposure site

Test site Tropical Arid Urban Alpine Average

Module 1 -15 -06 -09 -11 -10 2 -01 -11 -08 -47 -17 3 -10 -01 -05 13 -01 4 -32 -01 17 -21 5 -01 -22 -18 -08 -12

Average -12 -08 -05 -24 -12

After 3 years operation hardly out of the error bars

copy Fraunhofer ISE

7 Degradation effects during outdoor exposure

After 3 years on the alpes

copy Fraunhofer ISE

7 Degradation effects during outdoor exposure

Degradation of module materials - UV-induced fluorescencelt2 a alpine outdoor exposure 2 a desert outdoor exposure

Combination of electroluminescence and fluorescence

J Schlothauer et al Fluorescence imaging a powerful tool for the investigation of polymer copy Fraunhofer ISE

degradation in PV modules Photovoltaics International journal November 2010

7 Degradation effects during outdoor exposure

Browning and photo-bleaching - UV-induced fluorescencelt

Combination of electroluminescence and fluorescenc

2 a desert outdoor exposure

copy Fraunhofer ISE

7 Degradation effects during outdoor exposure

a) Tropical

b) Arid

c) Moderate

d) Alpine

Effect of outdoor weathering on fluorescence spectra

UV

-rad

iatio

n

Moi

stur

e le

vel

Module types

J Schlothauer et al Degradation of the encapsulant polymer in outdoor weathered photovoltaic copy Fraunhofer ISE modules Spatially resolved inspection Solar Energy MaterialsampSolar Cells 102 (2012) 75ndash85

1

2

3

5

4

7

6

Methodology for design of Accelerated Service Life Testing

Monitoring climatic conditions

Monitoring micro-climatic stress factors

Modeling micro-climatic stress factors

Time-transformation functions for major degradation processes

Modeling corresponding ALT ndash conditions for micro-climatic stress factors

Evaluation of sample-dependent parameters for time-transformation functions

Modeling of expected degradation for outdoor exposure and validation of the tests

copy Fraunhofer ISE

Conclusions

Accelerated Damp-heat service life tests have been proposed

bull Based on monitored climatic data

bull Modelled micro-climatic stress conditions

bull Modelled kinetic of the degradation processes

but final validation was not achieved yet

copy Fraunhofer ISE

Conclusions and outlook

Accelerated Damp-heat service life tests have been proposed

bull Based on monitored climatic data

bull Modelled micro-climatic stress conditions

bull Modelled kinetic of the degradation processes

but final validation was not achieved yet

Tests for other stress factors (UV temperature cycling potential induced degradation etc) and their combinations are under development

Global stress mapping will allow qualification of diversified specialised products for different climatic zones

copy Fraunhofer ISE

Thank you for your Attentionlt

Fraunhofer Institute for Solar Energy Systems ISE

Michael Koumlhl

wwwisefraunhoferde

michaelkoehlisefraunhoferde

copy Fraunhofer ISE

Page 5: Comparing Accelerated Testing and Outdoor Exposure · 2014. 1. 24. · mod module temperature T amb ambient temperature wind velocity H solar radiation U1 U0 a-Si 1 10,7 25,7 a-Si

1 Monitoring climatic conditions Ambient climate and sample temperatures as 1min averaged time series

Corrosivity salt concentration as yearly or monthly dose

City or reference

Freiburg Germany

Alpine

Zugspitze

Germany

Arid

Sede Boqer

Israel

Tropical

Serpang

Indonesia (operated by TUumlV Rheinland

Maritime

Pozo Izquierdo

Gran Canaria

copy Fraunhofer ISE

Tamb

2 Monitoring micro-climatic stress factors

Module temperature monitoring during outdoor exposure

Macro ndash climate =gt Micro ndash climate

Ambient temperature Average module temperature (c-Si)

Tropics

temperature [degC] temperature [degC] -20 -10 0 10 20 30 40 50 60 70

0

200

400

600

800

1000

1200

1400

1600

-20 -10 0 10 20 30 40 50 60 0

200

400

600

800

1000

1200

1400

1600

frequ

ency

[h]

TavgDesert

Alpes

copy Fraunhofer ISE

v

3 Modeling micro-climatic stress factors Physical modeling of module temperature for each of the different module types using David

Faimanlsquos approach (could be King Fuenteshelliphellipas well)

Macro ndash climate =gt Micro ndash climate

Irradiation wind ambient temperature =gt Tmod

Neglected IR-radiation exchange and natural convection

HT T mod amb 10 UU v

Tmod module temperature

Tamb ambient temperature

wind velocity

H solar radiation

U1 U0 a-Si 1 107 257 a-Si 3 58 258 a-Si 4 43 261

CIS 1 31 230 CIS 2 41 250 CdTe 54 234 c-Si 62 300

The parameters U are module-specific but location independent

MKoehl etal Modelling of the nominal operating cell temperature copy Fraunhofer ISE based on outdoor weathering Sol Energy Mat Sol Cells (2011)

60

3 Modeling micro-climatic stress factors

Module-temperature as time-series based on ambient climate data and as histograms (one year)

tem

pera

ture

[degC

]

Tair5000

50

module

4000

3500

300040

Freu

ency

0 20 40 60 8

a-Si 1 a-Si 2 a-Si 3 a-Si 4 CIS 1 CIS 2 CdTe c-Si

T 4500

2500

2000

1500

1000

30

20 500

0 10

222 223 224 225 time [d] Temperature in degC

copy Fraunhofer ISE

Rel

wat

er c

once

ntra

tion

[au

]

3 Modeling micro-climatic stress factors

Simulation of module humidity by FEM

Damp-heat testing 85rh 85degC J Wirth Diplomarbeit Diploma Thesis University of Freiburg 20

copy Fraunhofer ISE J P Huumllsmann et alsu bmitted to Solar Energy MaterialsampSolar Cells

3 Modeling micro-climatic stress factors

Phenomenological modelling of moisture impact

1) Humidity at the module surface

rh (Tmod) = rh (Tamb) Psat (Tmod) Psat (Tamb)

102) Put more weight on high moisture levels

rheff =1 (1+ 100exp(-94 rh)) 08

06

04

3) Humidity level at test conditions (85rh) 02

ti = ti rheff 085 00

222 223 224 225 0

20

40

60

80

100

rH [

]

air

rH micro climate

rH

time [d]

0 02 04 06 08 1

M Koehl et al Solar Energy Materials amp Solar Cells 99 (2012) 282ndash291 copy Fraunhofer ISE

4 Time-transformation functions for major degradation processes

4) Process kinetics depend on module temperature (Time Transformation Function)

ttest = Lifetime (years) 6i ti(rheff Tmodi) exp [-(Ea R)(1Ttest - 1Tmodi)]

Ea = activation energy for the rate dominating degradation process

copy Fraunhofer ISE

5 Modeling corresponding ALT ndash conditions for micro-climatic stress factors

Testing time at 85rh85degC for 25 years lifetime

100000

100

1000

10000

test

ing

time

85

degC [h

]

tropical arid alpine

20 40 60 80 100 120

Example

Time to failure 85degC85rh

3000h

Ea gt 35 kJmol for alpine climates

Ea gt 50 kJmol for arid climates

Ea gt 60 kJmol for tropical climates

Activation energy [kJmol]Type approval test would be sufficient for Ea gt 80 kJmol

copy Fraunhofer ISE

6 Evaluation of the parameters for time-transformation functions by ALT

Testing of c-Si modules from 7 different manufacturers

Nor

mal

ised

pow

er

mpp

Damp-Heat at 85degC and 85 rel humidity Damp-Heat at 90degC and 85 rel humidity

11 11

10 10

Nor

mal

ised

pow

er

mpp

09 09

08 08

07 07

06 06

05

04

05

04

03 03

02 02

01 -500 0 500 1000 1500 2000 2500 3000 3500 4000 4500 -500 0 500 1000 1500 2000 2500 3000 3500 4000 4500

Exposure time h Exposure time h

01

copy Fraunhofer ISE

6 Evaluation of the parameters for time-transformation functions by ALT

Damp-heat testing at 85rh85degC module 1 und module 2

Exposure time hlt

-500 0 500 1000 1500 2000 2500 3000 3500 4000 4500 03

04

05

06

07

08

09

10

11

Module 1

Module 2

No

rmal

ised

po

wer

m

pp

2400h 3300h

85degC

copy Fraunhofer ISE

6 Evaluation of the parameters for time-transformation functions by ALT Damp-heat testing at 85rh85degC and 90degC module 1 und module 2

Exposure time h

-500 0 500 1000 1500 2000 2500 3000 3500 4000 4500 03

04

05

06

07

08

09

10

11

Module 1

Module 2

No

rmal

ised

po

wer

m

pp

2400h 3300h

copy Fraunhofer ISE

6 Evaluation of the parameters for time-transformation functions by ALT Damp-heat testing at 85rh85degC and 90degC module 1 und module 2

Exposure time h

-500 0 500 1000 1500 2000 2500 3000 3500 4000 4500 03

04

05

06

07

08

09

10

11

Module 1 65 kJmol Module 2 33 kJmol

No

rmal

ised

po

wer

m

pp

2400h 3300h

a = exp [-(Ea R)(1T1 ndash 1T2)]

copy Fraunhofer ISE

6 Evaluation of the parameters for time-transformation functions by ALT

P = G(1+ (G001-1) exp(-(t-tind (T))k(T)) ) 120120

100100 T=85degC 080080 Tind=2100h 060060 K=00082h 040040 G=026 020020

000000 0 1000 2000 3000 4000 5000 0 1000 2000 3000 4000 5000

1212

11 T=90degC 0808 Tind=1500h 0606 K=00115h 0404 G=026 0202

00 0 1000 2000 3000 4000 5000 0 1000 2000 3000 4000 5000

copy Fraunhofer ISE

0 100 100

0 080 080

0 060 060

0 040 040

0 020 020

0 000 0000 1000 2000 3000 4000 5000 0 1000 2000 3000 4000 5000 0 1000 2000 3000 4000 5000

0 1000 2000 3000 4000 5000

1200

1000

0800

0600

0400

0200

0000 0 1000 2000 3000 4000 5000

etime (85degC) [h] 2412 2576 2821 3047 3160 3227 3548 ivation energy [kJmol] 70 73 30 68 26 55 53

mate class A A C A C B B

Qualification for different stress levels or climate zones allows diversification of PV-modules

copy Fraunhofer ISE

Displacement on cell (cm)

Inte

nsity

(arb

uni

ts)

Degradation of the modules

Polymer Analysis by Raman-Spectroscopie

Comparison of the Vinyl-Band (red) and the fluorescence-background (black) unaged and after 4000h damp-heat-testing

Elektroluminescence-picture 70 14 of the degraded cells 65

60 12

55

50 10

45 08

40

35 06

30

25 04

20

15 02

10

5 00

0 -1 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Location above the cell [cm]

Average Ref_I(1660) Average 4000h dh_I(1660)

Average Ref_I(2863)I(2913) Average 4000h dh_I(2863)I(2913)

Inte

nsi

ty [

arb

un

its]

C Peike etal Non-destructive degradation analysis of encapsulants in PV modules copy Fraunhofer ISE by Raman Spectroscopy Sol En Mat Sol Cells (2011)

6 Evaluation of the service life time for different climates

Testing time at 85rh85degC for 25 years lifetime 100000

Climate classes

A Most severe moisture stress

B Moderate moisture stress

C Low moisture stress

test

ing

time

85

degC [h

]

tropical arid alpine

20 40 60 80 100 120

Activation energy [kJmol]

10000

1000

100

Assumptions

The measured stress levels are representative

The model for the kinetics is valid

The constant load DH test reflects reality

copy Fraunhofer ISE

4

100

1000

10000

Test

ing

time

8

5 C

[h]

tropical arid alpine

Nor

mal

ised

pow

er

mpp

7 Modeling expected degradation for validation by outdoor exposure

Power reduction after 3 years outdoor exposure lt 3

Exposure time has to be doubled

Equivalent to 3 years operation 11

10

09

08

07

06

05

04

03

02

01 0 20 40 60 80 100 -500 0 500 1000 1500 2000 2500 3000 3500 4000 C B A

Activation energy [kJmol] Exposure time h

copy Fraunhofer ISE

-66

7 Degradation effects during outdoor exposure

Changes of the electrical performance at the outdoor exposure site

Test site Tropical Arid Urban Alpine Average

Module 1 -15 -06 -09 -11 -10 2 -01 -11 -08 -47 -17 3 -10 -01 -05 13 -01 4 -32 -01 17 -21 5 -01 -22 -18 -08 -12

Average -12 -08 -05 -24 -12

After 3 years operation hardly out of the error bars

copy Fraunhofer ISE

7 Degradation effects during outdoor exposure

After 3 years on the alpes

copy Fraunhofer ISE

7 Degradation effects during outdoor exposure

Degradation of module materials - UV-induced fluorescencelt2 a alpine outdoor exposure 2 a desert outdoor exposure

Combination of electroluminescence and fluorescence

J Schlothauer et al Fluorescence imaging a powerful tool for the investigation of polymer copy Fraunhofer ISE

degradation in PV modules Photovoltaics International journal November 2010

7 Degradation effects during outdoor exposure

Browning and photo-bleaching - UV-induced fluorescencelt

Combination of electroluminescence and fluorescenc

2 a desert outdoor exposure

copy Fraunhofer ISE

7 Degradation effects during outdoor exposure

a) Tropical

b) Arid

c) Moderate

d) Alpine

Effect of outdoor weathering on fluorescence spectra

UV

-rad

iatio

n

Moi

stur

e le

vel

Module types

J Schlothauer et al Degradation of the encapsulant polymer in outdoor weathered photovoltaic copy Fraunhofer ISE modules Spatially resolved inspection Solar Energy MaterialsampSolar Cells 102 (2012) 75ndash85

1

2

3

5

4

7

6

Methodology for design of Accelerated Service Life Testing

Monitoring climatic conditions

Monitoring micro-climatic stress factors

Modeling micro-climatic stress factors

Time-transformation functions for major degradation processes

Modeling corresponding ALT ndash conditions for micro-climatic stress factors

Evaluation of sample-dependent parameters for time-transformation functions

Modeling of expected degradation for outdoor exposure and validation of the tests

copy Fraunhofer ISE

Conclusions

Accelerated Damp-heat service life tests have been proposed

bull Based on monitored climatic data

bull Modelled micro-climatic stress conditions

bull Modelled kinetic of the degradation processes

but final validation was not achieved yet

copy Fraunhofer ISE

Conclusions and outlook

Accelerated Damp-heat service life tests have been proposed

bull Based on monitored climatic data

bull Modelled micro-climatic stress conditions

bull Modelled kinetic of the degradation processes

but final validation was not achieved yet

Tests for other stress factors (UV temperature cycling potential induced degradation etc) and their combinations are under development

Global stress mapping will allow qualification of diversified specialised products for different climatic zones

copy Fraunhofer ISE

Thank you for your Attentionlt

Fraunhofer Institute for Solar Energy Systems ISE

Michael Koumlhl

wwwisefraunhoferde

michaelkoehlisefraunhoferde

copy Fraunhofer ISE

Page 6: Comparing Accelerated Testing and Outdoor Exposure · 2014. 1. 24. · mod module temperature T amb ambient temperature wind velocity H solar radiation U1 U0 a-Si 1 10,7 25,7 a-Si

Tamb

2 Monitoring micro-climatic stress factors

Module temperature monitoring during outdoor exposure

Macro ndash climate =gt Micro ndash climate

Ambient temperature Average module temperature (c-Si)

Tropics

temperature [degC] temperature [degC] -20 -10 0 10 20 30 40 50 60 70

0

200

400

600

800

1000

1200

1400

1600

-20 -10 0 10 20 30 40 50 60 0

200

400

600

800

1000

1200

1400

1600

frequ

ency

[h]

TavgDesert

Alpes

copy Fraunhofer ISE

v

3 Modeling micro-climatic stress factors Physical modeling of module temperature for each of the different module types using David

Faimanlsquos approach (could be King Fuenteshelliphellipas well)

Macro ndash climate =gt Micro ndash climate

Irradiation wind ambient temperature =gt Tmod

Neglected IR-radiation exchange and natural convection

HT T mod amb 10 UU v

Tmod module temperature

Tamb ambient temperature

wind velocity

H solar radiation

U1 U0 a-Si 1 107 257 a-Si 3 58 258 a-Si 4 43 261

CIS 1 31 230 CIS 2 41 250 CdTe 54 234 c-Si 62 300

The parameters U are module-specific but location independent

MKoehl etal Modelling of the nominal operating cell temperature copy Fraunhofer ISE based on outdoor weathering Sol Energy Mat Sol Cells (2011)

60

3 Modeling micro-climatic stress factors

Module-temperature as time-series based on ambient climate data and as histograms (one year)

tem

pera

ture

[degC

]

Tair5000

50

module

4000

3500

300040

Freu

ency

0 20 40 60 8

a-Si 1 a-Si 2 a-Si 3 a-Si 4 CIS 1 CIS 2 CdTe c-Si

T 4500

2500

2000

1500

1000

30

20 500

0 10

222 223 224 225 time [d] Temperature in degC

copy Fraunhofer ISE

Rel

wat

er c

once

ntra

tion

[au

]

3 Modeling micro-climatic stress factors

Simulation of module humidity by FEM

Damp-heat testing 85rh 85degC J Wirth Diplomarbeit Diploma Thesis University of Freiburg 20

copy Fraunhofer ISE J P Huumllsmann et alsu bmitted to Solar Energy MaterialsampSolar Cells

3 Modeling micro-climatic stress factors

Phenomenological modelling of moisture impact

1) Humidity at the module surface

rh (Tmod) = rh (Tamb) Psat (Tmod) Psat (Tamb)

102) Put more weight on high moisture levels

rheff =1 (1+ 100exp(-94 rh)) 08

06

04

3) Humidity level at test conditions (85rh) 02

ti = ti rheff 085 00

222 223 224 225 0

20

40

60

80

100

rH [

]

air

rH micro climate

rH

time [d]

0 02 04 06 08 1

M Koehl et al Solar Energy Materials amp Solar Cells 99 (2012) 282ndash291 copy Fraunhofer ISE

4 Time-transformation functions for major degradation processes

4) Process kinetics depend on module temperature (Time Transformation Function)

ttest = Lifetime (years) 6i ti(rheff Tmodi) exp [-(Ea R)(1Ttest - 1Tmodi)]

Ea = activation energy for the rate dominating degradation process

copy Fraunhofer ISE

5 Modeling corresponding ALT ndash conditions for micro-climatic stress factors

Testing time at 85rh85degC for 25 years lifetime

100000

100

1000

10000

test

ing

time

85

degC [h

]

tropical arid alpine

20 40 60 80 100 120

Example

Time to failure 85degC85rh

3000h

Ea gt 35 kJmol for alpine climates

Ea gt 50 kJmol for arid climates

Ea gt 60 kJmol for tropical climates

Activation energy [kJmol]Type approval test would be sufficient for Ea gt 80 kJmol

copy Fraunhofer ISE

6 Evaluation of the parameters for time-transformation functions by ALT

Testing of c-Si modules from 7 different manufacturers

Nor

mal

ised

pow

er

mpp

Damp-Heat at 85degC and 85 rel humidity Damp-Heat at 90degC and 85 rel humidity

11 11

10 10

Nor

mal

ised

pow

er

mpp

09 09

08 08

07 07

06 06

05

04

05

04

03 03

02 02

01 -500 0 500 1000 1500 2000 2500 3000 3500 4000 4500 -500 0 500 1000 1500 2000 2500 3000 3500 4000 4500

