common drain stage (source...

30
Claudio Talarico, Gonzaga University Common Drain Stage (Source Follower)

Upload: others

Post on 07-Jul-2020

3 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: Common Drain Stage (Source Follower)web02.gonzaga.edu/faculty/talarico/EE303/HO/cd_ct.rev2.pptx.pdf · 1 element 0:m1 0:m2 model 0:simple_n 0:simple_n region Saturati Saturati id

Claudio Talarico, Gonzaga University

Common Drain Stage (Source Follower)

Page 2: Common Drain Stage (Source Follower)web02.gonzaga.edu/faculty/talarico/EE303/HO/cd_ct.rev2.pptx.pdf · 1 element 0:m1 0:m2 model 0:simple_n 0:simple_n region Saturati Saturati id

EE 303 – Common Drain Stage 2

Common Drain Stage

vo

gmvgs+vgs-

Cgd+Cgb

roCgs

Csb+CLRL

vi

-gmbvo

Cgd

S

G

vgs = vi - vo

vbs = - vo

IB RL

vIN

VDD

CL

vOUT

VB

vs

VS

RS

Vo

Vi B&D

Page 3: Common Drain Stage (Source Follower)web02.gonzaga.edu/faculty/talarico/EE303/HO/cd_ct.rev2.pptx.pdf · 1 element 0:m1 0:m2 model 0:simple_n 0:simple_n region Saturati Saturati id

EE 303 – Common Drain Stage 3

CD Bias Point

IB RL

VIN

VDD

VOUT

VB

VS

RS

§  Assume VB=VOUT, so ID=IB

VOUT =VIN −VGS

VGS =VT +ID

0.5COXW / L

VT =VT 0 +γ PHI +VOUT − PHI( )VDS =VDD −VOUT =VDD −VIN +VGS

§  For M1 to be in saturation

VDS >VOV =VGS +VT              !VDD −VIN +VGS >VGS +VT

!VIN <VDD +VT

This is almost always the case in practical realizations

Page 4: Common Drain Stage (Source Follower)web02.gonzaga.edu/faculty/talarico/EE303/HO/cd_ct.rev2.pptx.pdf · 1 element 0:m1 0:m2 model 0:simple_n 0:simple_n region Saturati Saturati id

EE 303 – Common Drain Stage 4

0 1 2 3 4 5 6 7 80

1

2

3

4

5

6

Vin [V]

M1 operation

Vds=Vdd−VoutVov=Vin−Vout−Vth

I/O DC characteristic (1)

0 1 2 3 4 5 6 7 80

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

Vou

t [V]

Vin [V]

DC Transfer Function − 1 um Technology

VoutVth

VDD-Vth ≈ 3.43 V

M1 sat.

M1 triode

Example: VIN = 2.5V; I1=400µA; VDD=5V; W/L=100µm/1µm

Source: Razavi

M1 triode

AV (@ VIN = 2.5V) ≅ 0.821

§  Vout(min) ≈ 0 §  Vout(max) ≈ VDD-Vth

Math “artifact” due to ideal current source (a current source can take any voltage value across it !!)

Page 5: Common Drain Stage (Source Follower)web02.gonzaga.edu/faculty/talarico/EE303/HO/cd_ct.rev2.pptx.pdf · 1 element 0:m1 0:m2 model 0:simple_n 0:simple_n region Saturati Saturati id

EE 303 – Common Drain Stage 5

I/O DC characteristic (2)

I1

element 0:m1 0:m2 model 0:simple_n 0:simple_n region Saturati Saturati id 452.1261u 452.1261u ibs -13.0315f 0. ibd -50.0000f -13.0315f vgs 1.1968 900.0000m vds 3.6968 1.3032 vbs -1.3032 0. vth 833.4784m 500.0000m vdsat 363.3703m 400.0000m vod 363.3703m 400.0000m beta 6.8484m 5.6516m gam eff 600.0000m 600.0000m gm 2.4885m 2.2606m gds 33.0095u 40.0000u gmb 514.7852u 758.2384u cdtot 72.3963f 93.2122f cgtot 256.5245f 256.4846f cstot 246.1466f 286.3341f cbtot 66.1318f 128.5634f cgs 203.3341f 203.3341f cgd 51.1337f 50.3996f * measurement av0= 808.9285m

