combinational logic - wordpress.com materials on "combinational logic" by- mohammed abdul...

28
1010101010101010101010101010101010101010101010101010101010101010101010101010101010 1010101010101010101010101010101010101010101010101010101010101010101010101010101010 1010101010101010101010101010101010101010101010101010101010101010101010101010101010 1010101010101010101010101010101010101010101010101010101010101010101010101010101010 1010101010101010101010101010101010101010101010101010101010101010101010101010101010 1010101010101010101010101010101010101010101010101010101010101010101010101010101010 1010101010101010101010101010101010101010101010101010101010101010101010101010101010 1010101010101010101010101010101010101010101010101010101010101010101010101010101010 1010101010101010101010101010101010101010101010101010101010101010101010101010101010 1010101010101010101010101010101010101010101010101010101010101010101010101010101010 1010101010101010101010101010101010101010101010101010101010101010101010101010101010 1010101010101010101010101010101010101010101010101010101010101010101010101010101010 1010101010101010101010101010101010101010101010101010101010101010101010101010101010 1010101010101010101010101010101010101010101010101010101010101010101010101010101010 1010101010101010101010101010101010101010101010101010101010101010101010101010101010 1010101010101010101010101010101010101010101010101010101010101010101010101010101010 1010101010101010101010101010101010101010101010101010101010101010101010101010101010 101010101010101010101010101010101010101010101010101010101010101001010101010101010 1010101010101010101010101010101010101010101010101010101010101010101010101010101010 1010101010101010101010101010101010101010101010101010101010101010101010101010101010 1010101010101010101010101010101010101010101010101010101010101010101010101010101010 1010101010101010101010101010101010101010101010101010101010101010101010101010101010 1010101010101010101010101010101010101010101010101010101010101010101010101010101010 Contents: Combinational and Sequential digital circuits. Design Procedure of combinational circuit. Adders: Half adder and Full adder. Subtractors: Half Subtractor and Full Subtractor. Code converter: BCD to excess-3. BCD to 7-segment decoder. Multilevel NAND and NOR circuits. Combinational Logic Course Instructor Mohammed Abdul kader Assistant Professor, EEE, IIUC

Upload: trantu

Post on 11-Apr-2018

225 views

Category:

Documents


5 download

TRANSCRIPT

1010101010101010101010101010101010101010101010101010101010101010101010101010101010

1010101010101010101010101010101010101010101010101010101010101010101010101010101010

1010101010101010101010101010101010101010101010101010101010101010101010101010101010

1010101010101010101010101010101010101010101010101010101010101010101010101010101010

1010101010101010101010101010101010101010101010101010101010101010101010101010101010

1010101010101010101010101010101010101010101010101010101010101010101010101010101010

1010101010101010101010101010101010101010101010101010101010101010101010101010101010

1010101010101010101010101010101010101010101010101010101010101010101010101010101010

1010101010101010101010101010101010101010101010101010101010101010101010101010101010

1010101010101010101010101010101010101010101010101010101010101010101010101010101010

1010101010101010101010101010101010101010101010101010101010101010101010101010101010

1010101010101010101010101010101010101010101010101010101010101010101010101010101010

1010101010101010101010101010101010101010101010101010101010101010101010101010101010

1010101010101010101010101010101010101010101010101010101010101010101010101010101010

1010101010101010101010101010101010101010101010101010101010101010101010101010101010

1010101010101010101010101010101010101010101010101010101010101010101010101010101010

1010101010101010101010101010101010101010101010101010101010101010101010101010101010

101010101010101010101010101010101010101010101010101010101010101001010101010101010

1010101010101010101010101010101010101010101010101010101010101010101010101010101010

1010101010101010101010101010101010101010101010101010101010101010101010101010101010

1010101010101010101010101010101010101010101010101010101010101010101010101010101010

1010101010101010101010101010101010101010101010101010101010101010101010101010101010

1010101010101010101010101010101010101010101010101010101010101010101010101010101010

Contents:

Combinational and Sequential digital circuits.

Design Procedure of combinational circuit.

Adders: Half adder and Full adder.

Subtractors: Half Subtractor and Full Subtractor.

Code converter: BCD to excess-3.