Exposure time h Exposure time h

01

copy Fraunhofer ISE

6 Evaluation of the parameters for time-transformation functions by ALT

Damp-heat testing at 85rh85degC module 1 und module 2

Exposure time hlt

-500 0 500 1000 1500 2000 2500 3000 3500 4000 4500 03

04

05

06

07

08

09

10

11

Module 1

Module 2

No

rmal

ised

po

wer

m

pp

2400h 3300h

85degC

copy Fraunhofer ISE

6 Evaluation of the parameters for time-transformation functions by ALT Damp-heat testing at 85rh85degC and 90degC module 1 und module 2

Exposure time h

-500 0 500 1000 1500 2000 2500 3000 3500 4000 4500 03

04

05

06

07

08

09

10

11

Module 1

Module 2

No

rmal

ised

po

wer

m

pp

2400h 3300h

copy Fraunhofer ISE

6 Evaluation of the parameters for time-transformation functions by ALT Damp-heat testing at 85rh85degC and 90degC module 1 und module 2

Exposure time h

-500 0 500 1000 1500 2000 2500 3000 3500 4000 4500 03

04

05

06

07

08

09

10

11

Module 1 65 kJmol Module 2 33 kJmol

No

rmal

ised

po

wer

m

pp

2400h 3300h

a = exp [-(Ea R)(1T1 ndash 1T2)]

copy Fraunhofer ISE

6 Evaluation of the parameters for time-transformation functions by ALT

P = G(1+ (G001-1) exp(-(t-tind (T))k(T)) ) 120120

100100 T=85degC 080080 Tind=2100h 060060 K=00082h 040040 G=026 020020

000000 0 1000 2000 3000 4000 5000 0 1000 2000 3000 4000 5000

1212

11 T=90degC 0808 Tind=1500h 0606 K=00115h 0404 G=026 0202

00 0 1000 2000 3000 4000 5000 0 1000 2000 3000 4000 5000

copy Fraunhofer ISE

0 100 100

0 080 080

0 060 060

0 040 040

0 020 020

0 000 0000 1000 2000 3000 4000 5000 0 1000 2000 3000 4000 5000 0 1000 2000 3000 4000 5000

0 1000 2000 3000 4000 5000

1200

1000

0800

0600

0400

0200

0000 0 1000 2000 3000 4000 5000

etime (85degC) [h] 2412 2576 2821 3047 3160 3227 3548 ivation energy [kJmol] 70 73 30 68 26 55 53

mate class A A C A C B B

Qualification for different stress levels or climate zones allows diversification of PV-modules

copy Fraunhofer ISE

Displacement on cell (cm)

Inte

nsity

(arb

uni

ts)

Degradation of the modules

Polymer Analysis by Raman-Spectroscopie

Comparison of the Vinyl-Band (red) and the fluorescence-background (black) unaged and after 4000h damp-heat-testing

Elektroluminescence-picture 70 14 of the degraded cells 65

60 12

55

50 10

45 08

40

35 06

30

25 04

20

15 02

10

5 00

0 -1 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Location above the cell [cm]

Average Ref_I(1660) Average 4000h dh_I(1660)

Average Ref_I(2863)I(2913) Average 4000h dh_I(2863)I(2913)

Inte

nsi

ty [

arb

un

its]

C Peike etal Non-destructive degradation analysis of encapsulants in PV modules copy Fraunhofer ISE by Raman Spectroscopy Sol En Mat Sol Cells (2011)

6 Evaluation of the service life time for different climates

Testing time at 85rh85degC for 25 years lifetime 100000

Climate classes

A Most severe moisture stress

B Moderate moisture stress

C Low moisture stress

test

ing

time

85

degC [h

]

tropical arid alpine

20 40 60 80 100 120

Activation energy [kJmol]

10000

1000

100

Assumptions

The measured stress levels are representative

The model for the kinetics is valid

The constant load DH test reflects reality

copy Fraunhofer ISE

4

100

1000

10000

Test

ing

time

8

5 C

[h]

tropical arid alpine

Nor

mal

ised

pow

er

mpp

7 Modeling expected degradation for validation by outdoor exposure

Power reduction after 3 years outdoor exposure lt 3

Exposure time has to be doubled

Equivalent to 3 years operation 11

10

09

08

07

06

05

04

03

02

01 0 20 40 60 80 100 -500 0 500 1000 1500 2000 2500 3000 3500 4000 C B A

Activation energy [kJmol] Exposure time h

copy Fraunhofer ISE

-66

7 Degradation effects during outdoor exposure

Changes of the electrical performance at the outdoor exposure site

Test site Tropical Arid Urban Alpine Average

Module 1 -15 -06 -09 -11 -10 2 -01 -11 -08 -47 -17 3 -10 -01 -05 13 -01 4 -32 -01 17 -21 5 -01 -22 -18 -08 -12

Average -12 -08 -05 -24 -12

After 3 years operation hardly out of the error bars

copy Fraunhofer ISE

7 Degradation effects during outdoor exposure

After 3 years on the alpes

copy Fraunhofer ISE

7 Degradation effects during outdoor exposure

Degradation of module materials - UV-induced fluorescencelt2 a alpine outdoor exposure 2 a desert outdoor exposure

Combination of electroluminescence and fluorescence

J Schlothauer et al Fluorescence imaging a powerful tool for the investigation of polymer copy Fraunhofer ISE

degradation in PV modules Photovoltaics International journal November 2010

7 Degradation effects during outdoor exposure

Browning and photo-bleaching - UV-induced fluorescencelt

Combination of electroluminescence and fluorescenc

2 a desert outdoor exposure

copy Fraunhofer ISE

7 Degradation effects during outdoor exposure

a) Tropical

b) Arid

c) Moderate

d) Alpine

Effect of outdoor weathering on fluorescence spectra

UV

-rad

iatio

n

Moi

stur

e le

vel

Module types

J Schlothauer et al Degradation of the encapsulant polymer in outdoor weathered photovoltaic copy Fraunhofer ISE modules Spatially resolved inspection Solar Energy MaterialsampSolar Cells 102 (2012) 75ndash85

1

2

3

5

4

7

6

Methodology for design of Accelerated Service Life Testing

Monitoring climatic conditions

Monitoring micro-climatic stress factors

Modeling micro-climatic stress factors

Time-transformation functions for major degradation processes

Modeling corresponding ALT ndash conditions for micro-climatic stress factors

Evaluation of sample-dependent parameters for time-transformation functions

Modeling of expected degradation for outdoor exposure and validation of the tests

copy Fraunhofer ISE

Conclusions

Accelerated Damp-heat service life tests have been proposed

bull Based on monitored climatic data

bull Modelled micro-climatic stress conditions

bull Modelled kinetic of the degradation processes

but final validation was not achieved yet

copy Fraunhofer ISE

Conclusions and outlook

Accelerated Damp-heat service life tests have been proposed

bull Based on monitored climatic data

bull Modelled micro-climatic stress conditions

bull Modelled kinetic of the degradation processes

but final validation was not achieved yet

Tests for other stress factors (UV temperature cycling potential induced degradation etc) and their combinations are under development

Global stress mapping will allow qualification of diversified specialised products for different climatic zones

copy Fraunhofer ISE

Thank you for your Attentionlt

Fraunhofer Institute for Solar Energy Systems ISE

Michael Koumlhl

wwwisefraunhoferde

michaelkoehlisefraunhoferde

copy Fraunhofer ISE

Page 7: Comparing Accelerated Testing and Outdoor Exposure · 2014. 1. 24. · mod module temperature T amb ambient temperature wind velocity H solar radiation U1 U0 a-Si 1 10,7 25,7 a-Si

v

3 Modeling micro-climatic stress factors Physical modeling of module temperature for each of the different module types using David

Faimanlsquos approach (could be King Fuenteshelliphellipas well)

Macro ndash climate =gt Micro ndash climate

Irradiation wind ambient temperature =gt Tmod

Neglected IR-radiation exchange and natural convection

HT T mod amb 10 UU v

Tmod module temperature

Tamb ambient temperature

wind velocity

H solar radiation

U1 U0 a-Si 1 107 257 a-Si 3 58 258 a-Si 4 43 261

CIS 1 31 230 CIS 2 41 250 CdTe 54 234 c-Si 62 300

The parameters U are module-specific but location independent

MKoehl etal Modelling of the nominal operating cell temperature copy Fraunhofer ISE based on outdoor weathering Sol Energy Mat Sol Cells (2011)

60

3 Modeling micro-climatic stress factors

Module-temperature as time-series based on ambient climate data and as histograms (one year)

tem

pera

ture

[degC

]

Tair5000

50

module

4000

3500

300040

Freu

ency

0 20 40 60 8

a-Si 1 a-Si 2 a-Si 3 a-Si 4 CIS 1 CIS 2 CdTe c-Si

T 4500

2500

2000

1500

1000

30

20 500

0 10

222 223 224 225 time [d] Temperature in degC

copy Fraunhofer ISE

Rel

wat

er c

once

ntra

tion

[au

]

3 Modeling micro-climatic stress factors

Simulation of module humidity by FEM

Damp-heat testing 85rh 85degC J Wirth Diplomarbeit Diploma Thesis University of Freiburg 20

copy Fraunhofer ISE J P Huumllsmann et alsu bmitted to Solar Energy MaterialsampSolar Cells

3 Modeling micro-climatic stress factors

Phenomenological modelling of moisture impact

1) Humidity at the module surface

rh (Tmod) = rh (Tamb) Psat (Tmod) Psat (Tamb)

102) Put more weight on high moisture levels

rheff =1 (1+ 100exp(-94 rh)) 08

06

04

3) Humidity level at test conditions (85rh) 02

ti = ti rheff 085 00

222 223 224 225 0

20

40

60

80

100

rH [

]

air

rH micro climate

rH

time [d]

0 02 04 06 08 1

M Koehl et al Solar Energy Materials amp Solar Cells 99 (2012) 282ndash291 copy Fraunhofer ISE

4 Time-transformation functions for major degradation processes

4) Process kinetics depend on module temperature (Time Transformation Function)

ttest = Lifetime (years) 6i ti(rheff Tmodi) exp [-(Ea R)(1Ttest - 1Tmodi)]

Ea = activation energy for the rate dominating degradation process

copy Fraunhofer ISE

5 Modeling corresponding ALT ndash conditions for micro-climatic stress factors

Testing time at 85rh85degC for 25 years lifetime

100000

100

1000

10000

test

ing

time

85

degC [h

]

tropical arid alpine

20 40 60 80 100 120

Example

Time to failure 85degC85rh

3000h

Ea gt 35 kJmol for alpine climates

Ea gt 50 kJmol for arid climates

Ea gt 60 kJmol for tropical climates

Activation energy [kJmol]Type approval test would be sufficient for Ea gt 80 kJmol

copy Fraunhofer ISE

6 Evaluation of the parameters for time-transformation functions by ALT

Testing of c-Si modules from 7 different manufacturers

Nor

mal

ised

pow

er

mpp

Damp-Heat at 85degC and 85 rel humidity Damp-Heat at 90degC and 85 rel humidity

11 11

10 10

Nor

mal

ised

pow

er

mpp

09 09

08 08

07 07

06 06

05

04

05

04

03 03

02 02

01 -500 0 500 1000 1500 2000 2500 3000 3500 4000 4500 -500 0 500 1000 1500 2000 2500 3000 3500 4000 4500

Exposure time h Exposure time h

01

copy Fraunhofer ISE

6 Evaluation of the parameters for time-transformation functions by ALT

Damp-heat testing at 85rh85degC module 1 und module 2

Exposure time hlt

-500 0 500 1000 1500 2000 2500 3000 3500 4000 4500 03

04

05

06

07

08

09

10

11

Module 1

Module 2

No

rmal

ised

po

wer

m

pp

2400h 3300h

85degC

copy Fraunhofer ISE

6 Evaluation of the parameters for time-transformation functions by ALT Damp-heat testing at 85rh85degC and 90degC module 1 und module 2

Exposure time h

-500 0 500 1000 1500 2000 2500 3000 3500 4000 4500 03

04

05

06

07

08

09

10

11

Module 1

Module 2

No

rmal

ised

po

wer

m

pp

2400h 3300h

copy Fraunhofer ISE

6 Evaluation of the parameters for time-transformation functions by ALT Damp-heat testing at 85rh85degC and 90degC module 1 und module 2

Exposure time h

-500 0 500 1000 1500 2000 2500 3000 3500 4000 4500 03

04

05

06

07

08

09

10

11

Module 1 65 kJmol Module 2 33 kJmol

No

rmal

ised

po

wer

m

pp

2400h 3300h

a = exp [-(Ea R)(1T1 ndash 1T2)]

copy Fraunhofer ISE

6 Evaluation of the parameters for time-transformation functions by ALT

P = G(1+ (G001-1) exp(-(t-tind (T))k(T)) ) 120120

100100 T=85degC 080080 Tind=2100h 060060 K=00082h 040040 G=026 020020

000000 0 1000 2000 3000 4000 5000 0 1000 2000 3000 4000 5000

1212

11 T=90degC 0808 Tind=1500h 0606 K=00115h 0404 G=026 0202

00 0 1000 2000 3000 4000 5000 0 1000 2000 3000 4000 5000

copy Fraunhofer ISE

0 100 100

0 080 080

0 060 060

0 040 040

0 020 020

0 000 0000 1000 2000 3000 4000 5000 0 1000 2000 3000 4000 5000 0 1000 2000 3000 4000 5000

0 1000 2000 3000 4000 5000

1200

1000

0800

0600

0400

0200

0000 0 1000 2000 3000 4000 5000

etime (85degC) [h] 2412 2576 2821 3047 3160 3227 3548 ivation energy [kJmol] 70 73 30 68 26 55 53

mate class A A C A C B B

Qualification for different stress levels or climate zones allows diversification of PV-modules

copy Fraunhofer ISE

Displacement on cell (cm)

Inte

nsity

(arb

uni

ts)

Degradation of the modules

Polymer Analysis by Raman-Spectroscopie

Comparison of the Vinyl-Band (red) and the fluorescence-background (black) unaged and after 4000h damp-heat-testing

Elektroluminescence-picture 70 14 of the degraded cells 65

60 12

55

50 10

45 08

40

35 06

30

25 04

20

15 02

10

5 00

0 -1 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Location above the cell [cm]

Average Ref_I(1660) Average 4000h dh_I(1660)

Average Ref_I(2863)I(2913) Average 4000h dh_I(2863)I(2913)

Inte

nsi

ty [

arb

un

its]

C Peike etal Non-destructive degradation analysis of encapsulants in PV modules copy Fraunhofer ISE by Raman Spectroscopy Sol En Mat Sol Cells (2011)

6 Evaluation of the service life time for different climates

Testing time at 85rh85degC for 25 years lifetime 100000

Climate classes

A Most severe moisture stress

B Moderate moisture stress

C Low moisture stress

test

ing

time

85

degC [h

]

tropical arid alpine

20 40 60 80 100 120

Activation energy [kJmol]

10000

1000

100

Assumptions

The measured stress levels are representative

The model for the kinetics is valid

The constant load DH test reflects reality

copy Fraunhofer ISE

4

100

1000

10000

Test

ing

time

8

5 C

[h]

tropical arid alpine

Nor

mal

ised

pow

er

mpp

7 Modeling expected degradation for validation by outdoor exposure

Power reduction after 3 years outdoor exposure lt 3

Exposure time has to be doubled

Equivalent to 3 years operation 11

10

09

08

07

06

05

04

03

02

01 0 20 40 60 80 100 -500 0 500 1000 1500 2000 2500 3000 3500 4000 C B A

Activation energy [kJmol] Exposure time h

copy Fraunhofer ISE

-66

7 Degradation effects during outdoor exposure

Changes of the electrical performance at the outdoor exposure site

Test site Tropical Arid Urban Alpine Average

Module 1 -15 -06 -09 -11 -10 2 -01 -11 -08 -47 -17 3 -10 -01 -05 13 -01 4 -32 -01 17 -21 5 -01 -22 -18 -08 -12

Average -12 -08 -05 -24 -12

After 3 years operation hardly out of the error bars

copy Fraunhofer ISE

7 Degradation effects during outdoor exposure

After 3 years on the alpes

copy Fraunhofer ISE

7 Degradation effects during outdoor exposure

Degradation of module materials - UV-induced fluorescencelt2 a alpine outdoor exposure 2 a desert outdoor exposure

Combination of electroluminescence and fluorescence

J Schlothauer et al Fluorescence imaging a powerful tool for the investigation of polymer copy Fraunhofer ISE

degradation in PV modules Photovoltaics International journal November 2010

7 Degradation effects during outdoor exposure

Browning and photo-bleaching - UV-induced fluorescencelt

Combination of electroluminescence and fluorescenc

2 a desert outdoor exposure

copy Fraunhofer ISE

7 Degradation effects during outdoor exposure

a) Tropical

b) Arid

c) Moderate

d) Alpine

Effect of outdoor weathering on fluorescence spectra

UV

-rad

iatio

n

Moi

stur

e le

vel

Module types

J Schlothauer et al Degradation of the encapsulant polymer in outdoor weathered photovoltaic copy Fraunhofer ISE modules Spatially resolved inspection Solar Energy MaterialsampSolar Cells 102 (2012) 75ndash85

1

2

3

5

4

7

6

Methodology for design of Accelerated Service Life Testing

Monitoring climatic conditions

Monitoring micro-climatic stress factors

Modeling micro-climatic stress factors

Time-transformation functions for major degradation processes

Modeling corresponding ALT ndash conditions for micro-climatic stress factors

Evaluation of sample-dependent parameters for time-transformation functions

Modeling of expected degradation for outdoor exposure and validation of the tests

copy Fraunhofer ISE

Conclusions

Accelerated Damp-heat service life tests have been proposed

bull Based on monitored climatic data

bull Modelled micro-climatic stress conditions

bull Modelled kinetic of the degradation processes

but final validation was not achieved yet

copy Fraunhofer ISE

Conclusions and outlook

Accelerated Damp-heat service life tests have been proposed

bull Based on monitored climatic data

bull Modelled micro-climatic stress conditions

bull Modelled kinetic of the degradation processes

but final validation was not achieved yet

Tests for other stress factors (UV temperature cycling potential induced degradation etc) and their combinations are under development

Global stress mapping will allow qualification of diversified specialised products for different climatic zones

copy Fraunhofer ISE

Thank you for your Attentionlt

Fraunhofer Institute for Solar Energy Systems ISE

Michael Koumlhl

wwwisefraunhoferde

michaelkoehlisefraunhoferde

copy Fraunhofer ISE

Page 8: Comparing Accelerated Testing and Outdoor Exposure · 2014. 1. 24. · mod module temperature T amb ambient temperature wind velocity H solar radiation U1 U0 a-Si 1 10,7 25,7 a-Si

60

3 Modeling micro-climatic stress factors

Module-temperature as time-series based on ambient climate data and as histograms (one year)

tem

pera

ture

[degC

]

Tair5000

50

module

4000

3500

300040

Freu

ency

0 20 40 60 8

a-Si 1 a-Si 2 a-Si 3 a-Si 4 CIS 1 CIS 2 CdTe c-Si

T 4500

2500

2000

1500

1000

30

20 500

0 10

222 223 224 225 time [d] Temperature in degC

copy Fraunhofer ISE

Rel

wat

er c

once

ntra

tion

[au

]