0 1 2 3 4 5 6 7 80

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

Vou

t [V]

Vin [V]

DC Transfer Function − 1 um Technology

Vout=Vds2Vov2Vds1Vov1

Example: VIN = 2.5V; I1=400µA; VDD= 5V; VB = 0.9V; W/L=100µm/1µm;

M2 off M1 sat

M2 triode M1 sat

M2 sat M1 sat

M2 sat M1 triode

§  Reduced output (and input) swing -  Vout(max) = VDD – VOV1 -  Vout(min) = VOV2

Page 6: Common Drain Stage (Source Follower)web02.gonzaga.edu/faculty/talarico/EE303/HO/cd_ct.rev2.pptx.pdf · 1 element 0:m1 0:m2 model 0:simple_n 0:simple_n region Saturati Saturati id

EE 303 – Common Drain Stage 6

CD Voltage Transfer

LtotLtotgsm

gsm

i

o

RsCsCg

sCgvv

1+++

+=

( ) 01=−−−""

#

$%%&

'++ oimgsi

LtotgsLtoto vvgsCv

RsCsCv

vovi=

gmgm +

1RLtot

⋅1+

sCgs

gm

1+s Cgs +CLtot( )gm +

1RLtot

omb

LLtotsbLLtot r||g

||RRCCC1

=+=

often RLtot≅ 1/gmb = av0 ⋅

1− sz

1− sp

=

vo

gmvgs+vgs-

Cgd+Cgb

Cgs

CLtot RLtot

vi

LHP zero

Page 7: Common Drain Stage (Source Follower)web02.gonzaga.edu/faculty/talarico/EE303/HO/cd_ct.rev2.pptx.pdf · 1 element 0:m1 0:m2 model 0:simple_n 0:simple_n region Saturati Saturati id

EE 303 – Common Drain Stage 7

Low Frequency Gain

§  Interesting cases –  Ideal current source; PMOS with source tied to body; no load resistor;

RL=∞, ro=∞, gmb= 0

Ltotm

mv

Rg

ga 10

+= o

mbLLtot r||g

||RR1

=

10 =va

mbm

mv gg

ga+

=0

–  Ideal current source; NMOS; no load resistor;�

RL=∞, ro=∞, gmb≠0

(typically ≅ 0.8)

–  Ideal current source, PMOS with source tied to body; load resistor

ro=∞, gmb=0, RL finite

Lm

mv

Rg

ga 10

+=

Vi

VDD

CL

Vo

Yin

IB RL

Vi

VDD

CL

Vo

Page 8: Common Drain Stage (Source Follower)web02.gonzaga.edu/faculty/talarico/EE303/HO/cd_ct.rev2.pptx.pdf · 1 element 0:m1 0:m2 model 0:simple_n 0:simple_n region Saturati Saturati id

EE 303 – Common Drain Stage 8

Low frequency input and output resistances

§  Rin = ∞

§  Rout = ro || (1/g’m)

vout

gmvin

vin

ro RL

vsRS

1/gm 1/gmb

RoutRin

av0= gm / (g’m+1/ro+1/RL)

Page 9: Common Drain Stage (Source Follower)web02.gonzaga.edu/faculty/talarico/EE303/HO/cd_ct.rev2.pptx.pdf · 1 element 0:m1 0:m2 model 0:simple_n 0:simple_n region Saturati Saturati id

EE 303 – Common Drain Stage 9

High Frequency Gain

§  Three scenarios:

( )

pszs

avv

sa vi

ov

−⋅==1

10

gs

m

Cgz −=

Ltotgs

Ltotm

CCR

gp

+

+−=

1

|av(s)|

f

|av(s)|

f

|av(s)|

f

(infinite bandwidth ?!?)

|z|<|p| |z|>|p| |z|=|p|

The presence of a LHP zero leads to the possibility that the pole and zero will provide some degree of cancellation, leading to a broadband response

av0

av0 av0

av0 =gm

g 'm+1/ ro +1/ RL

Page 10: Common Drain Stage (Source Follower)web02.gonzaga.edu/faculty/talarico/EE303/HO/cd_ct.rev2.pptx.pdf · 1 element 0:m1 0:m2 model 0:simple_n 0:simple_n region Saturati Saturati id

