compact  neutron stars theory & observations

63
Compact neutron stars Theory & Observations Hovik Grigorian Yerevan State University Summer School Dubna – 2012

Upload: brandy

Post on 23-Feb-2016

53 views

Category:

Documents


0 download

DESCRIPTION

Compact  neutron stars Theory & Observations. Hovik Grigorian Yerevan State University. Summer School Dubna – 2012. Compact stars Physics. - PowerPoint PPT Presentation

TRANSCRIPT

Page 1: Compact  neutron stars  Theory & Observations

Compact  neutron stars Theory & Observations

Hovik GrigorianYerevan State University

Summer School Dubna – 2012

Page 2: Compact  neutron stars  Theory & Observations

Compact stars Physics

• physics of compact stars,• astrophysics of compact stars,• superdense matter,• neutrino physics,• astrochemistry,• gravitational waves from compact stars and• supernova explosions.

CompStar meeting in Tahiti 2012: http://compstar-esf.org/tahiti/Conference/home.html

Page 3: Compact  neutron stars  Theory & Observations

NS is a remnant of Supernova explosion

The Astrophysical Journal V 749 N1 Chris L. Fryer et al. 2012 ApJ 749 91

COMPACT REMNANT MASS FUNCTION: DEPENDENCE ON THE EXPLOSION MECHANISM AND METALLICITY

Page 4: Compact  neutron stars  Theory & Observations

Statistics of Compact stars

Page 5: Compact  neutron stars  Theory & Observations

Formation of millisecond pulsars

Paulo C. C. Freire Solar and Stellar Astrophysics (astro-ph.SR) Cite as:arXiv:0907.3219v1

Page 6: Compact  neutron stars  Theory & Observations

Demorest, P., Pennucci, T., Ransom, S., Roberts, M., & Hessels,J. 2010, Nature, 467, 1081

The mass of the millisecond pulsar PSR J1614-2230 to be M = 1.97 ± 0.04 M .⊙ This value, together with the mass of pulsar J1903+0327 of M = 1.667 ± 0.021 M ⊙ due to the prolonged accretion episode that is thought to be required to form a MSP.

Page 7: Compact  neutron stars  Theory & Observations

A two-solar-mass neutron star measured using Shapiro delay

In binary systems with "Recycled" Millisecond Pulsar

The light traveler time difference

Page 8: Compact  neutron stars  Theory & Observations
Page 9: Compact  neutron stars  Theory & Observations

Surface Temperature & Age Data

Page 10: Compact  neutron stars  Theory & Observations

COOLING OF MAGNETARS

MagnetarsAXPs, SGRsB = 10^14 -

10^15 GRadio-quiet

NSsB = 10^13 G

Radio-pulsar NSs

B = 10^12 G

Radio-pulsar NSs

B = 10^12 GH - spectrum

Page 11: Compact  neutron stars  Theory & Observations

Cooling of Neutron Star in Cassiopeia A

• 16.08.1680 John Flamsteed, 6m star 3 Cas• 1947 re-discovery in radio

• 1950 optical counterpart• T 30 MK∼

• V exp 4000 − 6000 km/s∼• distance 11.000 ly = 3.4 kpc

picture: spitzer space telescope

D.Blaschke, H. Grigorian, D. Voskresensky, F. Weber, Phys. Rev. C 85 (2012) 022802 e-Print: arXiv:1108.4125 [nucl-th]

Page 12: Compact  neutron stars  Theory & Observations

Cass A Cooling Observations

Cass A is a rapid cooling star – Temperature drop - 10% in 10 yr

W.C.G. Ho, C.O. Heinke, Nature 462, 71 (2009)

Page 13: Compact  neutron stars  Theory & Observations

Phase Diagramm & Cooling Simulations

Description of the stellar matter - local propertiesModeling of the self bound compact star - including the gravitational fieldExtrapolations of the energy loss mechanisms to higher densities and temperatures Consistency of the approaches

Page 14: Compact  neutron stars  Theory & Observations

Choice of metric tensor

HOW TO MAKE A STAR CONFIGURATION?