3 Modeling micro-climatic stress factors

Simulation of module humidity by FEM

Damp-heat testing 85rh 85degC J Wirth Diplomarbeit Diploma Thesis University of Freiburg 20

copy Fraunhofer ISE J P Huumllsmann et alsu bmitted to Solar Energy MaterialsampSolar Cells

3 Modeling micro-climatic stress factors

Phenomenological modelling of moisture impact

1) Humidity at the module surface

rh (Tmod) = rh (Tamb) Psat (Tmod) Psat (Tamb)

102) Put more weight on high moisture levels

rheff =1 (1+ 100exp(-94 rh)) 08

06

04

3) Humidity level at test conditions (85rh) 02

ti = ti rheff 085 00

222 223 224 225 0

20

40

60

80

100

rH [

]

air

rH micro climate

rH

time [d]

0 02 04 06 08 1

M Koehl et al Solar Energy Materials amp Solar Cells 99 (2012) 282ndash291 copy Fraunhofer ISE

4 Time-transformation functions for major degradation processes

4) Process kinetics depend on module temperature (Time Transformation Function)

ttest = Lifetime (years) 6i ti(rheff Tmodi) exp [-(Ea R)(1Ttest - 1Tmodi)]

Ea = activation energy for the rate dominating degradation process

copy Fraunhofer ISE

5 Modeling corresponding ALT ndash conditions for micro-climatic stress factors

Testing time at 85rh85degC for 25 years lifetime

100000

100

1000

10000

test

ing

time

85

degC [h

]

tropical arid alpine

20 40 60 80 100 120

Example

Time to failure 85degC85rh

3000h

Ea gt 35 kJmol for alpine climates

Ea gt 50 kJmol for arid climates

Ea gt 60 kJmol for tropical climates

Activation energy [kJmol]Type approval test would be sufficient for Ea gt 80 kJmol

copy Fraunhofer ISE

6 Evaluation of the parameters for time-transformation functions by ALT

Testing of c-Si modules from 7 different manufacturers

Nor

mal

ised

pow

er

mpp

Damp-Heat at 85degC and 85 rel humidity Damp-Heat at 90degC and 85 rel humidity

11 11

10 10

Nor

mal

ised

pow

er

mpp

09 09

08 08

07 07

06 06

05

04

05

04

03 03

02 02

01 -500 0 500 1000 1500 2000 2500 3000 3500 4000 4500 -500 0 500 1000 1500 2000 2500 3000 3500 4000 4500

Exposure time h Exposure time h

01

copy Fraunhofer ISE

6 Evaluation of the parameters for time-transformation functions by ALT

Damp-heat testing at 85rh85degC module 1 und module 2

Exposure time hlt

-500 0 500 1000 1500 2000 2500 3000 3500 4000 4500 03

04

05

06

07

08

09

10

11

Module 1

Module 2

No

rmal

ised

po

wer

m

pp

2400h 3300h

85degC

copy Fraunhofer ISE

6 Evaluation of the parameters for time-transformation functions by ALT Damp-heat testing at 85rh85degC and 90degC module 1 und module 2

Exposure time h

-500 0 500 1000 1500 2000 2500 3000 3500 4000 4500 03

04

05

06

07

08

09

10

11

Module 1

Module 2

No

rmal

ised

po

wer

m

pp

2400h 3300h

copy Fraunhofer ISE

6 Evaluation of the parameters for time-transformation functions by ALT Damp-heat testing at 85rh85degC and 90degC module 1 und module 2

Exposure time h

-500 0 500 1000 1500 2000 2500 3000 3500 4000 4500 03

04

05

06

07

08

09

10

11

Module 1 65 kJmol Module 2 33 kJmol

No

rmal

ised

po

wer

m

pp

2400h 3300h

a = exp [-(Ea R)(1T1 ndash 1T2)]

copy Fraunhofer ISE

6 Evaluation of the parameters for time-transformation functions by ALT

P = G(1+ (G001-1) exp(-(t-tind (T))k(T)) ) 120120

100100 T=85degC 080080 Tind=2100h 060060 K=00082h 040040 G=026 020020

000000 0 1000 2000 3000 4000 5000 0 1000 2000 3000 4000 5000

1212

11 T=90degC 0808 Tind=1500h 0606 K=00115h 0404 G=026 0202

00 0 1000 2000 3000 4000 5000 0 1000 2000 3000 4000 5000

copy Fraunhofer ISE

0 100 100

0 080 080

0 060 060

0 040 040

0 020 020

0 000 0000 1000 2000 3000 4000 5000 0 1000 2000 3000 4000 5000 0 1000 2000 3000 4000 5000

0 1000 2000 3000 4000 5000

1200

1000

0800

0600

0400

0200

0000 0 1000 2000 3000 4000 5000

etime (85degC) [h] 2412 2576 2821 3047 3160 3227 3548 ivation energy [kJmol] 70 73 30 68 26 55 53

mate class A A C A C B B

Qualification for different stress levels or climate zones allows diversification of PV-modules

copy Fraunhofer ISE

Displacement on cell (cm)

Inte

nsity

(arb

uni

ts)

Degradation of the modules

Polymer Analysis by Raman-Spectroscopie

Comparison of the Vinyl-Band (red) and the fluorescence-background (black) unaged and after 4000h damp-heat-testing

Elektroluminescence-picture 70 14 of the degraded cells 65

60 12

55

50 10

45 08

40

35 06

30

25 04

20

15 02

10

5 00

0 -1 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Location above the cell [cm]

Average Ref_I(1660) Average 4000h dh_I(1660)

Average Ref_I(2863)I(2913) Average 4000h dh_I(2863)I(2913)

Inte

nsi

ty [

arb

un

its]

C Peike etal Non-destructive degradation analysis of encapsulants in PV modules copy Fraunhofer ISE by Raman Spectroscopy Sol En Mat Sol Cells (2011)

6 Evaluation of the service life time for different climates

Testing time at 85rh85degC for 25 years lifetime 100000

Climate classes

A Most severe moisture stress

B Moderate moisture stress

C Low moisture stress

test

ing

time

85

degC [h

]

tropical arid alpine

20 40 60 80 100 120

Activation energy [kJmol]

10000

1000

100

Assumptions

The measured stress levels are representative

The model for the kinetics is valid

The constant load DH test reflects reality

copy Fraunhofer ISE

4

100

1000

10000

Test

ing

time

8

5 C

[h]

tropical arid alpine

Nor

mal

ised

pow

er

mpp

7 Modeling expected degradation for validation by outdoor exposure

Power reduction after 3 years outdoor exposure lt 3

Exposure time has to be doubled

Equivalent to 3 years operation 11

10

09

08

07

06

05

04

03

02

01 0 20 40 60 80 100 -500 0 500 1000 1500 2000 2500 3000 3500 4000 C B A

Activation energy [kJmol] Exposure time h

copy Fraunhofer ISE

-66

7 Degradation effects during outdoor exposure

Changes of the electrical performance at the outdoor exposure site

Test site Tropical Arid Urban Alpine Average

Module 1 -15 -06 -09 -11 -10 2 -01 -11 -08 -47 -17 3 -10 -01 -05 13 -01 4 -32 -01 17 -21 5 -01 -22 -18 -08 -12

Average -12 -08 -05 -24 -12

After 3 years operation hardly out of the error bars

copy Fraunhofer ISE

7 Degradation effects during outdoor exposure

After 3 years on the alpes

copy Fraunhofer ISE

7 Degradation effects during outdoor exposure

Degradation of module materials - UV-induced fluorescencelt2 a alpine outdoor exposure 2 a desert outdoor exposure

Combination of electroluminescence and fluorescence

J Schlothauer et al Fluorescence imaging a powerful tool for the investigation of polymer copy Fraunhofer ISE

degradation in PV modules Photovoltaics International journal November 2010

7 Degradation effects during outdoor exposure

Browning and photo-bleaching - UV-induced fluorescencelt

Combination of electroluminescence and fluorescenc

2 a desert outdoor exposure

copy Fraunhofer ISE

7 Degradation effects during outdoor exposure

a) Tropical

b) Arid

c) Moderate

d) Alpine

Effect of outdoor weathering on fluorescence spectra

UV

-rad

iatio

n

Moi

stur

e le

vel

Module types

J Schlothauer et al Degradation of the encapsulant polymer in outdoor weathered photovoltaic copy Fraunhofer ISE modules Spatially resolved inspection Solar Energy MaterialsampSolar Cells 102 (2012) 75ndash85

1

2

3

5

4

7

6

Methodology for design of Accelerated Service Life Testing

Monitoring climatic conditions

Monitoring micro-climatic stress factors

Modeling micro-climatic stress factors

Time-transformation functions for major degradation processes

Modeling corresponding ALT ndash conditions for micro-climatic stress factors

Evaluation of sample-dependent parameters for time-transformation functions

Modeling of expected degradation for outdoor exposure and validation of the tests

copy Fraunhofer ISE

Conclusions

Accelerated Damp-heat service life tests have been proposed

bull Based on monitored climatic data

bull Modelled micro-climatic stress conditions

bull Modelled kinetic of the degradation processes

but final validation was not achieved yet

copy Fraunhofer ISE

Conclusions and outlook

Accelerated Damp-heat service life tests have been proposed

bull Based on monitored climatic data

bull Modelled micro-climatic stress conditions

bull Modelled kinetic of the degradation processes

but final validation was not achieved yet

Tests for other stress factors (UV temperature cycling potential induced degradation etc) and their combinations are under development

Global stress mapping will allow qualification of diversified specialised products for different climatic zones

copy Fraunhofer ISE

Thank you for your Attentionlt

Fraunhofer Institute for Solar Energy Systems ISE

Michael Koumlhl

wwwisefraunhoferde

michaelkoehlisefraunhoferde

copy Fraunhofer ISE

Page 9: Comparing Accelerated Testing and Outdoor Exposure · 2014. 1. 24. · mod module temperature T amb ambient temperature wind velocity H solar radiation U1 U0 a-Si 1 10,7 25,7 a-Si

Rel

wat

er c

once

ntra

tion

[au

]

3 Modeling micro-climatic stress factors

Simulation of module humidity by FEM

Damp-heat testing 85rh 85degC J Wirth Diplomarbeit Diploma Thesis University of Freiburg 20

copy Fraunhofer ISE J P Huumllsmann et alsu bmitted to Solar Energy MaterialsampSolar Cells

3 Modeling micro-climatic stress factors

Phenomenological modelling of moisture impact

1) Humidity at the module surface

rh (Tmod) = rh (Tamb) Psat (Tmod) Psat (Tamb)

102) Put more weight on high moisture levels

rheff =1 (1+ 100exp(-94 rh)) 08

06

04

3) Humidity level at test conditions (85rh) 02

ti = ti rheff 085 00

222 223 224 225 0

20

40

60

80

100

rH [

]

air

rH micro climate

rH

time [d]

0 02 04 06 08 1

M Koehl et al Solar Energy Materials amp Solar Cells 99 (2012) 282ndash291 copy Fraunhofer ISE

4 Time-transformation functions for major degradation processes

4) Process kinetics depend on module temperature (Time Transformation Function)

ttest = Lifetime (years) 6i ti(rheff Tmodi) exp [-(Ea R)(1Ttest - 1Tmodi)]

Ea = activation energy for the rate dominating degradation process

copy Fraunhofer ISE

5 Modeling corresponding ALT ndash conditions for micro-climatic stress factors

Testing time at 85rh85degC for 25 years lifetime

100000

100

1000

10000

test

ing

time

85

degC [h

]

tropical arid alpine

20 40 60 80 100 120

Example

Time to failure 85degC85rh

3000h

Ea gt 35 kJmol for alpine climates

Ea gt 50 kJmol for arid climates

Ea gt 60 kJmol for tropical climates

Activation energy [kJmol]Type approval test would be sufficient for Ea gt 80 kJmol

copy Fraunhofer ISE

6 Evaluation of the parameters for time-transformation functions by ALT

Testing of c-Si modules from 7 different manufacturers

Nor

mal

ised

pow

er

mpp

Damp-Heat at 85degC and 85 rel humidity Damp-Heat at 90degC and 85 rel humidity

11 11

10 10

Nor

mal

ised

pow

er

mpp

09 09

08 08

07 07

06 06

05

04

05

04

03 03

02 02

01 -500 0 500 1000 1500 2000 2500 3000 3500 4000 4500 -500 0 500 1000 1500 2000 2500 3000 3500 4000 4500

Exposure time h Exposure time h

01

copy Fraunhofer ISE

6 Evaluation of the parameters for time-transformation functions by ALT

Damp-heat testing at 85rh85degC module 1 und module 2

Exposure time hlt

-500 0 500 1000 1500 2000 2500 3000 3500 4000 4500 03

04

05

06

07

08

09

10

11

Module 1

Module 2

No

rmal

ised

po

wer

m

pp

2400h 3300h

85degC

copy Fraunhofer ISE

6 Evaluation of the parameters for time-transformation functions by ALT Damp-heat testing at 85rh85degC and 90degC module 1 und module 2

Exposure time h

-500 0 500 1000 1500 2000 2500 3000 3500 4000 4500 03

04

05

06

07

08

09

10

11

Module 1

Module 2

No

rmal

ised

po

wer

m

pp

2400h 3300h

copy Fraunhofer ISE

6 Evaluation of the parameters for time-transformation functions by ALT Damp-heat testing at 85rh85degC and 90degC module 1 und module 2

Exposure time h

-500 0 500 1000 1500 2000 2500 3000 3500 4000 4500 03

04

05

06

07

08

09

10

11

Module 1 65 kJmol Module 2 33 kJmol

No

rmal

ised

po

wer

m

pp

2400h 3300h

a = exp [-(Ea R)(1T1 ndash 1T2)]

copy Fraunhofer ISE

6 Evaluation of the parameters for time-transformation functions by ALT

P = G(1+ (G001-1) exp(-(t-tind (T))k(T)) ) 120120

100100 T=85degC 080080 Tind=2100h 060060 K=00082h 040040 G=026 020020

000000 0 1000 2000 3000 4000 5000 0 1000 2000 3000 4000 5000

1212

11 T=90degC 0808 Tind=1500h 0606 K=00115h 0404 G=026 0202

00 0 1000 2000 3000 4000 5000 0 1000 2000 3000 4000 5000

copy Fraunhofer ISE

0 100 100

0 080 080

0 060 060

0 040 040

0 020 020

0 000 0000 1000 2000 3000 4000 5000 0 1000 2000 3000 4000 5000 0 1000 2000 3000 4000 5000

0 1000 2000 3000 4000 5000

1200

1000

0800

0600

0400

0200

0000 0 1000 2000 3000 4000 5000

etime (85degC) [h] 2412 2576 2821 3047 3160 3227 3548 ivation energy [kJmol] 70 73 30 68 26 55 53

mate class A A C A C B B

Qualification for different stress levels or climate zones allows diversification of PV-modules

copy Fraunhofer ISE

Displacement on cell (cm)

Inte

nsity

(arb

uni

ts)

Degradation of the modules

Polymer Analysis by Raman-Spectroscopie

Comparison of the Vinyl-Band (red) and the fluorescence-background (black) unaged and after 4000h damp-heat-testing

Elektroluminescence-picture 70 14 of the degraded cells 65

60 12

55

50 10

45 08

40

35 06

30

25 04

20

15 02

10

5 00

0 -1 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Location above the cell [cm]

Average Ref_I(1660) Average 4000h dh_I(1660)

Average Ref_I(2863)I(2913) Average 4000h dh_I(2863)I(2913)

Inte

nsi

ty [

arb

un

its]

C Peike etal Non-destructive degradation analysis of encapsulants in PV modules copy Fraunhofer ISE by Raman Spectroscopy Sol En Mat Sol Cells (2011)

6 Evaluation of the service life time for different climates

Testing time at 85rh85degC for 25 years lifetime 100000

Climate classes

A Most severe moisture stress

B Moderate moisture stress

C Low moisture stress

test

ing

time

85

degC [h

]

tropical arid alpine

20 40 60 80 100 120

Activation energy [kJmol]

10000

1000

100

Assumptions

The measured stress levels are representative

The model for the kinetics is valid

The constant load DH test reflects reality

copy Fraunhofer ISE

4

100

1000

10000

Test

ing

time

8

5 C

[h]

tropical arid alpine

Nor

mal

ised

pow

er

mpp

7 Modeling expected degradation for validation by outdoor exposure

Power reduction after 3 years outdoor exposure lt 3

Exposure time has to be doubled

Equivalent to 3 years operation 11

10

09

08

07

06

05

04

03

02

01 0 20 40 60 80 100 -500 0 500 1000 1500 2000 2500 3000 3500 4000 C B A

Activation energy [kJmol] Exposure time h

copy Fraunhofer ISE

-66

7 Degradation effects during outdoor exposure

Changes of the electrical performance at the outdoor exposure site

Test site Tropical Arid Urban Alpine Average

Module 1 -15 -06 -09 -11 -10 2 -01 -11 -08 -47 -17 3 -10 -01 -05 13 -01 4 -32 -01 17 -21 5 -01 -22 -18 -08 -12

Average -12 -08 -05 -24 -12

After 3 years operation hardly out of the error bars

copy Fraunhofer ISE

7 Degradation effects during outdoor exposure

After 3 years on the alpes

copy Fraunhofer ISE

7 Degradation effects during outdoor exposure

Degradation of module materials - UV-induced fluorescencelt2 a alpine outdoor exposure 2 a desert outdoor exposure

Combination of electroluminescence and fluorescence

J Schlothauer et al Fluorescence imaging a powerful tool for the investigation of polymer copy Fraunhofer ISE

degradation in PV modules Photovoltaics International journal November 2010

7 Degradation effects during outdoor exposure

Browning and photo-bleaching - UV-induced fluorescencelt

Combination of electroluminescence and fluorescenc

2 a desert outdoor exposure

copy Fraunhofer ISE

7 Degradation effects during outdoor exposure

a) Tropical

b) Arid

c) Moderate

d) Alpine

Effect of outdoor weathering on fluorescence spectra

UV

-rad

iatio

n

Moi

stur

e le

vel

Module types

J Schlothauer et al Degradation of the encapsulant polymer in outdoor weathered photovoltaic copy Fraunhofer ISE modules Spatially resolved inspection Solar Energy MaterialsampSolar Cells 102 (2012) 75ndash85

1

2

3

5

4

7

6

Methodology for design of Accelerated Service Life Testing

Monitoring climatic conditions

Monitoring micro-climatic stress factors

Modeling micro-climatic stress factors

Time-transformation functions for major degradation processes

Modeling corresponding ALT ndash conditions for micro-climatic stress factors

Evaluation of sample-dependent parameters for time-transformation functions

Modeling of expected degradation for outdoor exposure and validation of the tests

copy Fraunhofer ISE

Conclusions

Accelerated Damp-heat service life tests have been proposed

bull Based on monitored climatic data

bull Modelled micro-climatic stress conditions

bull Modelled kinetic of the degradation processes

but final validation was not achieved yet

copy Fraunhofer ISE

Conclusions and outlook

Accelerated Damp-heat service life tests have been proposed

bull Based on monitored climatic data

bull Modelled micro-climatic stress conditions

bull Modelled kinetic of the degradation processes

but final validation was not achieved yet

Tests for other stress factors (UV temperature cycling potential induced degradation etc) and their combinations are under development

Global stress mapping will allow qualification of diversified specialised products for different climatic zones

copy Fraunhofer ISE

Thank you for your Attentionlt

Fraunhofer Institute for Solar Energy Systems ISE

Michael Koumlhl

wwwisefraunhoferde

michaelkoehlisefraunhoferde

copy Fraunhofer ISE

Page 10: Comparing Accelerated Testing and Outdoor Exposure · 2014. 1. 24. · mod module temperature T amb ambient temperature wind velocity H solar radiation U1 U0 a-Si 1 10,7 25,7 a-Si