EE 303 – Common Drain Stage 10

CD Input Impedance

§  By inspection:

Yin = sCgd + sCgs 1− av (s)( )

vo

gmvgs+vgs-

Cgd+Cgb

Cgs

CLtot RLtot

vi

Yin §  Gain term av(s) is real and close to unity up to fairly high frequencies

§  Hence, up to moderate frequencies, we see a capacitor looking into the input –  A fairly small one, Cgd, plus a fraction

of Cgs

Hint: i=Cgs(vi-vo)

Consistent with insight from Miller Theorem

Page 11: Common Drain Stage (Source Follower)web02.gonzaga.edu/faculty/talarico/EE303/HO/cd_ct.rev2.pptx.pdf · 1 element 0:m1 0:m2 model 0:simple_n 0:simple_n region Saturati Saturati id

EE 303 – Common Drain Stage 11

CD input impedance for PMOS stage (with Body-source tie)

IB

VDD

vOUT

vIN

CL

Cgs

Cgd

Cbsub

Cin @  CgdCin ≈ Cgd

Vin

Vout

§  gmb generator inactive –  Low frequency gain very close

to unity

§  Very small input capacitance Yin = sCgd + sCgs 1− av (s)( )Yin ≅ sCgd

av0 =gm

gm +1ro

≅1

gmro >> 1

§  The well-body capacitance Cbsub can be large and may significantly affect the 3-db bandwidth

for av=1 (Vout=Vin) no current flows through Cgs(perfect bootstrap)

Page 12: Common Drain Stage (Source Follower)web02.gonzaga.edu/faculty/talarico/EE303/HO/cd_ct.rev2.pptx.pdf · 1 element 0:m1 0:m2 model 0:simple_n 0:simple_n region Saturati Saturati id

EE 303 – Common Drain Stage 12

CD Output Impedance (1)

§  Let's first look at an analytically simple case –  Input driven by ideal voltage source

( )sbgsmbmout CCsggZ

++=

11

Low output impedance •  Resistive up to very high

frequencies

vo

gmvgs+vgs-

Cgd+Cgb

Cgs

Csb 1/gmbZout

AC shorted ZL

YL=sCL+1/RL

Page 13: Common Drain Stage (Source Follower)web02.gonzaga.edu/faculty/talarico/EE303/HO/cd_ct.rev2.pptx.pdf · 1 element 0:m1 0:m2 model 0:simple_n 0:simple_n region Saturati Saturati id

EE 303 – Common Drain Stage 13

CD Output Impedance (2)

§  Now include finite source resistance

ix = vo − vg( ) gm + sCgs( ) = vo 1−vgvo

"

#$

%

&' gm + sCgs( )

vo

gm(vg-vo)

Cgd+Cgb

Cgs

Csb 1/gmb

Zout

Ri

Zx

vg

ix

Zx =voix≅1+ sRiCgs

gm + sCgs

=1gm

1+ sRiCgs

1+sCgs

gm

"

#

$$$$

%

&

''''

vgvo≅

Ri1sCgs

+ Ri

Neglect Cgd ZL

Neglecting Cgd

Page 14: Common Drain Stage (Source Follower)web02.gonzaga.edu/faculty/talarico/EE303/HO/cd_ct.rev2.pptx.pdf · 1 element 0:m1 0:m2 model 0:simple_n 0:simple_n region Saturati Saturati id

EE 303 – Common Drain Stage 14

CD Output Impedance (3)

§  Two interesting cases

Zx ≅1gm

1+ sRiCgs( )

1+sCgs

gm

"

#$

%

&'

f

|Zx(s)|

f

|Zx(s)|

1/gm1/gm

Ri > 1/gm Ri < 1/gm

Inductive behavior!

NOTE: Typically 1/gm is small, so this can happen !!