BCD to 7-segment decoder.

Multilevel NAND and NOR circuits.

Combinational Logic

Course Instructor

Mohammed Abdul kader

Assistant Professor, EEE, IIUC

Logic circuits for digital systems may be combinational or sequential.

A combinational circuit consists of logic gates whose outputs at any time are

determined directly from the present combination of inputs without regard to previous

inputs i.e. it has no memory element to hold the previous inputs/outputs.

The outputs of a sequential circuit depend not only on present inputs, but also on past

inputs, and the circuit behavior must be specified by a time sequence of inputs and

internal states. Sequential circuits employ memory elements in addition to logic gates.

Lecture materials on "Combinational Logic" By- Mohammed Abdul Kader, Assistant Professor, EEE, IIUC 2

Combinational and Sequential Logic circuits 101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101

010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010

010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010

010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010

Steps in design Procedure

The procedure involves following steps:

The problem is stated.

The number of available input variables and required output variables is determined.

The input and output variables are assigned letter symbols.

The truth table that defines the required relationships between inputs and outputs is

derived.

The simplified Boolean function for each output is obtained.

The logic diagram is drawn.

Constraints in practical design method

(1) minimum number of gates, (2) minimum number of inputs to a gate, (3) minimum

propagation time of the signal through the circuit, (4) minimum number of

interconnections and (5) limitations of the driving capabilities of each gate.

Lecture materials on "Combinational Logic" By- Mohammed Abdul Kader, Assistant Professor, EEE, IIUC 3

Design Procedure of combinational circuit 101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101

010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010

010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010

010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010

Adders

Digital computer perform a variety of information-processing tasks. Among the basic

functions encountered are the various arithmetic operations. The most basic arithmetic

operation is the addition of two binary digits.

Half adder: A combinational circuit that performs the addition of two bits is called a

half-adder.

Full adder: Combinational circuit that performs the addition of three bits (two

significant bits and a previous carry) is a full adder.

Lecture materials on "Combinational Logic" By- Mohammed Abdul Kader, Assistant Professor, EEE, IIUC 4

Adders 101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101

010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010

010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010

010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010

0+0=0, 0+1=1, 1+0=1, 1+1=10

The circuits needs two binary input variable: augend (x) and addend (y) bits, and two

binary output variable: sum (S) and carry (C).

Boolean function representations of Half-adder:

Lecture materials on "Combinational Logic" By- Mohammed Abdul Kader, Assistant Professor, EEE, IIUC 5

Half-Adder 101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101

010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010

010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010

010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010

Inputs Outputs

augend addend carry sum

x y C S

0 0 0 0

0 1 0 1

1 0 0 1

1 1 1 0

(a) S=xy+xy [truth table] C=xy

(b) S= (x+y) (x +y ) C= xy

(c) S = x y +xy [truth table]

S= (x y +xy) = (C+x y ) C= xy

(d) S = (x+y) (x +y )

C= (x +y )

(e) S= xy, C= xy

Truth Table

Lecture materials on "Combinational Logic" By- Mohammed Abdul Kader, Assistant Professor, EEE, IIUC 6

Half-Adder 101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101

010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010

010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010

010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010

Lecture materials on "Combinational Logic" By- Mohammed Abdul Kader, Assistant Professor, EEE, IIUC 7

Full-Adder 101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101

010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010

010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010

010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010

The circuits needs three binary input variable: augend (x), addend (y) bits and carry

from previous stage or carry input (z)

and two binary output variable:

sum (S) and output carry (C).

Inputs Outputs

augen

d

adden

d

Input

carry

output

Carry

sum

x y z C S

0 0 0 0 0

0 0 1 0 1

0 1 0 0 1

0 1 1 1 0

1 0 0 0 1

1 0 1 1 0

1 1 0 1 0

1 1 1 1 1

x

yz x

yz

S= xy z+x yz +xy z +xyz C= xy +xz +yz

Lecture materials on "Combinational Logic" By- Mohammed Abdul Kader, Assistant Professor, EEE, IIUC 8

Full-Adder 101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101

010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010

010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010

010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010

Implementation of full adder in sum of products

S= xy z+x yz +xy z +xyz

C= xy +xz +yz

Lecture materials on "Combinational Logic" By- Mohammed Abdul Kader, Assistant Professor, EEE, IIUC 9