3 Modeling micro-climatic stress factors

Phenomenological modelling of moisture impact

1) Humidity at the module surface

rh (Tmod) = rh (Tamb) Psat (Tmod) Psat (Tamb)

102) Put more weight on high moisture levels

rheff =1 (1+ 100exp(-94 rh)) 08

06

04

3) Humidity level at test conditions (85rh) 02

ti = ti rheff 085 00

222 223 224 225 0

20

40

60

80

100

rH [

]

air

rH micro climate

rH

time [d]

0 02 04 06 08 1

M Koehl et al Solar Energy Materials amp Solar Cells 99 (2012) 282ndash291 copy Fraunhofer ISE

4 Time-transformation functions for major degradation processes

4) Process kinetics depend on module temperature (Time Transformation Function)

ttest = Lifetime (years) 6i ti(rheff Tmodi) exp [-(Ea R)(1Ttest - 1Tmodi)]

Ea = activation energy for the rate dominating degradation process

copy Fraunhofer ISE

5 Modeling corresponding ALT ndash conditions for micro-climatic stress factors

Testing time at 85rh85degC for 25 years lifetime

100000

100

1000

10000

test

ing

time

85

degC [h

]

tropical arid alpine

20 40 60 80 100 120

Example

Time to failure 85degC85rh

3000h

Ea gt 35 kJmol for alpine climates

Ea gt 50 kJmol for arid climates

Ea gt 60 kJmol for tropical climates

Activation energy [kJmol]Type approval test would be sufficient for Ea gt 80 kJmol

copy Fraunhofer ISE

6 Evaluation of the parameters for time-transformation functions by ALT

Testing of c-Si modules from 7 different manufacturers

Nor

mal

ised

pow

er

mpp

Damp-Heat at 85degC and 85 rel humidity Damp-Heat at 90degC and 85 rel humidity

11 11

10 10

Nor

mal

ised

pow

er

mpp

09 09

08 08

07 07

06 06

05

04

05

04

03 03

02 02

01 -500 0 500 1000 1500 2000 2500 3000 3500 4000 4500 -500 0 500 1000 1500 2000 2500 3000 3500 4000 4500

Exposure time h Exposure time h

01

copy Fraunhofer ISE

6 Evaluation of the parameters for time-transformation functions by ALT

Damp-heat testing at 85rh85degC module 1 und module 2

Exposure time hlt

-500 0 500 1000 1500 2000 2500 3000 3500 4000 4500 03

04

05

06

07

08

09

10

11

Module 1

Module 2

No

rmal

ised

po

wer

m

pp

2400h 3300h

85degC

copy Fraunhofer ISE

6 Evaluation of the parameters for time-transformation functions by ALT Damp-heat testing at 85rh85degC and 90degC module 1 und module 2

Exposure time h

-500 0 500 1000 1500 2000 2500 3000 3500 4000 4500 03

04

05

06

07

08

09

10

11

Module 1

Module 2

No

rmal

ised

po

wer

m

pp

2400h 3300h

copy Fraunhofer ISE

6 Evaluation of the parameters for time-transformation functions by ALT Damp-heat testing at 85rh85degC and 90degC module 1 und module 2

Exposure time h

-500 0 500 1000 1500 2000 2500 3000 3500 4000 4500 03

04

05

06

07

08

09

10

11

Module 1 65 kJmol Module 2 33 kJmol

No

rmal

ised

po

wer

m

pp

2400h 3300h

a = exp [-(Ea R)(1T1 ndash 1T2)]

copy Fraunhofer ISE

6 Evaluation of the parameters for time-transformation functions by ALT

P = G(1+ (G001-1) exp(-(t-tind (T))k(T)) ) 120120

100100 T=85degC 080080 Tind=2100h 060060 K=00082h 040040 G=026 020020

000000 0 1000 2000 3000 4000 5000 0 1000 2000 3000 4000 5000

1212

11 T=90degC 0808 Tind=1500h 0606 K=00115h 0404 G=026 0202

00 0 1000 2000 3000 4000 5000 0 1000 2000 3000 4000 5000

copy Fraunhofer ISE

0 100 100

0 080 080

0 060 060

0 040 040

0 020 020

0 000 0000 1000 2000 3000 4000 5000 0 1000 2000 3000 4000 5000 0 1000 2000 3000 4000 5000

0 1000 2000 3000 4000 5000

1200

1000

0800

0600

0400

0200

0000 0 1000 2000 3000 4000 5000

etime (85degC) [h] 2412 2576 2821 3047 3160 3227 3548 ivation energy [kJmol] 70 73 30 68 26 55 53

mate class A A C A C B B

Qualification for different stress levels or climate zones allows diversification of PV-modules

copy Fraunhofer ISE

Displacement on cell (cm)

Inte

nsity

(arb

uni

ts)

Degradation of the modules

Polymer Analysis by Raman-Spectroscopie

Comparison of the Vinyl-Band (red) and the fluorescence-background (black) unaged and after 4000h damp-heat-testing

Elektroluminescence-picture 70 14 of the degraded cells 65

60 12

55

50 10

45 08

40

35 06

30

25 04

20

15 02

10

5 00

0 -1 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Location above the cell [cm]

Average Ref_I(1660) Average 4000h dh_I(1660)

Average Ref_I(2863)I(2913) Average 4000h dh_I(2863)I(2913)

Inte

nsi

ty [

arb

un

its]

C Peike etal Non-destructive degradation analysis of encapsulants in PV modules copy Fraunhofer ISE by Raman Spectroscopy Sol En Mat Sol Cells (2011)

6 Evaluation of the service life time for different climates

Testing time at 85rh85degC for 25 years lifetime 100000

Climate classes

A Most severe moisture stress

B Moderate moisture stress

C Low moisture stress

test

ing

time

85

degC [h

]

tropical arid alpine

20 40 60 80 100 120

Activation energy [kJmol]

10000

1000

100

Assumptions

The measured stress levels are representative

The model for the kinetics is valid

The constant load DH test reflects reality

copy Fraunhofer ISE

4

100

1000

10000

Test

ing

time

8

5 C

[h]

tropical arid alpine

Nor

mal

ised

pow

er

mpp

7 Modeling expected degradation for validation by outdoor exposure

Power reduction after 3 years outdoor exposure lt 3

Exposure time has to be doubled

Equivalent to 3 years operation 11

10

09

08

07

06

05

04

03

02

01 0 20 40 60 80 100 -500 0 500 1000 1500 2000 2500 3000 3500 4000 C B A

Activation energy [kJmol] Exposure time h

copy Fraunhofer ISE

-66

7 Degradation effects during outdoor exposure

Changes of the electrical performance at the outdoor exposure site

Test site Tropical Arid Urban Alpine Average

Module 1 -15 -06 -09 -11 -10 2 -01 -11 -08 -47 -17 3 -10 -01 -05 13 -01 4 -32 -01 17 -21 5 -01 -22 -18 -08 -12

Average -12 -08 -05 -24 -12

After 3 years operation hardly out of the error bars

copy Fraunhofer ISE

7 Degradation effects during outdoor exposure

After 3 years on the alpes

copy Fraunhofer ISE

7 Degradation effects during outdoor exposure

Degradation of module materials - UV-induced fluorescencelt2 a alpine outdoor exposure 2 a desert outdoor exposure

Combination of electroluminescence and fluorescence

J Schlothauer et al Fluorescence imaging a powerful tool for the investigation of polymer copy Fraunhofer ISE

degradation in PV modules Photovoltaics International journal November 2010

7 Degradation effects during outdoor exposure

Browning and photo-bleaching - UV-induced fluorescencelt

Combination of electroluminescence and fluorescenc

2 a desert outdoor exposure

copy Fraunhofer ISE

7 Degradation effects during outdoor exposure

a) Tropical

b) Arid

c) Moderate

d) Alpine

Effect of outdoor weathering on fluorescence spectra

UV

-rad

iatio

n

Moi

stur

e le

vel

Module types

J Schlothauer et al Degradation of the encapsulant polymer in outdoor weathered photovoltaic copy Fraunhofer ISE modules Spatially resolved inspection Solar Energy MaterialsampSolar Cells 102 (2012) 75ndash85

1

2

3

5

4

7

6

Methodology for design of Accelerated Service Life Testing

Monitoring climatic conditions

Monitoring micro-climatic stress factors

Modeling micro-climatic stress factors

Time-transformation functions for major degradation processes

Modeling corresponding ALT ndash conditions for micro-climatic stress factors

Evaluation of sample-dependent parameters for time-transformation functions

Modeling of expected degradation for outdoor exposure and validation of the tests

copy Fraunhofer ISE

Conclusions

Accelerated Damp-heat service life tests have been proposed

bull Based on monitored climatic data

bull Modelled micro-climatic stress conditions

bull Modelled kinetic of the degradation processes

but final validation was not achieved yet

copy Fraunhofer ISE

Conclusions and outlook

Accelerated Damp-heat service life tests have been proposed

bull Based on monitored climatic data

bull Modelled micro-climatic stress conditions

bull Modelled kinetic of the degradation processes

but final validation was not achieved yet

Tests for other stress factors (UV temperature cycling potential induced degradation etc) and their combinations are under development

Global stress mapping will allow qualification of diversified specialised products for different climatic zones

copy Fraunhofer ISE

Thank you for your Attentionlt

Fraunhofer Institute for Solar Energy Systems ISE

Michael Koumlhl

wwwisefraunhoferde

michaelkoehlisefraunhoferde

copy Fraunhofer ISE

Page 11: Comparing Accelerated Testing and Outdoor Exposure · 2014. 1. 24. · mod module temperature T amb ambient temperature wind velocity H solar radiation U1 U0 a-Si 1 10,7 25,7 a-Si

4 Time-transformation functions for major degradation processes

4) Process kinetics depend on module temperature (Time Transformation Function)

ttest = Lifetime (years) 6i ti(rheff Tmodi) exp [-(Ea R)(1Ttest - 1Tmodi)]

Ea = activation energy for the rate dominating degradation process

copy Fraunhofer ISE

5 Modeling corresponding ALT ndash conditions for micro-climatic stress factors

Testing time at 85rh85degC for 25 years lifetime

100000

100

1000

10000

test

ing

time

85

degC [h

]

tropical arid alpine

20 40 60 80 100 120

Example

Time to failure 85degC85rh

3000h

Ea gt 35 kJmol for alpine climates

Ea gt 50 kJmol for arid climates

Ea gt 60 kJmol for tropical climates

Activation energy [kJmol]Type approval test would be sufficient for Ea gt 80 kJmol

copy Fraunhofer ISE

6 Evaluation of the parameters for time-transformation functions by ALT

Testing of c-Si modules from 7 different manufacturers

Nor

mal

ised

pow

er

mpp

Damp-Heat at 85degC and 85 rel humidity Damp-Heat at 90degC and 85 rel humidity

11 11

10 10

Nor

mal

ised

pow

er

mpp

09 09

08 08

07 07

06 06

05

04

05

04

03 03

02 02

01 -500 0 500 1000 1500 2000 2500 3000 3500 4000 4500 -500 0 500 1000 1500 2000 2500 3000 3500 4000 4500

Exposure time h Exposure time h

01

copy Fraunhofer ISE

6 Evaluation of the parameters for time-transformation functions by ALT

Damp-heat testing at 85rh85degC module 1 und module 2

Exposure time hlt

-500 0 500 1000 1500 2000 2500 3000 3500 4000 4500 03

04

05

06

07

08

09

10

11

Module 1

Module 2

No

rmal

ised

po

wer

m

pp

2400h 3300h

85degC

copy Fraunhofer ISE

6 Evaluation of the parameters for time-transformation functions by ALT Damp-heat testing at 85rh85degC and 90degC module 1 und module 2

Exposure time h

-500 0 500 1000 1500 2000 2500 3000 3500 4000 4500 03

04

05

06

07

08

09

10

11

Module 1

Module 2

No

rmal

ised

po

wer

m

pp

2400h 3300h

copy Fraunhofer ISE

6 Evaluation of the parameters for time-transformation functions by ALT Damp-heat testing at 85rh85degC and 90degC module 1 und module 2

Exposure time h

-500 0 500 1000 1500 2000 2500 3000 3500 4000 4500 03

04

05

06

07

08

09

10

11

Module 1 65 kJmol Module 2 33 kJmol

No

rmal

ised

po

wer

m

pp

2400h 3300h

a = exp [-(Ea R)(1T1 ndash 1T2)]

copy Fraunhofer ISE

6 Evaluation of the parameters for time-transformation functions by ALT

P = G(1+ (G001-1) exp(-(t-tind (T))k(T)) ) 120120

100100 T=85degC 080080 Tind=2100h 060060 K=00082h 040040 G=026 020020

000000 0 1000 2000 3000 4000 5000 0 1000 2000 3000 4000 5000

1212

11 T=90degC 0808 Tind=1500h 0606 K=00115h 0404 G=026 0202

00 0 1000 2000 3000 4000 5000 0 1000 2000 3000 4000 5000

copy Fraunhofer ISE

0 100 100

0 080 080

0 060 060

0 040 040

0 020 020

0 000 0000 1000 2000 3000 4000 5000 0 1000 2000 3000 4000 5000 0 1000 2000 3000 4000 5000

0 1000 2000 3000 4000 5000

1200

1000

0800

0600

0400

0200

0000 0 1000 2000 3000 4000 5000

etime (85degC) [h] 2412 2576 2821 3047 3160 3227 3548 ivation energy [kJmol] 70 73 30 68 26 55 53

mate class A A C A C B B

Qualification for different stress levels or climate zones allows diversification of PV-modules

copy Fraunhofer ISE

Displacement on cell (cm)

Inte

nsity

(arb

uni

ts)

Degradation of the modules

Polymer Analysis by Raman-Spectroscopie

Comparison of the Vinyl-Band (red) and the fluorescence-background (black) unaged and after 4000h damp-heat-testing

Elektroluminescence-picture 70 14 of the degraded cells 65

60 12

55

50 10

45 08

40

35 06

30

25 04

20

15 02

10

5 00

0 -1 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Location above the cell [cm]

Average Ref_I(1660) Average 4000h dh_I(1660)

Average Ref_I(2863)I(2913) Average 4000h dh_I(2863)I(2913)

Inte

nsi

ty [

arb

un

its]

C Peike etal Non-destructive degradation analysis of encapsulants in PV modules copy Fraunhofer ISE by Raman Spectroscopy Sol En Mat Sol Cells (2011)

6 Evaluation of the service life time for different climates

Testing time at 85rh85degC for 25 years lifetime 100000

Climate classes

A Most severe moisture stress

B Moderate moisture stress

C Low moisture stress

test

ing

time

85

degC [h

]

tropical arid alpine

20 40 60 80 100 120

Activation energy [kJmol]

10000

1000

100

Assumptions

The measured stress levels are representative

The model for the kinetics is valid

The constant load DH test reflects reality

copy Fraunhofer ISE

4

100

1000

10000

Test

ing

time

8

5 C

[h]

tropical arid alpine

Nor

mal

ised

pow

er

mpp

7 Modeling expected degradation for validation by outdoor exposure

Power reduction after 3 years outdoor exposure lt 3

Exposure time has to be doubled

Equivalent to 3 years operation 11

10

09

08

07

06

05

04

03

02

01 0 20 40 60 80 100 -500 0 500 1000 1500 2000 2500 3000 3500 4000 C B A

Activation energy [kJmol] Exposure time h

copy Fraunhofer ISE

-66

7 Degradation effects during outdoor exposure

Changes of the electrical performance at the outdoor exposure site

Test site Tropical Arid Urban Alpine Average

Module 1 -15 -06 -09 -11 -10 2 -01 -11 -08 -47 -17 3 -10 -01 -05 13 -01 4 -32 -01 17 -21 5 -01 -22 -18 -08 -12

Average -12 -08 -05 -24 -12

After 3 years operation hardly out of the error bars

copy Fraunhofer ISE

7 Degradation effects during outdoor exposure

After 3 years on the alpes

copy Fraunhofer ISE

7 Degradation effects during outdoor exposure

Degradation of module materials - UV-induced fluorescencelt2 a alpine outdoor exposure 2 a desert outdoor exposure

Combination of electroluminescence and fluorescence

J Schlothauer et al Fluorescence imaging a powerful tool for the investigation of polymer copy Fraunhofer ISE

degradation in PV modules Photovoltaics International journal November 2010

7 Degradation effects during outdoor exposure

Browning and photo-bleaching - UV-induced fluorescencelt

Combination of electroluminescence and fluorescenc

2 a desert outdoor exposure

copy Fraunhofer ISE

7 Degradation effects during outdoor exposure

a) Tropical

b) Arid

c) Moderate

d) Alpine

Effect of outdoor weathering on fluorescence spectra

UV

-rad

iatio

n

Moi

stur

e le

vel

Module types

J Schlothauer et al Degradation of the encapsulant polymer in outdoor weathered photovoltaic copy Fraunhofer ISE modules Spatially resolved inspection Solar Energy MaterialsampSolar Cells 102 (2012) 75ndash85

1

2

3

5

4

7

6

Methodology for design of Accelerated Service Life Testing

Monitoring climatic conditions

Monitoring micro-climatic stress factors

Modeling micro-climatic stress factors

Time-transformation functions for major degradation processes

Modeling corresponding ALT ndash conditions for micro-climatic stress factors

Evaluation of sample-dependent parameters for time-transformation functions

Modeling of expected degradation for outdoor exposure and validation of the tests

copy Fraunhofer ISE

Conclusions

Accelerated Damp-heat service life tests have been proposed

bull Based on monitored climatic data

bull Modelled micro-climatic stress conditions

bull Modelled kinetic of the degradation processes

but final validation was not achieved yet

copy Fraunhofer ISE

Conclusions and outlook

Accelerated Damp-heat service life tests have been proposed

bull Based on monitored climatic data

bull Modelled micro-climatic stress conditions

bull Modelled kinetic of the degradation processes

but final validation was not achieved yet

Tests for other stress factors (UV temperature cycling potential induced degradation etc) and their combinations are under development

Global stress mapping will allow qualification of diversified specialised products for different climatic zones

copy Fraunhofer ISE

Thank you for your Attentionlt

Fraunhofer Institute for Solar Energy Systems ISE

Michael Koumlhl

wwwisefraunhoferde

michaelkoehlisefraunhoferde

copy Fraunhofer ISE

Page 12: Comparing Accelerated Testing and Outdoor Exposure · 2014. 1. 24. · mod module temperature T amb ambient temperature wind velocity H solar radiation U1 U0 a-Si 1 10,7 25,7 a-Si

5 Modeling corresponding ALT ndash conditions for micro-climatic stress factors

Testing time at 85rh85degC for 25 years lifetime

100000

100

1000

10000

test

ing

time

85

degC [h

]

tropical arid alpine

20 40 60 80 100 120

Example

Time to failure 85degC85rh

3000h

Ea gt 35 kJmol for alpine climates

Ea gt 50 kJmol for arid climates

Ea gt 60 kJmol for tropical climates

Activation energy [kJmol]Type approval test would be sufficient for Ea gt 80 kJmol

copy Fraunhofer ISE

6 Evaluation of the parameters for time-transformation functions by ALT

Testing of c-Si modules from 7 different manufacturers

Nor

mal

ised

pow

er

mpp

Damp-Heat at 85degC and 85 rel humidity Damp-Heat at 90degC and 85 rel humidity

11 11

10 10

Nor

mal

ised

pow

er

mpp

09 09

08 08

07 07

06 06

05

04

05

04

03 03

02 02

01 -500 0 500 1000 1500 2000 2500 3000 3500 4000 4500 -500 0 500 1000 1500 2000 2500 3000 3500 4000 4500