Page 15: Common Drain Stage (Source Follower)web02.gonzaga.edu/faculty/talarico/EE303/HO/cd_ct.rev2.pptx.pdf · 1 element 0:m1 0:m2 model 0:simple_n 0:simple_n region Saturati Saturati id

EE 303 – Common Drain Stage 15

Equivalent Circuit for Ri > 1/gm

§  This circuit is prone to ringing! –  L forms an LC tank with any capacitance at the output –  If the circuit drives a large capacitance the response to step-like

signals will result in ringing

Csb 1/gmb

ZoutZx

R1

L

R2

1

1

22

21

−=

=

=

im

gsi

i

m

RgCR

L

RRg

R||R

Zx ≅1gm

1+ sRiCgs( )

1+sCgs

gm

"

#$

%

&'

for s = 0⇒ Zx = R1 || R2for s→∞⇒ Zx = R2

for s = 0⇒ Zx =1/ gmfor s→∞⇒ Zx = Ri

Zx =(R1 + sL)R2R1 + R2 + sL

=R1R2R1 + R2

1+ LR1

1+ LR1 + R2

Page 16: Common Drain Stage (Source Follower)web02.gonzaga.edu/faculty/talarico/EE303/HO/cd_ct.rev2.pptx.pdf · 1 element 0:m1 0:m2 model 0:simple_n 0:simple_n region Saturati Saturati id

EE 303 – Common Drain Stage 16

EE114

Inclusion of Parasitic Input Capacitance*

Zx =1gm

1+ sRi Cgs +Ci( )( )1+

sCgs

gm

!

"#

$

%& 1+ sRiCi( )

What happens to the output impedance if we don’t neglect Ci=Cgd ?

f

|Zx(s)|

f

|Zx(s)|

1/gm1/gm

1Ri Cgs +Ci( )

<1RiCi

<gmCgs

1Ri Cgs +Ci( )

<gmCgs

<1RiCi

* Hint: replace Ri with

Zi =Ri

Ri + sCiRi

Page 17: Common Drain Stage (Source Follower)web02.gonzaga.edu/faculty/talarico/EE303/HO/cd_ct.rev2.pptx.pdf · 1 element 0:m1 0:m2 model 0:simple_n 0:simple_n region Saturati Saturati id

EE 303 – Common Drain Stage 17

Applications of the Common Drain Stage

§  Level Shifter

§  Voltage Buffer

§  Load Device

Page 18: Common Drain Stage (Source Follower)web02.gonzaga.edu/faculty/talarico/EE303/HO/cd_ct.rev2.pptx.pdf · 1 element 0:m1 0:m2 model 0:simple_n 0:simple_n region Saturati Saturati id

EE 303 – Common Drain Stage 18

Application 1: Level Shifter

§  Output quiescent point is roughly Vt+Vov lower than input quiescent point

§  Adjusting the W/L ratio allows to “tune” Vov (= the desired shifting level)

IB

Vi

VDD

Vo

VGS=Vt+Vov ≅ const.

Vi=VGS +Vo

Vo=Vi – VGS= Vi – (Vt+VOV)

Page 19: Common Drain Stage (Source Follower)web02.gonzaga.edu/faculty/talarico/EE303/HO/cd_ct.rev2.pptx.pdf · 1 element 0:m1 0:m2 model 0:simple_n 0:simple_n region Saturati Saturati id

EE 303 – Common Drain Stage 19

Why is lowering the DC level useful ?

§  When building cascades of CS and CG amplifiers, as we move along the DC level moves up

§  A CD stage is a way to buffer the signal, and moving down the DC level

Page 20: Common Drain Stage (Source Follower)web02.gonzaga.edu/faculty/talarico/EE303/HO/cd_ct.rev2.pptx.pdf · 1 element 0:m1 0:m2 model 0:simple_n 0:simple_n region Saturati Saturati id

EE 303 – Common Drain Stage 20

Application 2: Buffer

§  Low frequency voltage gain of the above circuit is ~gmRbig

–  Would be ~gm(Rsmall||Rbig) ~ gmRsmall without CD buffer stage

§  Disadvantage –  Reduced swing

Vout (max) =VDD −VOV1Vout (min) =VOV 2

IB2

vin

VDD

vout

RL

(large)

(small)

vx Rout

RDIB1

VB

Vout

VB1

VB2

Vin

M1

M2

MX

Page 21: Common Drain Stage (Source Follower)web02.gonzaga.edu/faculty/talarico/EE303/HO/cd_ct.rev2.pptx.pdf · 1 element 0:m1 0:m2 model 0:simple_n 0:simple_n region Saturati Saturati id