2 2 2 2 2 2 2 2sinds e dt e dr r d r dn l q q j= - - -

Einstein Equations

TOV

EoS- P( )Thermodynamicas of

dence matter (Energy Momentum Tensor)

External fieldsSchwarzschild Solution

Spherically Symetric case

e

1R 82 R GTn n nm m md p- =

( )1 2ln 12( ) 0

GMr

r R P R

n l= - = - -< ® =

Intrernal solution

Page 15: Compact  neutron stars  Theory & Observations

SOLUTION FOR INTERNAL STRUCTURE

Cerntral conditions :

1 2 ( )( ) ln 12Gmrr rl æ ö÷ç= - ÷ç ÷çè ø

( 0)( 0)( 0) 0

c

c

rrr

e en nl

= == == =

( )( ) ( ) ( )dP rr P r rn e= - +ò ; -

Page 16: Compact  neutron stars  Theory & Observations

STRUCTURE OF HYBRID STAR

Page 17: Compact  neutron stars  Theory & Observations

EoS for Nuclear Matter

Page 18: Compact  neutron stars  Theory & Observations
Page 19: Compact  neutron stars  Theory & Observations

T. Kl¨ahn et al., Phys. Rev. C 74, 035802 (2006).

Page 20: Compact  neutron stars  Theory & Observations

EoS for Quark Matter

Dynamical Chiral Quark Model

Page 21: Compact  neutron stars  Theory & Observations

EoS for Hybrid Matter

Page 22: Compact  neutron stars  Theory & Observations

EoS & Hybrid Configurations

Page 23: Compact  neutron stars  Theory & Observations

Internal structure of HS

Page 24: Compact  neutron stars  Theory & Observations

Hibrid Configurations for NJL type QM models

T. Kl¨ahn et al., Phys.Lett.B654:170-176,2007

Page 25: Compact  neutron stars  Theory & Observations

HS Mass-Redius relations

Page 26: Compact  neutron stars  Theory & Observations
Page 27: Compact  neutron stars  Theory & Observations

Rotation of Hybrid StarsEvolution of LMXBs

Page 28: Compact  neutron stars  Theory & Observations
Page 29: Compact  neutron stars  Theory & Observations

Evolution of LMXBs

Page 30: Compact  neutron stars  Theory & Observations
Page 31: Compact  neutron stars  Theory & Observations

Cooling of Compact Stars

Cooling Equations Time Evolution of Temperature

(algorithm) Thermal Regulators, Crust, SC,

Gaps ... Results and Observations

(Cassiopeia A) Conclusions

Page 32: Compact  neutron stars  Theory & Observations

Equations for Cooling Evolution

, ,, ,

,, ,

a az a z a

aa

a z a

z L

zL

a

A B

C

, log ,az a T

1 11 2

1 2 1 12i i i i

ii

za

C C zL

1 2 1 2

1

2 i ii

i i

L La a aL

Page 33: Compact  neutron stars  Theory & Observations

BOUNDARY CONDITIONS

L_conductivity L_photons

L = 0 L

mT

sT

Page 34: Compact  neutron stars  Theory & Observations

FINITE DIFFERENCE SCHEME

Z_i next step

Time direction

Z_i+1Z_i initial

Z_i-1

, 1 1, , 1 , , 1 1, , 1i j i j i j i j i j i i i jz z z

0, 1 0, 1 0, 1

1, 1 1, 1

1,

0,

1,

1 , 1 ,

1

, , 1

0* ** * * * *

* * *0

*

j j j

j j

N j

N j N j N j

j

j

N j

zz

z

Page 35: Compact  neutron stars  Theory & Observations

Neutrino - Cooling in HM

Page 36: Compact  neutron stars  Theory & Observations

Cooling Mechanism in QM

Page 37: Compact  neutron stars  Theory & Observations

Crust Model

Time dependence of the light element contents in the crust

Blaschke, Grigorian, Voskresensky, A& A 368 (2001)561.