Exposure time h Exposure time h

01

copy Fraunhofer ISE

6 Evaluation of the parameters for time-transformation functions by ALT

Damp-heat testing at 85rh85degC module 1 und module 2

Exposure time hlt

-500 0 500 1000 1500 2000 2500 3000 3500 4000 4500 03

04

05

06

07

08

09

10

11

Module 1

Module 2

No

rmal

ised

po

wer

m

pp

2400h 3300h

85degC

copy Fraunhofer ISE

6 Evaluation of the parameters for time-transformation functions by ALT Damp-heat testing at 85rh85degC and 90degC module 1 und module 2

Exposure time h

-500 0 500 1000 1500 2000 2500 3000 3500 4000 4500 03

04

05

06

07

08

09

10

11

Module 1

Module 2

No

rmal

ised

po

wer

m

pp

2400h 3300h

copy Fraunhofer ISE

6 Evaluation of the parameters for time-transformation functions by ALT Damp-heat testing at 85rh85degC and 90degC module 1 und module 2

Exposure time h

-500 0 500 1000 1500 2000 2500 3000 3500 4000 4500 03

04

05

06

07

08

09

10

11

Module 1 65 kJmol Module 2 33 kJmol

No

rmal

ised

po

wer

m

pp

2400h 3300h

a = exp [-(Ea R)(1T1 ndash 1T2)]

copy Fraunhofer ISE

6 Evaluation of the parameters for time-transformation functions by ALT

P = G(1+ (G001-1) exp(-(t-tind (T))k(T)) ) 120120

100100 T=85degC 080080 Tind=2100h 060060 K=00082h 040040 G=026 020020

000000 0 1000 2000 3000 4000 5000 0 1000 2000 3000 4000 5000

1212

11 T=90degC 0808 Tind=1500h 0606 K=00115h 0404 G=026 0202

00 0 1000 2000 3000 4000 5000 0 1000 2000 3000 4000 5000

copy Fraunhofer ISE

0 100 100

0 080 080

0 060 060

0 040 040

0 020 020

0 000 0000 1000 2000 3000 4000 5000 0 1000 2000 3000 4000 5000 0 1000 2000 3000 4000 5000

0 1000 2000 3000 4000 5000

1200

1000

0800

0600

0400

0200

0000 0 1000 2000 3000 4000 5000

etime (85degC) [h] 2412 2576 2821 3047 3160 3227 3548 ivation energy [kJmol] 70 73 30 68 26 55 53

mate class A A C A C B B

Qualification for different stress levels or climate zones allows diversification of PV-modules

copy Fraunhofer ISE

Displacement on cell (cm)

Inte

nsity

(arb

uni

ts)

Degradation of the modules

Polymer Analysis by Raman-Spectroscopie

Comparison of the Vinyl-Band (red) and the fluorescence-background (black) unaged and after 4000h damp-heat-testing

Elektroluminescence-picture 70 14 of the degraded cells 65

60 12

55

50 10

45 08

40

35 06

30

25 04

20

15 02

10

5 00

0 -1 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Location above the cell [cm]

Average Ref_I(1660) Average 4000h dh_I(1660)

Average Ref_I(2863)I(2913) Average 4000h dh_I(2863)I(2913)

Inte

nsi

ty [

arb

un

its]

C Peike etal Non-destructive degradation analysis of encapsulants in PV modules copy Fraunhofer ISE by Raman Spectroscopy Sol En Mat Sol Cells (2011)

6 Evaluation of the service life time for different climates

Testing time at 85rh85degC for 25 years lifetime 100000

Climate classes

A Most severe moisture stress

B Moderate moisture stress

C Low moisture stress

test

ing

time

85

degC [h

]

tropical arid alpine

20 40 60 80 100 120

Activation energy [kJmol]

10000

1000

100

Assumptions

The measured stress levels are representative

The model for the kinetics is valid

The constant load DH test reflects reality

copy Fraunhofer ISE

4

100

1000

10000

Test

ing

time

8

5 C

[h]

tropical arid alpine

Nor

mal

ised

pow

er

mpp

7 Modeling expected degradation for validation by outdoor exposure

Power reduction after 3 years outdoor exposure lt 3

Exposure time has to be doubled

Equivalent to 3 years operation 11

10

09

08

07

06

05

04

03

02

01 0 20 40 60 80 100 -500 0 500 1000 1500 2000 2500 3000 3500 4000 C B A

Activation energy [kJmol] Exposure time h

copy Fraunhofer ISE

-66

7 Degradation effects during outdoor exposure

Changes of the electrical performance at the outdoor exposure site

Test site Tropical Arid Urban Alpine Average

Module 1 -15 -06 -09 -11 -10 2 -01 -11 -08 -47 -17 3 -10 -01 -05 13 -01 4 -32 -01 17 -21 5 -01 -22 -18 -08 -12

Average -12 -08 -05 -24 -12

After 3 years operation hardly out of the error bars

copy Fraunhofer ISE

7 Degradation effects during outdoor exposure

After 3 years on the alpes

copy Fraunhofer ISE

7 Degradation effects during outdoor exposure

Degradation of module materials - UV-induced fluorescencelt2 a alpine outdoor exposure 2 a desert outdoor exposure

Combination of electroluminescence and fluorescence

J Schlothauer et al Fluorescence imaging a powerful tool for the investigation of polymer copy Fraunhofer ISE

degradation in PV modules Photovoltaics International journal November 2010

7 Degradation effects during outdoor exposure

Browning and photo-bleaching - UV-induced fluorescencelt

Combination of electroluminescence and fluorescenc

2 a desert outdoor exposure

copy Fraunhofer ISE

7 Degradation effects during outdoor exposure

a) Tropical

b) Arid

c) Moderate

d) Alpine

Effect of outdoor weathering on fluorescence spectra

UV

-rad

iatio

n

Moi

stur

e le

vel

Module types

J Schlothauer et al Degradation of the encapsulant polymer in outdoor weathered photovoltaic copy Fraunhofer ISE modules Spatially resolved inspection Solar Energy MaterialsampSolar Cells 102 (2012) 75ndash85

1

2

3

5

4

7

6

Methodology for design of Accelerated Service Life Testing

Monitoring climatic conditions

Monitoring micro-climatic stress factors

Modeling micro-climatic stress factors

Time-transformation functions for major degradation processes

Modeling corresponding ALT ndash conditions for micro-climatic stress factors

Evaluation of sample-dependent parameters for time-transformation functions

Modeling of expected degradation for outdoor exposure and validation of the tests

copy Fraunhofer ISE

Conclusions

Accelerated Damp-heat service life tests have been proposed

bull Based on monitored climatic data

bull Modelled micro-climatic stress conditions

bull Modelled kinetic of the degradation processes

but final validation was not achieved yet

copy Fraunhofer ISE

Conclusions and outlook

Accelerated Damp-heat service life tests have been proposed

bull Based on monitored climatic data

bull Modelled micro-climatic stress conditions

bull Modelled kinetic of the degradation processes

but final validation was not achieved yet

Tests for other stress factors (UV temperature cycling potential induced degradation etc) and their combinations are under development

Global stress mapping will allow qualification of diversified specialised products for different climatic zones

copy Fraunhofer ISE

Thank you for your Attentionlt

Fraunhofer Institute for Solar Energy Systems ISE

Michael Koumlhl

wwwisefraunhoferde

michaelkoehlisefraunhoferde

copy Fraunhofer ISE

Page 13: Comparing Accelerated Testing and Outdoor Exposure · 2014. 1. 24. · mod module temperature T amb ambient temperature wind velocity H solar radiation U1 U0 a-Si 1 10,7 25,7 a-Si

6 Evaluation of the parameters for time-transformation functions by ALT

Testing of c-Si modules from 7 different manufacturers

Nor

mal

ised

pow

er

mpp

Damp-Heat at 85degC and 85 rel humidity Damp-Heat at 90degC and 85 rel humidity

11 11

10 10

Nor

mal

ised

pow

er

mpp

09 09

08 08

07 07

06 06

05

04

05

04

03 03

02 02

01 -500 0 500 1000 1500 2000 2500 3000 3500 4000 4500 -500 0 500 1000 1500 2000 2500 3000 3500 4000 4500

Exposure time h Exposure time h

01

copy Fraunhofer ISE

6 Evaluation of the parameters for time-transformation functions by ALT

Damp-heat testing at 85rh85degC module 1 und module 2

Exposure time hlt

-500 0 500 1000 1500 2000 2500 3000 3500 4000 4500 03

04

05

06

07

08

09

10

11

Module 1

Module 2

No

rmal

ised

po

wer

m

pp

2400h 3300h

85degC

copy Fraunhofer ISE

6 Evaluation of the parameters for time-transformation functions by ALT Damp-heat testing at 85rh85degC and 90degC module 1 und module 2

Exposure time h

-500 0 500 1000 1500 2000 2500 3000 3500 4000 4500 03

04

05

06

07

08

09

10

11

Module 1

Module 2

No

rmal

ised

po

wer

m

pp

2400h 3300h

copy Fraunhofer ISE

6 Evaluation of the parameters for time-transformation functions by ALT Damp-heat testing at 85rh85degC and 90degC module 1 und module 2

Exposure time h

-500 0 500 1000 1500 2000 2500 3000 3500 4000 4500 03

04

05

06

07

08

09

10

11

Module 1 65 kJmol Module 2 33 kJmol

No

rmal

ised

po

wer

m

pp

2400h 3300h

a = exp [-(Ea R)(1T1 ndash 1T2)]

copy Fraunhofer ISE

6 Evaluation of the parameters for time-transformation functions by ALT

P = G(1+ (G001-1) exp(-(t-tind (T))k(T)) ) 120120

100100 T=85degC 080080 Tind=2100h 060060 K=00082h 040040 G=026 020020

000000 0 1000 2000 3000 4000 5000 0 1000 2000 3000 4000 5000

1212

11 T=90degC 0808 Tind=1500h 0606 K=00115h 0404 G=026 0202

00 0 1000 2000 3000 4000 5000 0 1000 2000 3000 4000 5000

copy Fraunhofer ISE

0 100 100

0 080 080

0 060 060

0 040 040

0 020 020

0 000 0000 1000 2000 3000 4000 5000 0 1000 2000 3000 4000 5000 0 1000 2000 3000 4000 5000

0 1000 2000 3000 4000 5000

1200

1000

0800

0600

0400

0200

0000 0 1000 2000 3000 4000 5000

etime (85degC) [h] 2412 2576 2821 3047 3160 3227 3548 ivation energy [kJmol] 70 73 30 68 26 55 53

mate class A A C A C B B

Qualification for different stress levels or climate zones allows diversification of PV-modules

copy Fraunhofer ISE

Displacement on cell (cm)

Inte

nsity

(arb

uni

ts)

Degradation of the modules

Polymer Analysis by Raman-Spectroscopie

Comparison of the Vinyl-Band (red) and the fluorescence-background (black) unaged and after 4000h damp-heat-testing

Elektroluminescence-picture 70 14 of the degraded cells 65

60 12

55

50 10

45 08

40

35 06

30

25 04

20

15 02

10

5 00

0 -1 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Location above the cell [cm]

Average Ref_I(1660) Average 4000h dh_I(1660)

Average Ref_I(2863)I(2913) Average 4000h dh_I(2863)I(2913)

Inte

nsi

ty [

arb

un

its]

C Peike etal Non-destructive degradation analysis of encapsulants in PV modules copy Fraunhofer ISE by Raman Spectroscopy Sol En Mat Sol Cells (2011)

6 Evaluation of the service life time for different climates

Testing time at 85rh85degC for 25 years lifetime 100000

Climate classes

A Most severe moisture stress

B Moderate moisture stress

C Low moisture stress

test

ing

time

85

degC [h

]

tropical arid alpine

20 40 60 80 100 120

Activation energy [kJmol]

10000

1000

100

Assumptions

The measured stress levels are representative

The model for the kinetics is valid

The constant load DH test reflects reality

copy Fraunhofer ISE

4

100

1000

10000

Test

ing

time

8

5 C

[h]

tropical arid alpine

Nor

mal

ised

pow

er

mpp

7 Modeling expected degradation for validation by outdoor exposure

Power reduction after 3 years outdoor exposure lt 3

Exposure time has to be doubled

Equivalent to 3 years operation 11

10

09

08

07

06

05

04

03

02

01 0 20 40 60 80 100 -500 0 500 1000 1500 2000 2500 3000 3500 4000 C B A

Activation energy [kJmol] Exposure time h

copy Fraunhofer ISE

-66

7 Degradation effects during outdoor exposure

Changes of the electrical performance at the outdoor exposure site

Test site Tropical Arid Urban Alpine Average

Module 1 -15 -06 -09 -11 -10 2 -01 -11 -08 -47 -17 3 -10 -01 -05 13 -01 4 -32 -01 17 -21 5 -01 -22 -18 -08 -12

Average -12 -08 -05 -24 -12

After 3 years operation hardly out of the error bars

copy Fraunhofer ISE

7 Degradation effects during outdoor exposure

After 3 years on the alpes

copy Fraunhofer ISE

7 Degradation effects during outdoor exposure

Degradation of module materials - UV-induced fluorescencelt2 a alpine outdoor exposure 2 a desert outdoor exposure

Combination of electroluminescence and fluorescence

J Schlothauer et al Fluorescence imaging a powerful tool for the investigation of polymer copy Fraunhofer ISE

degradation in PV modules Photovoltaics International journal November 2010

7 Degradation effects during outdoor exposure

Browning and photo-bleaching - UV-induced fluorescencelt

Combination of electroluminescence and fluorescenc

2 a desert outdoor exposure

copy Fraunhofer ISE

7 Degradation effects during outdoor exposure

a) Tropical

b) Arid

c) Moderate

d) Alpine

Effect of outdoor weathering on fluorescence spectra

UV

-rad

iatio

n

Moi

stur

e le

vel

Module types

J Schlothauer et al Degradation of the encapsulant polymer in outdoor weathered photovoltaic copy Fraunhofer ISE modules Spatially resolved inspection Solar Energy MaterialsampSolar Cells 102 (2012) 75ndash85

1

2

3

5

4

7

6

Methodology for design of Accelerated Service Life Testing

Monitoring climatic conditions

Monitoring micro-climatic stress factors

Modeling micro-climatic stress factors

Time-transformation functions for major degradation processes

Modeling corresponding ALT ndash conditions for micro-climatic stress factors

Evaluation of sample-dependent parameters for time-transformation functions

Modeling of expected degradation for outdoor exposure and validation of the tests

copy Fraunhofer ISE

Conclusions

Accelerated Damp-heat service life tests have been proposed

bull Based on monitored climatic data

bull Modelled micro-climatic stress conditions

bull Modelled kinetic of the degradation processes

but final validation was not achieved yet

copy Fraunhofer ISE

Conclusions and outlook

Accelerated Damp-heat service life tests have been proposed

bull Based on monitored climatic data

bull Modelled micro-climatic stress conditions

bull Modelled kinetic of the degradation processes

but final validation was not achieved yet

Tests for other stress factors (UV temperature cycling potential induced degradation etc) and their combinations are under development

Global stress mapping will allow qualification of diversified specialised products for different climatic zones

copy Fraunhofer ISE

Thank you for your Attentionlt

Fraunhofer Institute for Solar Energy Systems ISE

Michael Koumlhl

wwwisefraunhoferde

michaelkoehlisefraunhoferde

copy Fraunhofer ISE

Page 14: Comparing Accelerated Testing and Outdoor Exposure · 2014. 1. 24. · mod module temperature T amb ambient temperature wind velocity H solar radiation U1 U0 a-Si 1 10,7 25,7 a-Si

6 Evaluation of the parameters for time-transformation functions by ALT

Damp-heat testing at 85rh85degC module 1 und module 2

Exposure time hlt

-500 0 500 1000 1500 2000 2500 3000 3500 4000 4500 03

04

05

06

07

08

09

10

11

Module 1

Module 2

No

rmal

ised

po

wer

m

pp

2400h 3300h

85degC

copy Fraunhofer ISE

6 Evaluation of the parameters for time-transformation functions by ALT Damp-heat testing at 85rh85degC and 90degC module 1 und module 2

Exposure time h

-500 0 500 1000 1500 2000 2500 3000 3500 4000 4500 03

04

05

06

07

08

09

10

11

Module 1

Module 2

No

rmal

ised

po

wer

m

pp

2400h 3300h

copy Fraunhofer ISE

6 Evaluation of the parameters for time-transformation functions by ALT Damp-heat testing at 85rh85degC and 90degC module 1 und module 2

Exposure time h

-500 0 500 1000 1500 2000 2500 3000 3500 4000 4500 03

04

05

06

07

08

09

10

11

Module 1 65 kJmol Module 2 33 kJmol

No

rmal

ised

po

wer

m

pp

2400h 3300h

a = exp [-(Ea R)(1T1 ndash 1T2)]

copy Fraunhofer ISE

6 Evaluation of the parameters for time-transformation functions by ALT

P = G(1+ (G001-1) exp(-(t-tind (T))k(T)) ) 120120

100100 T=85degC 080080 Tind=2100h 060060 K=00082h 040040 G=026 020020

000000 0 1000 2000 3000 4000 5000 0 1000 2000 3000 4000 5000

1212

11 T=90degC 0808 Tind=1500h 0606 K=00115h 0404 G=026 0202

00 0 1000 2000 3000 4000 5000 0 1000 2000 3000 4000 5000

copy Fraunhofer ISE

0 100 100

0 080 080

0 060 060

0 040 040

0 020 020

0 000 0000 1000 2000 3000 4000 5000 0 1000 2000 3000 4000 5000 0 1000 2000 3000 4000 5000

0 1000 2000 3000 4000 5000

1200

1000

0800

0600

0400

0200

0000 0 1000 2000 3000 4000 5000

etime (85degC) [h] 2412 2576 2821 3047 3160 3227 3548 ivation energy [kJmol] 70 73 30 68 26 55 53

mate class A A C A C B B

Qualification for different stress levels or climate zones allows diversification of PV-modules

copy Fraunhofer ISE

Displacement on cell (cm)

Inte

nsity

(arb

uni

ts)

Degradation of the modules

Polymer Analysis by Raman-Spectroscopie

Comparison of the Vinyl-Band (red) and the fluorescence-background (black) unaged and after 4000h damp-heat-testing

Elektroluminescence-picture 70 14 of the degraded cells 65

60 12

55

50 10

45 08

40

35 06

30

25 04

20

15 02

10

5 00

0 -1 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Location above the cell [cm]

Average Ref_I(1660) Average 4000h dh_I(1660)

Average Ref_I(2863)I(2913) Average 4000h dh_I(2863)I(2913)

Inte

nsi

ty [

arb

un

its]

C Peike etal Non-destructive degradation analysis of encapsulants in PV modules copy Fraunhofer ISE by Raman Spectroscopy Sol En Mat Sol Cells (2011)

6 Evaluation of the service life time for different climates

Testing time at 85rh85degC for 25 years lifetime 100000

Climate classes

A Most severe moisture stress

B Moderate moisture stress

C Low moisture stress

test

ing

time

85

degC [h

]

tropical arid alpine

20 40 60 80 100 120

Activation energy [kJmol]