EE 303 – Common Drain Stage 21

Buffer Design Considerations

IB2

vin

VDD

vout

RL

(large)

(small)

vx Rout

RDIB1

VB

Vout

VB1

VB2

Vin

Vx

M2

M1

MX VB

§  Without the buffer the minimum allowable value of Vx for Mx to remain in saturation is: VX > VGSX – Vthx

§  With the buffer for M2 to remain in sat. it must be: VX > VGS1+VGS2-Vth2

§  Assuming the overdrive of Mx and M2 are comparable this means that the allowable swing at X is reduced by VGS1 which is a significant amount (VGS1=VOV1 +Vth1)

Page 22: Common Drain Stage (Source Follower)web02.gonzaga.edu/faculty/talarico/EE303/HO/cd_ct.rev2.pptx.pdf · 1 element 0:m1 0:m2 model 0:simple_n 0:simple_n region Saturati Saturati id

EE 303 – Common Drain Stage 22

Application 3: Load Device

§  Advantages compared to resistor load –  "Ratiometric"

•  Gain depends on ratio of similar parameters

•  Reduced process and temperature variations

–  First order cancellation of nonlinearities

§  Disadvantage –  Reduced swing

Vi

VDD

Vo

M1

M2

1/(gm2+gmb2)

22

10

mbm

mv gg

ga+

=

Looks familiar ? “CS stage with diode connected load”

Vout (max) =VDD −V th2

Vout (min) =VIN −V th1=VOV1

Page 23: Common Drain Stage (Source Follower)web02.gonzaga.edu/faculty/talarico/EE303/HO/cd_ct.rev2.pptx.pdf · 1 element 0:m1 0:m2 model 0:simple_n 0:simple_n region Saturati Saturati id

EE 303 – Common Drain Stage 23

CD stage Issues §  Several sources of nonlinearity

–  Vt is a function of Vo (NMOS, without S to B connection)

–  ID and thus Vov changes with Vo

•  Gets worse with small RL

If we worry about distortion we need to keep ΔVin/2VOV small (à we need large VOV, and this affect adversely signal swing). If RL is small, things are even worse because to obtain the desired ΔVout we need more ΔVin (and so even more VOV)

§  Reduced input and output voltage swing –  Consider e.g. VDD=1V, Vt=0.3V, VOV=0.2V (VGS=Vt+Vov=0.5V)

•  CD buffer stage consumes 50% of supply headroom! –  In low VDD applications that require large output swing, using a CD buffer is often not

possible –  CD buffers are more frequently used when the required swing is small

•  E.g. pre-amplifiers or LNAs that turn µV into mV at the output

ID =12µCOX

WLVGS −Vt( )2

Vt =Vt 0 +γ PHI +Vo − PHI( )

ΔVoutΔVin

≈gm

g 'm+1/ RLSmall RL means less gain

Page 24: Common Drain Stage (Source Follower)web02.gonzaga.edu/faculty/talarico/EE303/HO/cd_ct.rev2.pptx.pdf · 1 element 0:m1 0:m2 model 0:simple_n 0:simple_n region Saturati Saturati id

EE 303 – Common Drain Stage 24

Summary – Elementary Transistor Stages §  Common source

–  VCCS, makes a good voltage amplifier when terminated with a high impedance

§  Common gate –  Typically low input impedance, high output impedance –  Can be used to improve the intrinsic voltage gain of a common

source stage •  "Cascode" stage

§  Common drain –  Typically high input impedance, low output impedance –  Great for shifting the DC operating point of signals –  Useful as a voltage buffer when swing and nonlinearity are not an

issue

Page 25: Common Drain Stage (Source Follower)web02.gonzaga.edu/faculty/talarico/EE303/HO/cd_ct.rev2.pptx.pdf · 1 element 0:m1 0:m2 model 0:simple_n 0:simple_n region Saturati Saturati id

EE 303 – Common Drain Stage 25

CD Voltage Transfer Revisited (1)