Full-Adder 101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101

010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010

010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010

010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010

Implementation of full adder with two half-adders and an OR gate

S = xy z+x yz +xy z +xyz

= xy z +x yz + xyz+ xy z

= z (xy +x y) +z ( xy+ xy )

= z (xy +x y) + z (xy +x y) [XOR and XNOR are complement to each other]

= z (xy)+ z(xy)

= z (x y)

C= xy z +x yz+xy [from truth table]

= z(xy +x y)+xy = z (x y) +xy

x yz

Lecture materials on "Combinational Logic" By- Mohammed Abdul Kader, Assistant Professor, EEE, IIUC 10

Subtractors 101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101

010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010

010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010

010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010

Subtractors

The subtraction of two binary numbers may be accomplished by taking the

complement of the subtrahend and adding it to the minuend. By this way subtraction

becomes an addition operation requiring full adders for its implementation.

It is possible to implement subtraction with a logic circuits in a direct manner. By

this method, each subtrahend bit of the number is subtracted from its corresponding

significant minuend bit to form a difference bit. If minuend bit is smaller than the

subtrahend bit, a 1 is borrowed from the next significant position.

A half-subtractor is a combinational circuit that subtracts two bits and produces their

difference.

A full-subtractor is a combinational circuit that performs a subtraction between two

bits, taking into account that a 1 may have been borrowed by a lower significant stage.

Lecture materials on "Combinational Logic" By- Mohammed Abdul Kader, Assistant Professor, EEE, IIUC 11

Subtractors: Half-Subtractor 101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101

010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010

010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010

010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010

Half-Subtractor

Input Variables: Minuend (x) and subtrahend (y)

Output Variables: Borrow (B) and difference (D) Inputs Outputs

Minue

nd

Subtra

hend

Borrow Differe

nce

x y B D

0 0 0 0

0 1 1 1

1 0 0 1

1 1 0 0

D=xy+xy [truth table]

B=x y

x

y B

D

Interesting to note that, inclusion of a not gate

can convert a half-adder into half-subtractor

Lecture materials on "Combinational Logic" By- Mohammed Abdul Kader, Assistant Professor, EEE, IIUC 12

Subtractors: Full-Subtractor 101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101

010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010

010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010

010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010

Full-Subtractor

Input Variables: Minuend (x), subtrahend (y) and

previous borrow (z)

Output Variables: Output Borrow (B) and difference

(D).

Inputs Outputs

Minuen

d

Subtrah

end

Input

Borrow

Output

Borrow

Differe

nce

x Y z B D

0 0 0 0 0

0 0 1 1 1

0 1 0 1 1

0 1 1 1 0

1 0 0 0 1

1 0 1 0 0

1 1 0 0 0

1 1 1 1 1

D= xy z+x yz +xy z +xyz (Similar to full adder)

B= x y +x z +yz (similar to full adder except

x is complemented)

Note: It is possible to convert a full-adder into full-subtractor by merely complementing input x prior

to its application to the gates that form the carry output

x yz

x

yz

Lecture materials on "Combinational Logic" By- Mohammed Abdul Kader, Assistant Professor, EEE, IIUC 13

Subtractors: Full-Subtractor 101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101

010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010

010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010

010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010

Implementation of full subtractor with two half-subtractor and an OR gate

D = xy z+x yz +xy z +xyz

= xy z +x yz + xyz+ xy z

= z (xy +x y) +z ( xy+ xy )

= z (xy +x y) + z (xy +x y) [XOR and XNOR are complement to each other]

= z (xy)+ z(xy)

= z (x y)

B= xyz +xyz+xy [from truth table]

= z(xy +x y)+xy = z (x y) +xy

x

y

z

x

yz

Lecture materials on "Combinational Logic" By- Mohammed Abdul Kader, Assistant Professor, EEE, IIUC 14

Code Conversion 101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101

010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010

010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010

010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010

Importance of Code Conversion

The availability of a large variety of codes for the same discrete elements of information

results in the use of different codes by different digital systems. It is sometimes necessary

to use the output of one system as the input to another. A conversion circuit must be

inserted between the two systems if each uses different codes for the same information.