10000

1000

100

Assumptions

The measured stress levels are representative

The model for the kinetics is valid

The constant load DH test reflects reality

copy Fraunhofer ISE

4

100

1000

10000

Test

ing

time

8

5 C

[h]

tropical arid alpine

Nor

mal

ised

pow

er

mpp

7 Modeling expected degradation for validation by outdoor exposure

Power reduction after 3 years outdoor exposure lt 3

Exposure time has to be doubled

Equivalent to 3 years operation 11

10

09

08

07

06

05

04

03

02

01 0 20 40 60 80 100 -500 0 500 1000 1500 2000 2500 3000 3500 4000 C B A

Activation energy [kJmol] Exposure time h

copy Fraunhofer ISE

-66

7 Degradation effects during outdoor exposure

Changes of the electrical performance at the outdoor exposure site

Test site Tropical Arid Urban Alpine Average

Module 1 -15 -06 -09 -11 -10 2 -01 -11 -08 -47 -17 3 -10 -01 -05 13 -01 4 -32 -01 17 -21 5 -01 -22 -18 -08 -12

Average -12 -08 -05 -24 -12

After 3 years operation hardly out of the error bars

copy Fraunhofer ISE

7 Degradation effects during outdoor exposure

After 3 years on the alpes

copy Fraunhofer ISE

7 Degradation effects during outdoor exposure

Degradation of module materials - UV-induced fluorescencelt2 a alpine outdoor exposure 2 a desert outdoor exposure

Combination of electroluminescence and fluorescence

J Schlothauer et al Fluorescence imaging a powerful tool for the investigation of polymer copy Fraunhofer ISE

degradation in PV modules Photovoltaics International journal November 2010

7 Degradation effects during outdoor exposure

Browning and photo-bleaching - UV-induced fluorescencelt

Combination of electroluminescence and fluorescenc

2 a desert outdoor exposure

copy Fraunhofer ISE

7 Degradation effects during outdoor exposure

a) Tropical

b) Arid

c) Moderate

d) Alpine

Effect of outdoor weathering on fluorescence spectra

UV

-rad

iatio

n

Moi

stur

e le

vel

Module types

J Schlothauer et al Degradation of the encapsulant polymer in outdoor weathered photovoltaic copy Fraunhofer ISE modules Spatially resolved inspection Solar Energy MaterialsampSolar Cells 102 (2012) 75ndash85

1

2

3

5

4

7

6

Methodology for design of Accelerated Service Life Testing

Monitoring climatic conditions

Monitoring micro-climatic stress factors

Modeling micro-climatic stress factors

Time-transformation functions for major degradation processes

Modeling corresponding ALT ndash conditions for micro-climatic stress factors

Evaluation of sample-dependent parameters for time-transformation functions

Modeling of expected degradation for outdoor exposure and validation of the tests

copy Fraunhofer ISE

Conclusions

Accelerated Damp-heat service life tests have been proposed

bull Based on monitored climatic data

bull Modelled micro-climatic stress conditions

bull Modelled kinetic of the degradation processes

but final validation was not achieved yet

copy Fraunhofer ISE

Conclusions and outlook

Accelerated Damp-heat service life tests have been proposed

bull Based on monitored climatic data

bull Modelled micro-climatic stress conditions

bull Modelled kinetic of the degradation processes

but final validation was not achieved yet

Tests for other stress factors (UV temperature cycling potential induced degradation etc) and their combinations are under development

Global stress mapping will allow qualification of diversified specialised products for different climatic zones

copy Fraunhofer ISE

Thank you for your Attentionlt

Fraunhofer Institute for Solar Energy Systems ISE

Michael Koumlhl

wwwisefraunhoferde

michaelkoehlisefraunhoferde

copy Fraunhofer ISE

Page 15: Comparing Accelerated Testing and Outdoor Exposure · 2014. 1. 24. · mod module temperature T amb ambient temperature wind velocity H solar radiation U1 U0 a-Si 1 10,7 25,7 a-Si

6 Evaluation of the parameters for time-transformation functions by ALT Damp-heat testing at 85rh85degC and 90degC module 1 und module 2

Exposure time h

-500 0 500 1000 1500 2000 2500 3000 3500 4000 4500 03

04

05

06

07

08

09

10

11

Module 1

Module 2

No

rmal

ised

po

wer

m

pp

2400h 3300h

copy Fraunhofer ISE

6 Evaluation of the parameters for time-transformation functions by ALT Damp-heat testing at 85rh85degC and 90degC module 1 und module 2

Exposure time h

-500 0 500 1000 1500 2000 2500 3000 3500 4000 4500 03

04

05

06

07

08

09

10

11

Module 1 65 kJmol Module 2 33 kJmol

No

rmal

ised

po

wer

m

pp

2400h 3300h

a = exp [-(Ea R)(1T1 ndash 1T2)]

copy Fraunhofer ISE

6 Evaluation of the parameters for time-transformation functions by ALT

P = G(1+ (G001-1) exp(-(t-tind (T))k(T)) ) 120120

100100 T=85degC 080080 Tind=2100h 060060 K=00082h 040040 G=026 020020

000000 0 1000 2000 3000 4000 5000 0 1000 2000 3000 4000 5000

1212

11 T=90degC 0808 Tind=1500h 0606 K=00115h 0404 G=026 0202

00 0 1000 2000 3000 4000 5000 0 1000 2000 3000 4000 5000

copy Fraunhofer ISE

0 100 100

0 080 080

0 060 060

0 040 040

0 020 020

0 000 0000 1000 2000 3000 4000 5000 0 1000 2000 3000 4000 5000 0 1000 2000 3000 4000 5000

0 1000 2000 3000 4000 5000

1200

1000

0800

0600

0400

0200

0000 0 1000 2000 3000 4000 5000

etime (85degC) [h] 2412 2576 2821 3047 3160 3227 3548 ivation energy [kJmol] 70 73 30 68 26 55 53

mate class A A C A C B B

Qualification for different stress levels or climate zones allows diversification of PV-modules

copy Fraunhofer ISE

Displacement on cell (cm)

Inte

nsity

(arb

uni

ts)

Degradation of the modules

Polymer Analysis by Raman-Spectroscopie

Comparison of the Vinyl-Band (red) and the fluorescence-background (black) unaged and after 4000h damp-heat-testing

Elektroluminescence-picture 70 14 of the degraded cells 65

60 12

55

50 10

45 08

40

35 06

30

25 04

20

15 02

10

5 00

0 -1 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Location above the cell [cm]

Average Ref_I(1660) Average 4000h dh_I(1660)

Average Ref_I(2863)I(2913) Average 4000h dh_I(2863)I(2913)

Inte

nsi

ty [

arb

un

its]

C Peike etal Non-destructive degradation analysis of encapsulants in PV modules copy Fraunhofer ISE by Raman Spectroscopy Sol En Mat Sol Cells (2011)

6 Evaluation of the service life time for different climates

Testing time at 85rh85degC for 25 years lifetime 100000

Climate classes

A Most severe moisture stress

B Moderate moisture stress

C Low moisture stress

test

ing

time

85

degC [h

]

tropical arid alpine

20 40 60 80 100 120

Activation energy [kJmol]

10000

1000

100

Assumptions

The measured stress levels are representative

The model for the kinetics is valid

The constant load DH test reflects reality

copy Fraunhofer ISE

4

100

1000

10000

Test

ing

time

8

5 C

[h]

tropical arid alpine

Nor

mal

ised

pow

er

mpp

7 Modeling expected degradation for validation by outdoor exposure

Power reduction after 3 years outdoor exposure lt 3

Exposure time has to be doubled

Equivalent to 3 years operation 11

10

09

08

07

06

05

04

03

02

01 0 20 40 60 80 100 -500 0 500 1000 1500 2000 2500 3000 3500 4000 C B A

Activation energy [kJmol] Exposure time h

copy Fraunhofer ISE

-66

7 Degradation effects during outdoor exposure

Changes of the electrical performance at the outdoor exposure site

Test site Tropical Arid Urban Alpine Average

Module 1 -15 -06 -09 -11 -10 2 -01 -11 -08 -47 -17 3 -10 -01 -05 13 -01 4 -32 -01 17 -21 5 -01 -22 -18 -08 -12

Average -12 -08 -05 -24 -12

After 3 years operation hardly out of the error bars

copy Fraunhofer ISE

7 Degradation effects during outdoor exposure

After 3 years on the alpes

copy Fraunhofer ISE

7 Degradation effects during outdoor exposure

Degradation of module materials - UV-induced fluorescencelt2 a alpine outdoor exposure 2 a desert outdoor exposure

Combination of electroluminescence and fluorescence

J Schlothauer et al Fluorescence imaging a powerful tool for the investigation of polymer copy Fraunhofer ISE

degradation in PV modules Photovoltaics International journal November 2010

7 Degradation effects during outdoor exposure

Browning and photo-bleaching - UV-induced fluorescencelt

Combination of electroluminescence and fluorescenc

2 a desert outdoor exposure

copy Fraunhofer ISE

7 Degradation effects during outdoor exposure

a) Tropical

b) Arid

c) Moderate

d) Alpine

Effect of outdoor weathering on fluorescence spectra

UV

-rad

iatio

n

Moi

stur

e le

vel

Module types

J Schlothauer et al Degradation of the encapsulant polymer in outdoor weathered photovoltaic copy Fraunhofer ISE modules Spatially resolved inspection Solar Energy MaterialsampSolar Cells 102 (2012) 75ndash85

1

2

3

5

4

7

6

Methodology for design of Accelerated Service Life Testing

Monitoring climatic conditions

Monitoring micro-climatic stress factors

Modeling micro-climatic stress factors

Time-transformation functions for major degradation processes

Modeling corresponding ALT ndash conditions for micro-climatic stress factors

Evaluation of sample-dependent parameters for time-transformation functions

Modeling of expected degradation for outdoor exposure and validation of the tests

copy Fraunhofer ISE

Conclusions

Accelerated Damp-heat service life tests have been proposed

bull Based on monitored climatic data

bull Modelled micro-climatic stress conditions

bull Modelled kinetic of the degradation processes

but final validation was not achieved yet

copy Fraunhofer ISE

Conclusions and outlook

Accelerated Damp-heat service life tests have been proposed

bull Based on monitored climatic data

bull Modelled micro-climatic stress conditions

bull Modelled kinetic of the degradation processes

but final validation was not achieved yet

Tests for other stress factors (UV temperature cycling potential induced degradation etc) and their combinations are under development

Global stress mapping will allow qualification of diversified specialised products for different climatic zones

copy Fraunhofer ISE

Thank you for your Attentionlt

Fraunhofer Institute for Solar Energy Systems ISE

Michael Koumlhl

wwwisefraunhoferde

michaelkoehlisefraunhoferde

copy Fraunhofer ISE

Page 16: Comparing Accelerated Testing and Outdoor Exposure · 2014. 1. 24. · mod module temperature T amb ambient temperature wind velocity H solar radiation U1 U0 a-Si 1 10,7 25,7 a-Si

6 Evaluation of the parameters for time-transformation functions by ALT Damp-heat testing at 85rh85degC and 90degC module 1 und module 2

Exposure time h

-500 0 500 1000 1500 2000 2500 3000 3500 4000 4500 03

04

05

06

07

08

09

10

11

Module 1 65 kJmol Module 2 33 kJmol

No

rmal

ised

po

wer

m

pp

2400h 3300h

a = exp [-(Ea R)(1T1 ndash 1T2)]

copy Fraunhofer ISE

6 Evaluation of the parameters for time-transformation functions by ALT

P = G(1+ (G001-1) exp(-(t-tind (T))k(T)) ) 120120

100100 T=85degC 080080 Tind=2100h 060060 K=00082h 040040 G=026 020020

000000 0 1000 2000 3000 4000 5000 0 1000 2000 3000 4000 5000

1212

11 T=90degC 0808 Tind=1500h 0606 K=00115h 0404 G=026 0202

00 0 1000 2000 3000 4000 5000 0 1000 2000 3000 4000 5000

copy Fraunhofer ISE

0 100 100

0 080 080

0 060 060

0 040 040

0 020 020

0 000 0000 1000 2000 3000 4000 5000 0 1000 2000 3000 4000 5000 0 1000 2000 3000 4000 5000

0 1000 2000 3000 4000 5000

1200

1000

0800

0600

0400

0200

0000 0 1000 2000 3000 4000 5000

etime (85degC) [h] 2412 2576 2821 3047 3160 3227 3548 ivation energy [kJmol] 70 73 30 68 26 55 53

mate class A A C A C B B

Qualification for different stress levels or climate zones allows diversification of PV-modules

copy Fraunhofer ISE

Displacement on cell (cm)

Inte

nsity

(arb

uni

ts)

Degradation of the modules

Polymer Analysis by Raman-Spectroscopie

Comparison of the Vinyl-Band (red) and the fluorescence-background (black) unaged and after 4000h damp-heat-testing

Elektroluminescence-picture 70 14 of the degraded cells 65

60 12

55

50 10

45 08

40

35 06

30

25 04

20

15 02

10

5 00

0 -1 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Location above the cell [cm]

Average Ref_I(1660) Average 4000h dh_I(1660)

Average Ref_I(2863)I(2913) Average 4000h dh_I(2863)I(2913)

Inte

nsi

ty [

arb

un

its]

C Peike etal Non-destructive degradation analysis of encapsulants in PV modules copy Fraunhofer ISE by Raman Spectroscopy Sol En Mat Sol Cells (2011)

6 Evaluation of the service life time for different climates

Testing time at 85rh85degC for 25 years lifetime 100000

Climate classes

A Most severe moisture stress

B Moderate moisture stress

C Low moisture stress

test

ing

time

85

degC [h

]

tropical arid alpine

20 40 60 80 100 120

Activation energy [kJmol]

10000

1000

100

Assumptions

The measured stress levels are representative

The model for the kinetics is valid

The constant load DH test reflects reality

copy Fraunhofer ISE

4

100

1000

10000

Test

ing

time

8

5 C

[h]

tropical arid alpine

Nor

mal

ised

pow

er

mpp

7 Modeling expected degradation for validation by outdoor exposure

Power reduction after 3 years outdoor exposure lt 3

Exposure time has to be doubled

Equivalent to 3 years operation 11

10

09

08

07

06

05

04

03

02

01 0 20 40 60 80 100 -500 0 500 1000 1500 2000 2500 3000 3500 4000 C B A

Activation energy [kJmol] Exposure time h

copy Fraunhofer ISE

-66

7 Degradation effects during outdoor exposure

Changes of the electrical performance at the outdoor exposure site

Test site Tropical Arid Urban Alpine Average

Module 1 -15 -06 -09 -11 -10 2 -01 -11 -08 -47 -17 3 -10 -01 -05 13 -01 4 -32 -01 17 -21 5 -01 -22 -18 -08 -12

Average -12 -08 -05 -24 -12

After 3 years operation hardly out of the error bars

copy Fraunhofer ISE

7 Degradation effects during outdoor exposure

After 3 years on the alpes

copy Fraunhofer ISE

7 Degradation effects during outdoor exposure

Degradation of module materials - UV-induced fluorescencelt2 a alpine outdoor exposure 2 a desert outdoor exposure

Combination of electroluminescence and fluorescence

J Schlothauer et al Fluorescence imaging a powerful tool for the investigation of polymer copy Fraunhofer ISE

degradation in PV modules Photovoltaics International journal November 2010

7 Degradation effects during outdoor exposure

Browning and photo-bleaching - UV-induced fluorescencelt

Combination of electroluminescence and fluorescenc

2 a desert outdoor exposure

copy Fraunhofer ISE

7 Degradation effects during outdoor exposure

a) Tropical

b) Arid

c) Moderate

d) Alpine

Effect of outdoor weathering on fluorescence spectra

UV

-rad

iatio

n

Moi

stur

e le

vel

Module types

J Schlothauer et al Degradation of the encapsulant polymer in outdoor weathered photovoltaic copy Fraunhofer ISE modules Spatially resolved inspection Solar Energy MaterialsampSolar Cells 102 (2012) 75ndash85

1

2

3

5

4

7

6

Methodology for design of Accelerated Service Life Testing

Monitoring climatic conditions

Monitoring micro-climatic stress factors

Modeling micro-climatic stress factors

Time-transformation functions for major degradation processes

Modeling corresponding ALT ndash conditions for micro-climatic stress factors

Evaluation of sample-dependent parameters for time-transformation functions

Modeling of expected degradation for outdoor exposure and validation of the tests

copy Fraunhofer ISE

Conclusions

Accelerated Damp-heat service life tests have been proposed

bull Based on monitored climatic data

bull Modelled micro-climatic stress conditions

bull Modelled kinetic of the degradation processes

but final validation was not achieved yet

copy Fraunhofer ISE

Conclusions and outlook

Accelerated Damp-heat service life tests have been proposed

bull Based on monitored climatic data

bull Modelled micro-climatic stress conditions

bull Modelled kinetic of the degradation processes

but final validation was not achieved yet

Tests for other stress factors (UV temperature cycling potential induced degradation etc) and their combinations are under development

Global stress mapping will allow qualification of diversified specialised products for different climatic zones

copy Fraunhofer ISE

Thank you for your Attentionlt

Fraunhofer Institute for Solar Energy Systems ISE

Michael Koumlhl

wwwisefraunhoferde

michaelkoehlisefraunhoferde

copy Fraunhofer ISE

Page 17: Comparing Accelerated Testing and Outdoor Exposure · 2014. 1. 24. · mod module temperature T amb ambient temperature wind velocity H solar radiation U1 U0 a-Si 1 10,7 25,7 a-Si

6 Evaluation of the parameters for time-transformation functions by ALT

P = G(1+ (G001-1) exp(-(t-tind (T))k(T)) ) 120120

100100 T=85degC 080080 Tind=2100h 060060 K=00082h 040040 G=026 020020

000000 0 1000 2000 3000 4000 5000 0 1000 2000 3000 4000 5000

1212

11 T=90degC 0808 Tind=1500h 0606 K=00115h 0404 G=026 0202

00 0 1000 2000 3000 4000 5000 0 1000 2000 3000 4000 5000

copy Fraunhofer ISE

0 100 100

0 080 080

0 060 060

0 040 040

0 020 020

0 000 0000 1000 2000 3000 4000 5000 0 1000 2000 3000 4000 5000 0 1000 2000 3000 4000 5000

0 1000 2000 3000 4000 5000

1200

1000

0800

0600

0400

0200

0000 0 1000 2000 3000 4000 5000

etime (85degC) [h] 2412 2576 2821 3047 3160 3227 3548 ivation energy [kJmol] 70 73 30 68 26 55 53

mate class A A C A C B B

Qualification for different stress levels or climate zones allows diversification of PV-modules

copy Fraunhofer ISE

Displacement on cell (cm)

Inte

nsity

(arb

uni

ts)

Degradation of the modules

Polymer Analysis by Raman-Spectroscopie

Comparison of the Vinyl-Band (red) and the fluorescence-background (black) unaged and after 4000h damp-heat-testing

Elektroluminescence-picture 70 14 of the degraded cells 65

60 12

55

50 10

45 08

40

35 06

30

25 04

20

15 02

10

5 00

0 -1 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Location above the cell [cm]

Average Ref_I(1660) Average 4000h dh_I(1660)

Average Ref_I(2863)I(2913) Average 4000h dh_I(2863)I(2913)

Inte

nsi

ty [

arb

un

its]

C Peike etal Non-destructive degradation analysis of encapsulants in PV modules copy Fraunhofer ISE by Raman Spectroscopy Sol En Mat Sol Cells (2011)