§  The driving circuit has a finite resistance Rs

§  This model resembles the model of the CS stage -  The main difference is in the polarity of the controlled source -  This difference has profound impact on the Miller amplification of

the capacitance coupling input and output

vout

gmvin

vin

vs

RS

1/g’m CLCgsCgd

Zin Zout

RLCsb

Rtot || Ctot

CD Core

ro||1/g’m

example: if RS is the output resistance of a CS stage it can be relatively large

Page 26: Common Drain Stage (Source Follower)web02.gonzaga.edu/faculty/talarico/EE303/HO/cd_ct.rev2.pptx.pdf · 1 element 0:m1 0:m2 model 0:simple_n 0:simple_n region Saturati Saturati id

EE 303 – Common Drain Stage 26

CD Voltage Transfer Revisited (2)

voutvs= av0 ⋅

1+ sCgs

gm1+ b1s+ b2s

2

av0 = gmRtot

b1 = RsCgs (1− av0 )+ RSCgd + RtotCgs + RtotCtot

b2 = RSRtot (CgsCgd +CgsCtot +CgdCtot )

§  The zero in the transfer function is on the LHP and it occurs at approximately ωT

§  Unfortunately the high frequency analysis can become quite involved. A dominant real pole does not always exist, in fact poles can be complex. In the case the poles are complex a designer should be careful that the circuit does not exhibit too much overshoot and ringing.

Page 27: Common Drain Stage (Source Follower)web02.gonzaga.edu/faculty/talarico/EE303/HO/cd_ct.rev2.pptx.pdf · 1 element 0:m1 0:m2 model 0:simple_n 0:simple_n region Saturati Saturati id

EE 303 – Common Drain Stage 27

CD Voltage Transfer Revisited (3)

§  Interesting cases: -  A dominant pole condition exist -  Poles are complex

ω3dB ≅1b1      b1 = τ j∑( )

voutvs= av0 ⋅

1+ sCgs

gm1+ b1s+ b2s

2= av0 ⋅

1+ sCgs

gm

1+ sω0Q

+s2

ω02

A dominant pole condition exist for: Q2 << 1/4

b2b12 <<1/ 4

Page 28: Common Drain Stage (Source Follower)web02.gonzaga.edu/faculty/talarico/EE303/HO/cd_ct.rev2.pptx.pdf · 1 element 0:m1 0:m2 model 0:simple_n 0:simple_n region Saturati Saturati id

EE 303 – Common Drain Stage 28

Poles Location

1+ sω0Q

+s2

ω02= 0§  Roots of the denominator of the transfer function:

§  Complex Conjugate poles (overshooting in step response)

-  For Q = 0.707 (φ=45°), the -3dB frequency is ω0 (Maximally Flat Magnitude or Butterworth Response)

-  For Q > 0.707 the frequency response has peaking

§  Real poles (no overshoot in the step response)

for   Q > 0.5 ⇒ s1,2 = −ω0

2Q  1± j 4Q2 −1( )

for   Q ≤ 0.5 ⇒ s1,2 = −ω0

2Q  1± 1− 4Q2( )

Poles location with Q> 0.5

σφ =

Source: Carusone

Page 29: Common Drain Stage (Source Follower)web02.gonzaga.edu/faculty/talarico/EE303/HO/cd_ct.rev2.pptx.pdf · 1 element 0:m1 0:m2 model 0:simple_n 0:simple_n region Saturati Saturati id

EE 303 – Common Drain Stage 29

Frequency Response

10−2 10−1 100 101−20

−15

−10

−5

0

5

10

t / t0

Mag

nitu

de [d

B]

|H(s)|

Q=0.5Q=1/sqrt(2)Q=1Q=2

H (s) = 1

1+ sω0Q

+s2

ω02

Page 30: Common Drain Stage (Source Follower)web02.gonzaga.edu/faculty/talarico/EE303/HO/cd_ct.rev2.pptx.pdf · 1 element 0:m1 0:m2 model 0:simple_n 0:simple_n region Saturati Saturati id

EE 303 – Common Drain Stage 30

Step Response

§  Ringing for Q > 0.5

§  The case Q=0.5 is called maximally damped response (fastest settling without any overshoot)

“Underdamped” Q > 0.5

“Overdamped” Q > 0.5

Q=0.5

Source: Carusone

time