Code Converter

A code converter is a combinational circuit that makes the two systems compatible even

though each uses a different binary code.

Code Converter Binary

Code A

Binary

Code B

Lecture materials on "Combinational Logic" By- Mohammed Abdul Kader, Assistant Professor, EEE, IIUC 15

Code Converter Example: BCD to excess-3 code 101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101

010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010

010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010

010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010

BCD to excess-3 code converter

Since each code uses four bits to represent a decimal digit, there must be four input

variables and four output variables. Truth Table

w= ∑ (5,6,7,8,9)

x= ∑ (1,2,3,4,9)

y= ∑ (0,3,4,7,8)

z= ∑ (0,2,4,6,8)

Note that four binary

variables have 16

combinations, only 10 of

which are listed in the truth

table. The other 6 is not

listed can be considered as

don’t care.

d= ∑ (10,11,12,13,14,15)

Lecture materials on "Combinational Logic" By- Mohammed Abdul Kader, Assistant Professor, EEE, IIUC 16

Code Converter Example: BCD to excess-3 code (Cont.) 101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101

010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010

010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010

010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010

From truth table we obtained-

w= ∑ (5,6,7,8,9) ,

x= ∑ (1,2,3,4,9),

y= ∑ (0,3,4,7,8),

z= ∑ (0,2,4,6,8)

Don’t care conditions,

d= ∑ (10,11,12,13,14,15)

Now using map method to

simplify the functions-

Lecture materials on "Combinational Logic" By- Mohammed Abdul Kader, Assistant Professor, EEE, IIUC 17

101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101

010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010

010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010

010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010

Code Converter Example: BCD to excess-3 code (Cont.)

Logic Diagram of BCD to excess-3 code converter

Lecture materials on "Combinational Logic" By- Mohammed Abdul Kader, Assistant Professor, EEE, IIUC 18

101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101

010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010

010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010

010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010

BCD to Seven-segment Decoder

a: Segment designation b: Numerical designation for display

Exercise: 4-14

A BCD to seven-segment decoder is a combinational circuit that accepts a decimal digit in BCD and

generates the appropriate outputs for the selection of segments in a display indicator used for displaying

the decimal digit. The seven output of the decoder (a,b,c,d,e,f,g) select the corresponding segments in

the display as shown in figure a. The numeric designation chosen to represent the decimal digit is shown

in figure b. Design the BCD to seven segment decoder circuit.

Lecture materials on "Combinational Logic" By- Mohammed Abdul Kader, Assistant Professor, EEE, IIUC 19

101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101

010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010

010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010

010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010

BCD to Seven-segment Decoder

From truth table we obtained-

a= ∑ (0,2,3,5,6,7,8,9)

b= ∑ (0,1,2,3,4,7,8,9)

c= ∑ (0,1,3,4,5,6,7,8,9)

d= ∑ (0,2,3,5,6,8,9)

e= ∑ (0,2,6,8)

f= ∑ (0,4,5,6,8,9)

g= ∑ (2,3,4,5,6,8,9)

Don’t care conditions,

d= ∑ (10,11,12,13,14,15)

Lecture materials on "Combinational Logic" By- Mohammed Abdul Kader, Assistant Professor, EEE, IIUC 20

101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101

010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010

010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010

010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010

BCD to Seven-segment Decoder

From truth table we obtained-

a= ∑ (0,2,3,5,6,7,8,9) b= ∑ (0,1,2,3,4,7,8,9) c= ∑ (0,1,3,4,5,6,7,8,9) d= ∑ (0,2,3,5,6,8,9)

e= ∑ (0,2,6,8) f= ∑ (0,4,5,6,8,9) g= ∑ (2,3,4,5,6,8,9) Don’t care , d= ∑ (10,11,12,13,14,15)

X X X X

X X

AB

CD

X X X X

X X

AB CD

a= A+C+BD+BD

X X X X

X X

AB CD

b= B +CD+CD c= B +C+D d= A +BD+BC+BCD+CD

X X X X

X X

AB CD

X X X X

X X

AB CD

e= BD+CD

AB CD

X X X X

X X

f= A+CD+BD+BC g= A+BC+BC+BD

AB CD

X X X X

X X

Lecture materials on "Combinational Logic" By- Mohammed Abdul Kader, Assistant Professor, EEE, IIUC 21