6 Evaluation of the service life time for different climates

Testing time at 85rh85degC for 25 years lifetime 100000

Climate classes

A Most severe moisture stress

B Moderate moisture stress

C Low moisture stress

test

ing

time

85

degC [h

]

tropical arid alpine

20 40 60 80 100 120

Activation energy [kJmol]

10000

1000

100

Assumptions

The measured stress levels are representative

The model for the kinetics is valid

The constant load DH test reflects reality

copy Fraunhofer ISE

4

100

1000

10000

Test

ing

time

8

5 C

[h]

tropical arid alpine

Nor

mal

ised

pow

er

mpp

7 Modeling expected degradation for validation by outdoor exposure

Power reduction after 3 years outdoor exposure lt 3

Exposure time has to be doubled

Equivalent to 3 years operation 11

10

09

08

07

06

05

04

03

02

01 0 20 40 60 80 100 -500 0 500 1000 1500 2000 2500 3000 3500 4000 C B A

Activation energy [kJmol] Exposure time h

copy Fraunhofer ISE

-66

7 Degradation effects during outdoor exposure

Changes of the electrical performance at the outdoor exposure site

Test site Tropical Arid Urban Alpine Average

Module 1 -15 -06 -09 -11 -10 2 -01 -11 -08 -47 -17 3 -10 -01 -05 13 -01 4 -32 -01 17 -21 5 -01 -22 -18 -08 -12

Average -12 -08 -05 -24 -12

After 3 years operation hardly out of the error bars

copy Fraunhofer ISE

7 Degradation effects during outdoor exposure

After 3 years on the alpes

copy Fraunhofer ISE

7 Degradation effects during outdoor exposure

Degradation of module materials - UV-induced fluorescencelt2 a alpine outdoor exposure 2 a desert outdoor exposure

Combination of electroluminescence and fluorescence

J Schlothauer et al Fluorescence imaging a powerful tool for the investigation of polymer copy Fraunhofer ISE

degradation in PV modules Photovoltaics International journal November 2010

7 Degradation effects during outdoor exposure

Browning and photo-bleaching - UV-induced fluorescencelt

Combination of electroluminescence and fluorescenc

2 a desert outdoor exposure

copy Fraunhofer ISE

7 Degradation effects during outdoor exposure

a) Tropical

b) Arid

c) Moderate

d) Alpine

Effect of outdoor weathering on fluorescence spectra

UV

-rad

iatio

n

Moi

stur

e le

vel

Module types

J Schlothauer et al Degradation of the encapsulant polymer in outdoor weathered photovoltaic copy Fraunhofer ISE modules Spatially resolved inspection Solar Energy MaterialsampSolar Cells 102 (2012) 75ndash85

1

2

3

5

4

7

6

Methodology for design of Accelerated Service Life Testing

Monitoring climatic conditions

Monitoring micro-climatic stress factors

Modeling micro-climatic stress factors

Time-transformation functions for major degradation processes

Modeling corresponding ALT ndash conditions for micro-climatic stress factors

Evaluation of sample-dependent parameters for time-transformation functions

Modeling of expected degradation for outdoor exposure and validation of the tests

copy Fraunhofer ISE

Conclusions

Accelerated Damp-heat service life tests have been proposed

bull Based on monitored climatic data

bull Modelled micro-climatic stress conditions

bull Modelled kinetic of the degradation processes

but final validation was not achieved yet

copy Fraunhofer ISE

Conclusions and outlook

Accelerated Damp-heat service life tests have been proposed

bull Based on monitored climatic data

bull Modelled micro-climatic stress conditions

bull Modelled kinetic of the degradation processes

but final validation was not achieved yet

Tests for other stress factors (UV temperature cycling potential induced degradation etc) and their combinations are under development

Global stress mapping will allow qualification of diversified specialised products for different climatic zones

copy Fraunhofer ISE

Thank you for your Attentionlt

Fraunhofer Institute for Solar Energy Systems ISE

Michael Koumlhl

wwwisefraunhoferde

michaelkoehlisefraunhoferde

copy Fraunhofer ISE

Page 18: Comparing Accelerated Testing and Outdoor Exposure · 2014. 1. 24. · mod module temperature T amb ambient temperature wind velocity H solar radiation U1 U0 a-Si 1 10,7 25,7 a-Si

0 100 100

0 080 080

0 060 060

0 040 040

0 020 020

0 000 0000 1000 2000 3000 4000 5000 0 1000 2000 3000 4000 5000 0 1000 2000 3000 4000 5000

0 1000 2000 3000 4000 5000

1200

1000

0800

0600

0400

0200

0000 0 1000 2000 3000 4000 5000

etime (85degC) [h] 2412 2576 2821 3047 3160 3227 3548 ivation energy [kJmol] 70 73 30 68 26 55 53

mate class A A C A C B B

Qualification for different stress levels or climate zones allows diversification of PV-modules

copy Fraunhofer ISE

Displacement on cell (cm)

Inte

nsity

(arb

uni

ts)

Degradation of the modules

Polymer Analysis by Raman-Spectroscopie

Comparison of the Vinyl-Band (red) and the fluorescence-background (black) unaged and after 4000h damp-heat-testing

Elektroluminescence-picture 70 14 of the degraded cells 65

60 12

55

50 10

45 08

40

35 06

30

25 04

20

15 02

10

5 00

0 -1 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Location above the cell [cm]

Average Ref_I(1660) Average 4000h dh_I(1660)

Average Ref_I(2863)I(2913) Average 4000h dh_I(2863)I(2913)

Inte

nsi

ty [

arb

un

its]

C Peike etal Non-destructive degradation analysis of encapsulants in PV modules copy Fraunhofer ISE by Raman Spectroscopy Sol En Mat Sol Cells (2011)

6 Evaluation of the service life time for different climates

Testing time at 85rh85degC for 25 years lifetime 100000

Climate classes

A Most severe moisture stress

B Moderate moisture stress

C Low moisture stress

test

ing

time

85

degC [h

]

tropical arid alpine

20 40 60 80 100 120

Activation energy [kJmol]

10000

1000

100

Assumptions

The measured stress levels are representative

The model for the kinetics is valid

The constant load DH test reflects reality

copy Fraunhofer ISE

4

100

1000

10000

Test

ing

time

8

5 C

[h]

tropical arid alpine

Nor

mal

ised

pow

er

mpp

7 Modeling expected degradation for validation by outdoor exposure

Power reduction after 3 years outdoor exposure lt 3

Exposure time has to be doubled

Equivalent to 3 years operation 11

10

09

08

07

06

05

04

03

02

01 0 20 40 60 80 100 -500 0 500 1000 1500 2000 2500 3000 3500 4000 C B A

Activation energy [kJmol] Exposure time h

copy Fraunhofer ISE

-66

7 Degradation effects during outdoor exposure

Changes of the electrical performance at the outdoor exposure site

Test site Tropical Arid Urban Alpine Average

Module 1 -15 -06 -09 -11 -10 2 -01 -11 -08 -47 -17 3 -10 -01 -05 13 -01 4 -32 -01 17 -21 5 -01 -22 -18 -08 -12

Average -12 -08 -05 -24 -12

After 3 years operation hardly out of the error bars

copy Fraunhofer ISE

7 Degradation effects during outdoor exposure

After 3 years on the alpes

copy Fraunhofer ISE

7 Degradation effects during outdoor exposure

Degradation of module materials - UV-induced fluorescencelt2 a alpine outdoor exposure 2 a desert outdoor exposure

Combination of electroluminescence and fluorescence

J Schlothauer et al Fluorescence imaging a powerful tool for the investigation of polymer copy Fraunhofer ISE

degradation in PV modules Photovoltaics International journal November 2010

7 Degradation effects during outdoor exposure

Browning and photo-bleaching - UV-induced fluorescencelt

Combination of electroluminescence and fluorescenc

2 a desert outdoor exposure

copy Fraunhofer ISE

7 Degradation effects during outdoor exposure

a) Tropical

b) Arid

c) Moderate

d) Alpine

Effect of outdoor weathering on fluorescence spectra

UV

-rad

iatio

n

Moi

stur

e le

vel

Module types

J Schlothauer et al Degradation of the encapsulant polymer in outdoor weathered photovoltaic copy Fraunhofer ISE modules Spatially resolved inspection Solar Energy MaterialsampSolar Cells 102 (2012) 75ndash85

1

2

3

5

4

7

6

Methodology for design of Accelerated Service Life Testing

Monitoring climatic conditions

Monitoring micro-climatic stress factors

Modeling micro-climatic stress factors

Time-transformation functions for major degradation processes

Modeling corresponding ALT ndash conditions for micro-climatic stress factors

Evaluation of sample-dependent parameters for time-transformation functions

Modeling of expected degradation for outdoor exposure and validation of the tests

copy Fraunhofer ISE

Conclusions

Accelerated Damp-heat service life tests have been proposed

bull Based on monitored climatic data

bull Modelled micro-climatic stress conditions

bull Modelled kinetic of the degradation processes

but final validation was not achieved yet

copy Fraunhofer ISE

Conclusions and outlook

Accelerated Damp-heat service life tests have been proposed

bull Based on monitored climatic data

bull Modelled micro-climatic stress conditions

bull Modelled kinetic of the degradation processes

but final validation was not achieved yet

Tests for other stress factors (UV temperature cycling potential induced degradation etc) and their combinations are under development

Global stress mapping will allow qualification of diversified specialised products for different climatic zones

copy Fraunhofer ISE

Thank you for your Attentionlt

Fraunhofer Institute for Solar Energy Systems ISE

Michael Koumlhl

wwwisefraunhoferde

michaelkoehlisefraunhoferde

copy Fraunhofer ISE

Page 19: Comparing Accelerated Testing and Outdoor Exposure · 2014. 1. 24. · mod module temperature T amb ambient temperature wind velocity H solar radiation U1 U0 a-Si 1 10,7 25,7 a-Si

Displacement on cell (cm)

Inte

nsity

(arb

uni

ts)

Degradation of the modules

Polymer Analysis by Raman-Spectroscopie

Comparison of the Vinyl-Band (red) and the fluorescence-background (black) unaged and after 4000h damp-heat-testing

Elektroluminescence-picture 70 14 of the degraded cells 65

60 12

55

50 10

45 08

40

35 06

30

25 04

20

15 02

10

5 00

0 -1 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Location above the cell [cm]

Average Ref_I(1660) Average 4000h dh_I(1660)

Average Ref_I(2863)I(2913) Average 4000h dh_I(2863)I(2913)

Inte

nsi

ty [

arb

un

its]

C Peike etal Non-destructive degradation analysis of encapsulants in PV modules copy Fraunhofer ISE by Raman Spectroscopy Sol En Mat Sol Cells (2011)

6 Evaluation of the service life time for different climates

Testing time at 85rh85degC for 25 years lifetime 100000

Climate classes

A Most severe moisture stress

B Moderate moisture stress

C Low moisture stress

test

ing

time

85

degC [h

]

tropical arid alpine

20 40 60 80 100 120

Activation energy [kJmol]

10000

1000

100

Assumptions

The measured stress levels are representative

The model for the kinetics is valid

The constant load DH test reflects reality

copy Fraunhofer ISE

4

100

1000

10000

Test

ing

time

8

5 C

[h]

tropical arid alpine

Nor

mal

ised

pow

er

mpp

7 Modeling expected degradation for validation by outdoor exposure

Power reduction after 3 years outdoor exposure lt 3

Exposure time has to be doubled

Equivalent to 3 years operation 11

10

09

08

07

06

05

04

03

02

01 0 20 40 60 80 100 -500 0 500 1000 1500 2000 2500 3000 3500 4000 C B A

Activation energy [kJmol] Exposure time h

copy Fraunhofer ISE

-66

7 Degradation effects during outdoor exposure

Changes of the electrical performance at the outdoor exposure site

Test site Tropical Arid Urban Alpine Average

Module 1 -15 -06 -09 -11 -10 2 -01 -11 -08 -47 -17 3 -10 -01 -05 13 -01 4 -32 -01 17 -21 5 -01 -22 -18 -08 -12

Average -12 -08 -05 -24 -12

After 3 years operation hardly out of the error bars

copy Fraunhofer ISE

7 Degradation effects during outdoor exposure

After 3 years on the alpes

copy Fraunhofer ISE

7 Degradation effects during outdoor exposure

Degradation of module materials - UV-induced fluorescencelt2 a alpine outdoor exposure 2 a desert outdoor exposure

Combination of electroluminescence and fluorescence

J Schlothauer et al Fluorescence imaging a powerful tool for the investigation of polymer copy Fraunhofer ISE

degradation in PV modules Photovoltaics International journal November 2010

7 Degradation effects during outdoor exposure

Browning and photo-bleaching - UV-induced fluorescencelt

Combination of electroluminescence and fluorescenc

2 a desert outdoor exposure

copy Fraunhofer ISE

7 Degradation effects during outdoor exposure

a) Tropical

b) Arid

c) Moderate

d) Alpine

Effect of outdoor weathering on fluorescence spectra

UV

-rad

iatio

n

Moi

stur

e le

vel

Module types

J Schlothauer et al Degradation of the encapsulant polymer in outdoor weathered photovoltaic copy Fraunhofer ISE modules Spatially resolved inspection Solar Energy MaterialsampSolar Cells 102 (2012) 75ndash85

1

2

3

5

4

7

6

Methodology for design of Accelerated Service Life Testing

Monitoring climatic conditions

Monitoring micro-climatic stress factors

Modeling micro-climatic stress factors

Time-transformation functions for major degradation processes

Modeling corresponding ALT ndash conditions for micro-climatic stress factors

Evaluation of sample-dependent parameters for time-transformation functions

Modeling of expected degradation for outdoor exposure and validation of the tests

copy Fraunhofer ISE

Conclusions

Accelerated Damp-heat service life tests have been proposed

bull Based on monitored climatic data

bull Modelled micro-climatic stress conditions

bull Modelled kinetic of the degradation processes

but final validation was not achieved yet

copy Fraunhofer ISE

Conclusions and outlook

Accelerated Damp-heat service life tests have been proposed

bull Based on monitored climatic data

bull Modelled micro-climatic stress conditions

bull Modelled kinetic of the degradation processes

but final validation was not achieved yet

Tests for other stress factors (UV temperature cycling potential induced degradation etc) and their combinations are under development

Global stress mapping will allow qualification of diversified specialised products for different climatic zones

copy Fraunhofer ISE

Thank you for your Attentionlt

Fraunhofer Institute for Solar Energy Systems ISE

Michael Koumlhl

wwwisefraunhoferde

michaelkoehlisefraunhoferde

copy Fraunhofer ISE

Page 20: Comparing Accelerated Testing and Outdoor Exposure · 2014. 1. 24. · mod module temperature T amb ambient temperature wind velocity H solar radiation U1 U0 a-Si 1 10,7 25,7 a-Si

6 Evaluation of the service life time for different climates

Testing time at 85rh85degC for 25 years lifetime 100000

Climate classes

A Most severe moisture stress

B Moderate moisture stress

C Low moisture stress

test

ing

time

85

degC [h

]

tropical arid alpine

20 40 60 80 100 120

Activation energy [kJmol]

10000

1000

100

Assumptions

The measured stress levels are representative

The model for the kinetics is valid

The constant load DH test reflects reality

copy Fraunhofer ISE

4

100

1000

10000

Test

ing

time

8

5 C

[h]

tropical arid alpine

Nor

mal

ised

pow

er

mpp

7 Modeling expected degradation for validation by outdoor exposure

Power reduction after 3 years outdoor exposure lt 3

Exposure time has to be doubled

Equivalent to 3 years operation 11

10

09

08

07

06

05

04

03

02

01 0 20 40 60 80 100 -500 0 500 1000 1500 2000 2500 3000 3500 4000 C B A

Activation energy [kJmol] Exposure time h

copy Fraunhofer ISE

-66

7 Degradation effects during outdoor exposure

Changes of the electrical performance at the outdoor exposure site

Test site Tropical Arid Urban Alpine Average

Module 1 -15 -06 -09 -11 -10 2 -01 -11 -08 -47 -17 3 -10 -01 -05 13 -01 4 -32 -01 17 -21 5 -01 -22 -18 -08 -12

Average -12 -08 -05 -24 -12

After 3 years operation hardly out of the error bars

copy Fraunhofer ISE

7 Degradation effects during outdoor exposure

After 3 years on the alpes

copy Fraunhofer ISE

7 Degradation effects during outdoor exposure

Degradation of module materials - UV-induced fluorescencelt2 a alpine outdoor exposure 2 a desert outdoor exposure

Combination of electroluminescence and fluorescence

J Schlothauer et al Fluorescence imaging a powerful tool for the investigation of polymer copy Fraunhofer ISE

degradation in PV modules Photovoltaics International journal November 2010

7 Degradation effects during outdoor exposure

Browning and photo-bleaching - UV-induced fluorescencelt

Combination of electroluminescence and fluorescenc

2 a desert outdoor exposure

copy Fraunhofer ISE

7 Degradation effects during outdoor exposure

a) Tropical

b) Arid

c) Moderate

d) Alpine

Effect of outdoor weathering on fluorescence spectra

UV

-rad

iatio

n

Moi

stur

e le

vel

Module types

J Schlothauer et al Degradation of the encapsulant polymer in outdoor weathered photovoltaic copy Fraunhofer ISE modules Spatially resolved inspection Solar Energy MaterialsampSolar Cells 102 (2012) 75ndash85

1

2

3

5

4

7

6

Methodology for design of Accelerated Service Life Testing

Monitoring climatic conditions

Monitoring micro-climatic stress factors

Modeling micro-climatic stress factors

Time-transformation functions for major degradation processes

Modeling corresponding ALT ndash conditions for micro-climatic stress factors

Evaluation of sample-dependent parameters for time-transformation functions

Modeling of expected degradation for outdoor exposure and validation of the tests

copy Fraunhofer ISE

Conclusions

Accelerated Damp-heat service life tests have been proposed

bull Based on monitored climatic data

bull Modelled micro-climatic stress conditions

bull Modelled kinetic of the degradation processes

but final validation was not achieved yet

copy Fraunhofer ISE

Conclusions and outlook

Accelerated Damp-heat service life tests have been proposed

bull Based on monitored climatic data

bull Modelled micro-climatic stress conditions

bull Modelled kinetic of the degradation processes

but final validation was not achieved yet

Tests for other stress factors (UV temperature cycling potential induced degradation etc) and their combinations are under development

Global stress mapping will allow qualification of diversified specialised products for different climatic zones

copy Fraunhofer ISE

Thank you for your Attentionlt

Fraunhofer Institute for Solar Energy Systems ISE

Michael Koumlhl

wwwisefraunhoferde

michaelkoehlisefraunhoferde

copy Fraunhofer ISE

Page 21: Comparing Accelerated Testing and Outdoor Exposure · 2014. 1. 24. · mod module temperature T amb ambient temperature wind velocity H solar radiation U1 U0 a-Si 1 10,7 25,7 a-Si

4

100

1000

10000

Test

ing

time

8

5 C

[h]

tropical arid alpine

Nor

mal

ised

pow

er

mpp

7 Modeling expected degradation for validation by outdoor exposure

Power reduction after 3 years outdoor exposure lt 3

Exposure time has to be doubled

Equivalent to 3 years operation 11

10

09

08

07

06

05

04

03

02

01 0 20 40 60 80 100 -500 0 500 1000 1500 2000 2500 3000 3500 4000 C B A

Activation energy [kJmol] Exposure time h

copy Fraunhofer ISE

-66

7 Degradation effects during outdoor exposure

Changes of the electrical performance at the outdoor exposure site

Test site Tropical Arid Urban Alpine Average

Module 1 -15 -06 -09 -11 -10 2 -01 -11 -08 -47 -17 3 -10 -01 -05 13 -01 4 -32 -01 17 -21 5 -01 -22 -18 -08 -12