Page,Lattimer,Prakash & Steiner, Astrophys.J. 155,623 (2004)

Yakovlev, Levenfish, Potekhin, Gnedin & Chabrier , Astron. Astrophys , 417, 169 (2004)

Page 38: Compact  neutron stars  Theory & Observations

DU constraint

Page 39: Compact  neutron stars  Theory & Observations

DU Thresholds

Page 40: Compact  neutron stars  Theory & Observations

SC pairing gaps

Page 41: Compact  neutron stars  Theory & Observations

Influence of SC on luminosity

Critical temperature, Tc, for the proton 1S0 and neutron 3P2 gaps, used in PAGE, LATTIMER, PRAKASH, & STEINER Astrophys.J.707:1131 (2009)

Page 42: Compact  neutron stars  Theory & Observations

Tc ‘measurement’ from Cas A

1.4 M star built⊙from the APR EoS rapid cooling at ages

∼ 30-100 yrs is due to the thermal relaxation of the crust

Mass dependence

PAGE, LATTIMER, PRAKASH, & STEINER Phys.Rev.Lett.106:081101,2011

Page 43: Compact  neutron stars  Theory & Observations

Medium effects in cooling of neutron stars

Based on Fermi liquid theory ( Landau (1956), Migdal (1967), Migdal et al. (1990))

MMU – insted of MU

Main regulator in Minimal Cooling

Page 44: Compact  neutron stars  Theory & Observations

Contributions to luminosity

Page 45: Compact  neutron stars  Theory & Observations

Some Anomalies

Page 46: Compact  neutron stars  Theory & Observations

The influence of a change of the heat conductivity on the scenario

Blaschke, Grigorian, Voskresensky, A& A 424, 979 (2004)

Page 47: Compact  neutron stars  Theory & Observations

Temperature Profiles for Cas A

Page 48: Compact  neutron stars  Theory & Observations

Cas A as an Hadronic Star

Page 49: Compact  neutron stars  Theory & Observations

Cas A as an Hybrid star

Page 50: Compact  neutron stars  Theory & Observations

Stability of the stars & Mass- Radius relationship

Page 51: Compact  neutron stars  Theory & Observations

Cooling of Hybrid star with a DD2-NJL EoS model

Page 52: Compact  neutron stars  Theory & Observations

Cooling of Hadronic star with a DDF2 EoS model

Page 53: Compact  neutron stars  Theory & Observations
Page 54: Compact  neutron stars  Theory & Observations
Page 55: Compact  neutron stars  Theory & Observations
Page 56: Compact  neutron stars  Theory & Observations

COOLING PROFILES

Page 57: Compact  neutron stars  Theory & Observations

Conclusions

Cas A rapid cooling consistently described by the medium-modified superfluid cooling model

Both alternatives for the inner structure, hadronic and hybrid star, are viable for Cas A; a higher star mass favors the hybrid model

In contrast to the minimal cooling scenario, our approach is sensitive to the star mass and thermal conductivity of superfluid star matter

Page 58: Compact  neutron stars  Theory & Observations

Thank You!!!!!

Page 59: Compact  neutron stars  Theory & Observations
Page 60: Compact  neutron stars  Theory & Observations
Page 61: Compact  neutron stars  Theory & Observations

Temperature in the Hybrid Star Interior

Page 62: Compact  neutron stars  Theory & Observations

THERMAL EVOLUTIONS OF NSS WITH STRONG MANETIC FIELDS

Phenomenological model of the field decay

Thermal evolution including the Joule heating QJ

D.N. Aguilera, J.A. Pons, J.A. Miralles, arXiv astro-ph 0803.0486v (2009)

Page 63: Compact  neutron stars  Theory & Observations

COOLING OF MAGNETARS

MagnetarsAXPs, SGRsB = 10^14 -

10^15 GRadio-quiet

NSsB = 10^13 G

Radio-pulsar NSs

B = 10^12 G

Radio-pulsar NSs

B = 10^12 GH - spectrum