101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101

010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010

010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010

010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010

BCD to Seven-segment Decoder

a= A+C+BD+BD

b= B +CD+CD

c= B +C+D

d= A +BD+BC+BCD+CD

f= A+CD+BD+BC

g= A+BC+BC+BD

e= BD+CD

A B C D

a

b

c

d

e

f

g

Lecture materials on "Combinational Logic" By- Mohammed Abdul Kader, Assistant Professor, EEE, IIUC 22

101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101

010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010

010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010

010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010

BCD to Seven-segment Decoder

Exercise: 4-12

Design a combinational circuit that detects an error in the representation

of a decimal digit in BCD. The output of the circuit must be equal to

logic-1 when the inputs contain any one of the six unused bit

combinations in the BCD code.

A B C D E

0 0 0 0 0

0 0 0 1 0

0 0 1 0 0

0 0 1 1 0

0 1 0 0 0

0 1 0 1 0

0 1 1 0 0

0 1 1 1 0

1 0 0 0 0

1 0 0 1 0

1 0 1 0 1

1 0 1 1 1

1 1 0 0 1

1 1 0 1 1

1 1 1 0 1

1 1 1 1 1

Tru

th T

able

E= AB+ AC

A

B

C

Lecture materials on "Simplification of Boolean Functions" By- Mohammed abdul kader, Assistant Professor, EEE, IIUC 23

Implementation of basic gates by NAND gate

101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101

010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010

010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010

010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010

x x

x y

(xy) ((xy)) = xy

x

y

x

y

(xy) = x+y

NOT gate by NAND

gate

AND gate by NAND

gate

OR gate by NAND gate

Multilevel NAND Circuits

The NAND gate is said to be a universal gate because any digital system can be implemented with

it. Combinational circuits and sequential circuits as well can be constructed with this gate because the

flip-flop circuit can constructed from two NAND gates connected back to back.

Lecture materials on "Simplification of Boolean Functions" By- Mohammed abdul kader, Assistant Professor, EEE, IIUC 24

Procedure of Boolean function Implementation-Block Diagram method

101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101

010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010

010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010

010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010

Multilevel NAND Circuits

1. From the given algebric expression, draw the logic diagram with AND, OR and NOT gates.

Assume that both the normal and complement inputs are available.

2. Draw a second logic diagram with the equivalent NAND logic, substitute for each AND, OR

and NOT gate.

3. Remove any two cascaded inverters from the diagram, since double inversion does not

perform a logic function. Remove inverters connected to a single external inputs and

complement the corresponding input variable. The new logic diagram obtained is the required

NAND gate implementation.

4. The procedure is illustrated in the next slide.

Lecture materials on "Simplification of Boolean Functions" By- Mohammed abdul kader, Assistant Professor, EEE, IIUC 25

Implementation of F=A(B+CD)+BC with NAND gates

101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101

010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010

010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010

010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010

Multilevel NAND Circuits

Lecture materials on "Simplification of Boolean Functions" By- Mohammed abdul kader, Assistant Professor, EEE, IIUC 26

Implementation of F=(A+B ) (CD+E) with NAND gates

101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101

010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010

010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010

010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010

Multilevel NAND Circuits

Lecture materials on "Simplification of Boolean Functions" By- Mohammed abdul kader, Assistant Professor, EEE, IIUC 27

Implementation of basic gates by NOR gate

101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101

010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010

010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010

010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010

x x

x

y

(x+y)

((x+y)) = x+y

x

y

x

y

(x+y) = xy

NOT gate by NOR

gate

OR gate by NOR

gate

AND gate by NOR

gate

Multilevel NOR Circuits

The NOR gate is also called universal gate because all basic gates, combinational circuit as well as

sequential circuit can be constructed with NOR gate

Lecture materials on "Simplification of Boolean Functions" By- Mohammed abdul kader, Assistant Professor, EEE, IIUC 28

Implementation of F=A(B+CD)+BC with NOR gates

101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101

010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010

010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010

010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010

Multilevel NOR Circuits