Average -12 -08 -05 -24 -12

After 3 years operation hardly out of the error bars

copy Fraunhofer ISE

7 Degradation effects during outdoor exposure

After 3 years on the alpes

copy Fraunhofer ISE

7 Degradation effects during outdoor exposure

Degradation of module materials - UV-induced fluorescencelt2 a alpine outdoor exposure 2 a desert outdoor exposure

Combination of electroluminescence and fluorescence

J Schlothauer et al Fluorescence imaging a powerful tool for the investigation of polymer copy Fraunhofer ISE

degradation in PV modules Photovoltaics International journal November 2010

7 Degradation effects during outdoor exposure

Browning and photo-bleaching - UV-induced fluorescencelt

Combination of electroluminescence and fluorescenc

2 a desert outdoor exposure

copy Fraunhofer ISE

7 Degradation effects during outdoor exposure

a) Tropical

b) Arid

c) Moderate

d) Alpine

Effect of outdoor weathering on fluorescence spectra

UV

-rad

iatio

n

Moi

stur

e le

vel

Module types

J Schlothauer et al Degradation of the encapsulant polymer in outdoor weathered photovoltaic copy Fraunhofer ISE modules Spatially resolved inspection Solar Energy MaterialsampSolar Cells 102 (2012) 75ndash85

1

2

3

5

4

7

6

Methodology for design of Accelerated Service Life Testing

Monitoring climatic conditions

Monitoring micro-climatic stress factors

Modeling micro-climatic stress factors

Time-transformation functions for major degradation processes

Modeling corresponding ALT ndash conditions for micro-climatic stress factors

Evaluation of sample-dependent parameters for time-transformation functions

Modeling of expected degradation for outdoor exposure and validation of the tests

copy Fraunhofer ISE

Conclusions

Accelerated Damp-heat service life tests have been proposed

bull Based on monitored climatic data

bull Modelled micro-climatic stress conditions

bull Modelled kinetic of the degradation processes

but final validation was not achieved yet

copy Fraunhofer ISE

Conclusions and outlook

Accelerated Damp-heat service life tests have been proposed

bull Based on monitored climatic data

bull Modelled micro-climatic stress conditions

bull Modelled kinetic of the degradation processes

but final validation was not achieved yet

Tests for other stress factors (UV temperature cycling potential induced degradation etc) and their combinations are under development

Global stress mapping will allow qualification of diversified specialised products for different climatic zones

copy Fraunhofer ISE

Thank you for your Attentionlt

Fraunhofer Institute for Solar Energy Systems ISE

Michael Koumlhl

wwwisefraunhoferde

michaelkoehlisefraunhoferde

copy Fraunhofer ISE

Page 22: Comparing Accelerated Testing and Outdoor Exposure · 2014. 1. 24. · mod module temperature T amb ambient temperature wind velocity H solar radiation U1 U0 a-Si 1 10,7 25,7 a-Si

-66

7 Degradation effects during outdoor exposure

Changes of the electrical performance at the outdoor exposure site

Test site Tropical Arid Urban Alpine Average

Module 1 -15 -06 -09 -11 -10 2 -01 -11 -08 -47 -17 3 -10 -01 -05 13 -01 4 -32 -01 17 -21 5 -01 -22 -18 -08 -12

Average -12 -08 -05 -24 -12

After 3 years operation hardly out of the error bars

copy Fraunhofer ISE

7 Degradation effects during outdoor exposure

After 3 years on the alpes

copy Fraunhofer ISE

7 Degradation effects during outdoor exposure

Degradation of module materials - UV-induced fluorescencelt2 a alpine outdoor exposure 2 a desert outdoor exposure

Combination of electroluminescence and fluorescence

J Schlothauer et al Fluorescence imaging a powerful tool for the investigation of polymer copy Fraunhofer ISE

degradation in PV modules Photovoltaics International journal November 2010

7 Degradation effects during outdoor exposure

Browning and photo-bleaching - UV-induced fluorescencelt

Combination of electroluminescence and fluorescenc

2 a desert outdoor exposure

copy Fraunhofer ISE

7 Degradation effects during outdoor exposure

a) Tropical

b) Arid

c) Moderate

d) Alpine

Effect of outdoor weathering on fluorescence spectra

UV

-rad

iatio

n

Moi

stur

e le

vel

Module types

J Schlothauer et al Degradation of the encapsulant polymer in outdoor weathered photovoltaic copy Fraunhofer ISE modules Spatially resolved inspection Solar Energy MaterialsampSolar Cells 102 (2012) 75ndash85

1

2

3

5

4

7

6

Methodology for design of Accelerated Service Life Testing

Monitoring climatic conditions

Monitoring micro-climatic stress factors

Modeling micro-climatic stress factors

Time-transformation functions for major degradation processes

Modeling corresponding ALT ndash conditions for micro-climatic stress factors

Evaluation of sample-dependent parameters for time-transformation functions

Modeling of expected degradation for outdoor exposure and validation of the tests

copy Fraunhofer ISE

Conclusions

Accelerated Damp-heat service life tests have been proposed

bull Based on monitored climatic data

bull Modelled micro-climatic stress conditions

bull Modelled kinetic of the degradation processes

but final validation was not achieved yet

copy Fraunhofer ISE

Conclusions and outlook

Accelerated Damp-heat service life tests have been proposed

bull Based on monitored climatic data

bull Modelled micro-climatic stress conditions

bull Modelled kinetic of the degradation processes

but final validation was not achieved yet

Tests for other stress factors (UV temperature cycling potential induced degradation etc) and their combinations are under development

Global stress mapping will allow qualification of diversified specialised products for different climatic zones

copy Fraunhofer ISE

Thank you for your Attentionlt

Fraunhofer Institute for Solar Energy Systems ISE

Michael Koumlhl

wwwisefraunhoferde

michaelkoehlisefraunhoferde

copy Fraunhofer ISE

Page 23: Comparing Accelerated Testing and Outdoor Exposure · 2014. 1. 24. · mod module temperature T amb ambient temperature wind velocity H solar radiation U1 U0 a-Si 1 10,7 25,7 a-Si

7 Degradation effects during outdoor exposure

After 3 years on the alpes

copy Fraunhofer ISE

7 Degradation effects during outdoor exposure

Degradation of module materials - UV-induced fluorescencelt2 a alpine outdoor exposure 2 a desert outdoor exposure

Combination of electroluminescence and fluorescence

J Schlothauer et al Fluorescence imaging a powerful tool for the investigation of polymer copy Fraunhofer ISE

degradation in PV modules Photovoltaics International journal November 2010

7 Degradation effects during outdoor exposure

Browning and photo-bleaching - UV-induced fluorescencelt

Combination of electroluminescence and fluorescenc

2 a desert outdoor exposure

copy Fraunhofer ISE

7 Degradation effects during outdoor exposure

a) Tropical

b) Arid

c) Moderate

d) Alpine

Effect of outdoor weathering on fluorescence spectra

UV

-rad

iatio

n

Moi

stur

e le

vel

Module types

J Schlothauer et al Degradation of the encapsulant polymer in outdoor weathered photovoltaic copy Fraunhofer ISE modules Spatially resolved inspection Solar Energy MaterialsampSolar Cells 102 (2012) 75ndash85

1

2

3

5

4

7

6

Methodology for design of Accelerated Service Life Testing

Monitoring climatic conditions

Monitoring micro-climatic stress factors

Modeling micro-climatic stress factors

Time-transformation functions for major degradation processes

Modeling corresponding ALT ndash conditions for micro-climatic stress factors

Evaluation of sample-dependent parameters for time-transformation functions

Modeling of expected degradation for outdoor exposure and validation of the tests

copy Fraunhofer ISE

Conclusions

Accelerated Damp-heat service life tests have been proposed

bull Based on monitored climatic data

bull Modelled micro-climatic stress conditions

bull Modelled kinetic of the degradation processes

but final validation was not achieved yet

copy Fraunhofer ISE

Conclusions and outlook

Accelerated Damp-heat service life tests have been proposed

bull Based on monitored climatic data

bull Modelled micro-climatic stress conditions

bull Modelled kinetic of the degradation processes

but final validation was not achieved yet

Tests for other stress factors (UV temperature cycling potential induced degradation etc) and their combinations are under development

Global stress mapping will allow qualification of diversified specialised products for different climatic zones

copy Fraunhofer ISE

Thank you for your Attentionlt

Fraunhofer Institute for Solar Energy Systems ISE

Michael Koumlhl

wwwisefraunhoferde

michaelkoehlisefraunhoferde

copy Fraunhofer ISE

Page 24: Comparing Accelerated Testing and Outdoor Exposure · 2014. 1. 24. · mod module temperature T amb ambient temperature wind velocity H solar radiation U1 U0 a-Si 1 10,7 25,7 a-Si

7 Degradation effects during outdoor exposure

Degradation of module materials - UV-induced fluorescencelt2 a alpine outdoor exposure 2 a desert outdoor exposure

Combination of electroluminescence and fluorescence

J Schlothauer et al Fluorescence imaging a powerful tool for the investigation of polymer copy Fraunhofer ISE

degradation in PV modules Photovoltaics International journal November 2010

7 Degradation effects during outdoor exposure

Browning and photo-bleaching - UV-induced fluorescencelt

Combination of electroluminescence and fluorescenc

2 a desert outdoor exposure

copy Fraunhofer ISE

7 Degradation effects during outdoor exposure

a) Tropical

b) Arid

c) Moderate

d) Alpine

Effect of outdoor weathering on fluorescence spectra

UV

-rad

iatio

n

Moi

stur

e le

vel

Module types

J Schlothauer et al Degradation of the encapsulant polymer in outdoor weathered photovoltaic copy Fraunhofer ISE modules Spatially resolved inspection Solar Energy MaterialsampSolar Cells 102 (2012) 75ndash85

1

2

3

5

4

7

6

Methodology for design of Accelerated Service Life Testing

Monitoring climatic conditions

Monitoring micro-climatic stress factors

Modeling micro-climatic stress factors

Time-transformation functions for major degradation processes

Modeling corresponding ALT ndash conditions for micro-climatic stress factors

Evaluation of sample-dependent parameters for time-transformation functions

Modeling of expected degradation for outdoor exposure and validation of the tests

copy Fraunhofer ISE

Conclusions

Accelerated Damp-heat service life tests have been proposed

bull Based on monitored climatic data

bull Modelled micro-climatic stress conditions

bull Modelled kinetic of the degradation processes

but final validation was not achieved yet

copy Fraunhofer ISE

Conclusions and outlook

Accelerated Damp-heat service life tests have been proposed

bull Based on monitored climatic data

bull Modelled micro-climatic stress conditions

bull Modelled kinetic of the degradation processes

but final validation was not achieved yet

Tests for other stress factors (UV temperature cycling potential induced degradation etc) and their combinations are under development

Global stress mapping will allow qualification of diversified specialised products for different climatic zones

copy Fraunhofer ISE

Thank you for your Attentionlt

Fraunhofer Institute for Solar Energy Systems ISE

Michael Koumlhl

wwwisefraunhoferde

michaelkoehlisefraunhoferde

copy Fraunhofer ISE

Page 25: Comparing Accelerated Testing and Outdoor Exposure · 2014. 1. 24. · mod module temperature T amb ambient temperature wind velocity H solar radiation U1 U0 a-Si 1 10,7 25,7 a-Si

7 Degradation effects during outdoor exposure

Browning and photo-bleaching - UV-induced fluorescencelt

Combination of electroluminescence and fluorescenc

2 a desert outdoor exposure

copy Fraunhofer ISE

7 Degradation effects during outdoor exposure

a) Tropical

b) Arid

c) Moderate

d) Alpine

Effect of outdoor weathering on fluorescence spectra

UV

-rad

iatio

n

Moi

stur

e le

vel

Module types

J Schlothauer et al Degradation of the encapsulant polymer in outdoor weathered photovoltaic copy Fraunhofer ISE modules Spatially resolved inspection Solar Energy MaterialsampSolar Cells 102 (2012) 75ndash85

1

2

3

5

4

7

6

Methodology for design of Accelerated Service Life Testing

Monitoring climatic conditions

Monitoring micro-climatic stress factors

Modeling micro-climatic stress factors

Time-transformation functions for major degradation processes

Modeling corresponding ALT ndash conditions for micro-climatic stress factors

Evaluation of sample-dependent parameters for time-transformation functions

Modeling of expected degradation for outdoor exposure and validation of the tests

copy Fraunhofer ISE

Conclusions

Accelerated Damp-heat service life tests have been proposed

bull Based on monitored climatic data

bull Modelled micro-climatic stress conditions

bull Modelled kinetic of the degradation processes

but final validation was not achieved yet

copy Fraunhofer ISE

Conclusions and outlook

Accelerated Damp-heat service life tests have been proposed

bull Based on monitored climatic data

bull Modelled micro-climatic stress conditions

bull Modelled kinetic of the degradation processes

but final validation was not achieved yet

Tests for other stress factors (UV temperature cycling potential induced degradation etc) and their combinations are under development

Global stress mapping will allow qualification of diversified specialised products for different climatic zones

copy Fraunhofer ISE

Thank you for your Attentionlt

Fraunhofer Institute for Solar Energy Systems ISE

Michael Koumlhl

wwwisefraunhoferde

michaelkoehlisefraunhoferde

copy Fraunhofer ISE

Page 26: Comparing Accelerated Testing and Outdoor Exposure · 2014. 1. 24. · mod module temperature T amb ambient temperature wind velocity H solar radiation U1 U0 a-Si 1 10,7 25,7 a-Si

7 Degradation effects during outdoor exposure

a) Tropical

b) Arid

c) Moderate

d) Alpine

Effect of outdoor weathering on fluorescence spectra

UV

-rad

iatio

n

Moi

stur

e le

vel

Module types

J Schlothauer et al Degradation of the encapsulant polymer in outdoor weathered photovoltaic copy Fraunhofer ISE modules Spatially resolved inspection Solar Energy MaterialsampSolar Cells 102 (2012) 75ndash85

1

2

3

5

4

7

6

Methodology for design of Accelerated Service Life Testing

Monitoring climatic conditions

Monitoring micro-climatic stress factors

Modeling micro-climatic stress factors

Time-transformation functions for major degradation processes

Modeling corresponding ALT ndash conditions for micro-climatic stress factors

Evaluation of sample-dependent parameters for time-transformation functions

Modeling of expected degradation for outdoor exposure and validation of the tests

copy Fraunhofer ISE

Conclusions

Accelerated Damp-heat service life tests have been proposed

bull Based on monitored climatic data

bull Modelled micro-climatic stress conditions

bull Modelled kinetic of the degradation processes

but final validation was not achieved yet

copy Fraunhofer ISE

Conclusions and outlook

Accelerated Damp-heat service life tests have been proposed

bull Based on monitored climatic data

bull Modelled micro-climatic stress conditions

bull Modelled kinetic of the degradation processes

but final validation was not achieved yet

Tests for other stress factors (UV temperature cycling potential induced degradation etc) and their combinations are under development

Global stress mapping will allow qualification of diversified specialised products for different climatic zones

copy Fraunhofer ISE

Thank you for your Attentionlt

Fraunhofer Institute for Solar Energy Systems ISE

Michael Koumlhl

wwwisefraunhoferde

michaelkoehlisefraunhoferde

copy Fraunhofer ISE

Page 27: Comparing Accelerated Testing and Outdoor Exposure · 2014. 1. 24. · mod module temperature T amb ambient temperature wind velocity H solar radiation U1 U0 a-Si 1 10,7 25,7 a-Si

1

2

3

5

4

7

6

Methodology for design of Accelerated Service Life Testing

Monitoring climatic conditions

Monitoring micro-climatic stress factors

Modeling micro-climatic stress factors

Time-transformation functions for major degradation processes

Modeling corresponding ALT ndash conditions for micro-climatic stress factors

Evaluation of sample-dependent parameters for time-transformation functions

Modeling of expected degradation for outdoor exposure and validation of the tests

copy Fraunhofer ISE

Conclusions

Accelerated Damp-heat service life tests have been proposed

bull Based on monitored climatic data

bull Modelled micro-climatic stress conditions

bull Modelled kinetic of the degradation processes

but final validation was not achieved yet

copy Fraunhofer ISE

Conclusions and outlook

Accelerated Damp-heat service life tests have been proposed

bull Based on monitored climatic data

bull Modelled micro-climatic stress conditions

bull Modelled kinetic of the degradation processes

but final validation was not achieved yet

Tests for other stress factors (UV temperature cycling potential induced degradation etc) and their combinations are under development

Global stress mapping will allow qualification of diversified specialised products for different climatic zones

copy Fraunhofer ISE

Thank you for your Attentionlt

Fraunhofer Institute for Solar Energy Systems ISE

Michael Koumlhl

wwwisefraunhoferde

michaelkoehlisefraunhoferde

copy Fraunhofer ISE

Page 28: Comparing Accelerated Testing and Outdoor Exposure · 2014. 1. 24. · mod module temperature T amb ambient temperature wind velocity H solar radiation U1 U0 a-Si 1 10,7 25,7 a-Si

Conclusions

Accelerated Damp-heat service life tests have been proposed

bull Based on monitored climatic data

bull Modelled micro-climatic stress conditions

bull Modelled kinetic of the degradation processes

but final validation was not achieved yet

copy Fraunhofer ISE

Conclusions and outlook

Accelerated Damp-heat service life tests have been proposed

bull Based on monitored climatic data

bull Modelled micro-climatic stress conditions

bull Modelled kinetic of the degradation processes

but final validation was not achieved yet

Tests for other stress factors (UV temperature cycling potential induced degradation etc) and their combinations are under development

Global stress mapping will allow qualification of diversified specialised products for different climatic zones

copy Fraunhofer ISE

Thank you for your Attentionlt

Fraunhofer Institute for Solar Energy Systems ISE

Michael Koumlhl

wwwisefraunhoferde

michaelkoehlisefraunhoferde

copy Fraunhofer ISE

Page 29: Comparing Accelerated Testing and Outdoor Exposure · 2014. 1. 24. · mod module temperature T amb ambient temperature wind velocity H solar radiation U1 U0 a-Si 1 10,7 25,7 a-Si

Conclusions and outlook

Accelerated Damp-heat service life tests have been proposed

bull Based on monitored climatic data

bull Modelled micro-climatic stress conditions

bull Modelled kinetic of the degradation processes

but final validation was not achieved yet

Tests for other stress factors (UV temperature cycling potential induced degradation etc) and their combinations are under development

Global stress mapping will allow qualification of diversified specialised products for different climatic zones

copy Fraunhofer ISE

Thank you for your Attentionlt

Fraunhofer Institute for Solar Energy Systems ISE

Michael Koumlhl

wwwisefraunhoferde

michaelkoehlisefraunhoferde

copy Fraunhofer ISE

Page 30: Comparing Accelerated Testing and Outdoor Exposure · 2014. 1. 24. · mod module temperature T amb ambient temperature wind velocity H solar radiation U1 U0 a-Si 1 10,7 25,7 a-Si

Thank you for your Attentionlt

Fraunhofer Institute for Solar Energy Systems ISE

Michael Koumlhl

wwwisefraunhoferde

michaelkoehlisefraunhoferde

copy Fraunhofer ISE