collagen

43
Fibrous Fibrous Proteins: Proteins: Collagen Collagen =

Upload: asheer-khan

Post on 12-Apr-2017

720 views

Category:

Health & Medicine


0 download

TRANSCRIPT

Page 1: Collagen

Fibrous Proteins: Fibrous Proteins: CollagenCollagen

=

Page 2: Collagen
Page 3: Collagen

Types of CollagenTypes of Collagen• The collagen super family of proteins includes more than 25

collagen (approximately 28) types, as well as additional proteins that have collagen-like domains.

• Variations in the amino acid sequence of the α chains result in structural components that are about the same size (approximately 1,000 amino acids long), but with slightly different properties.

Page 4: Collagen

Types of CollagenTypes of Collagen• These α chains are combined to form the various types of collagen

found in the tissues. For example, the most common collagen, type I, contains two chains called α1 and one chain called α2 (α12α2), whereas type II collagen contains three α1 chains (α13).

• The collagens can be organized into three groups, based on their location and functions in the body

Page 5: Collagen
Page 6: Collagen
Page 7: Collagen

Structure of collagen• Amino acid sequence:

• Collagen is rich in proline and glycine, both of which are important in the formation of the triple-stranded helix.

• Proline facilitates the formation of the helical conformation of each α chain because its ring structure causes “kinks” in the peptide chain.

Page 8: Collagen

Structure of collagen

• Glycine, the smallest amino acid, is found in every third position of the polypeptide chain. It fits into the restricted spaces where the three chains of the helix come together.

• The glycine residues are part of a repeating sequence, –Gly–X–Y–, where X is frequently proline and Y is often hydroxyproline (but can be hydroxylysine).

Page 9: Collagen

Triple-helical structure

• Unlike most globular proteins that are folded into compact structures, collagen has an elongated, triple-helical structure that places many of its amino acid side chains on the surface of the triple-helical molecule.

Page 10: Collagen
Page 11: Collagen

Hydroxyproline and Hydroxylysine

• Collagen contains hydroxyproline (hyp) and hydroxylysine (hyl), which are not present in most other proteins.

• These residues result from the hydroxylation of some of the proline and lysine residues after their incorporation into polypeptide chains (post translational modification)

.

Page 12: Collagen
Page 13: Collagen

Glycosylation

• The hydroxyl group of the hydroxylysine residues of collagen may be enzymatically glycosylated.

• Most commonly, glucose and galactose are sequentially attached to the poly - peptide chain prior to triple-helix formation

Page 14: Collagen
Page 15: Collagen

Biosynthesis of collagen• The polypeptide precursors of the collagen molecule are

formed in fibroblasts (or in the related osteoblasts of bone and chondroblasts of cartilage), and are secreted into the extracellular matrix.

• After enzymic modification, the mature collagen monomers aggregate and become cross-linked to form collagen fibers.

Page 16: Collagen

Biosynthesis of collagen

Page 17: Collagen
Page 18: Collagen
Page 19: Collagen
Page 20: Collagen
Page 21: Collagen
Page 22: Collagen
Page 23: Collagen
Page 24: Collagen

Degradation of collagen• Normal collagens are highly stable molecules, having

half-lives asnlong as several years.

• However, connective tissue is dynamic and is constantly being remodeled, often in response to growth or injury of the tissue.

Page 25: Collagen

Degradation of collagen

• Breakdown of collagen fibers is dependent on the proteolytic action of collagenases, which are part of a large family of matrix metalloproteinases.

Page 26: Collagen

Collagen diseases:

Collagenopathies

Page 27: Collagen
Page 28: Collagen

Scurvy• A disease resulting from a deficiency of vitamin C, which

is required for the synthesis of collagen in humans.

• Scurvy often presents itself initially as symptoms of malaise and lethargy, followed by formation of spots on the skin, spongy gums, and bleeding from the mucous membranes.

Page 29: Collagen

Scurvy• In ascorbic acid deficiency (and, therefore, a lack of prolyl

and lysyl hydroxylation), interchain H-bond formation is impaired, as is formation of a stable triple helix.

• Additionally, collagen fibrils cannot be cross-linked (see below), greatly decreasing the tensile strength of the assembled fiber. Patients with scurvy also often show bruises on the limbs as a result of subcutaneous extravasation of blood due to capillary fragility

Page 30: Collagen
Page 31: Collagen

Ehlers-Danlos Syndrome (EDS)

• This disorder is a group of generalized connective tissue disorders that result from inheritable defects in the metabolism of fibrillar collagen molecules.

• It is a group of inherited disorders that affect your connective tissues — primarily your skin, joints and blood vessel walls. 

Page 32: Collagen

Ehlers-Danlos Syndrome (EDS)

• EDS can result from a deficiency of collagen-processing enzymes (for example, lysyl hydroxylase or procollagen peptidase), or from mutations in the amino acid sequences of collagen types I, III, or V.

Page 33: Collagen

Ehlers-Danlos Syndrome (EDS)

• The most clinically important mutations are found in the gene for type III collagen.

• Collagen containing mutant chains is not secreted, and is either degraded or accumulated to high levels in intracellular compartments.

• Because collagen type III is an important component of the arteries, potentially lethal vascular problems occur.

Page 34: Collagen
Page 35: Collagen

Osteogenesis Imperfecta (OI)

• This disease, known as brittle bone syndrome, is a group of inherited disorders distinguished by bones that easily bend and fracture.

• They are around eight (8) types of OI but type 1 is the most common

Page 36: Collagen

• Most patients with severe OI have mutations in the gene for either the pro-α1 or pro-α2 chains of type I collagen.

• The most common mutations cause the replacement of glycine residues (in –Gly–X–Y–) by amino acids with bulky side chains. The resultant structurally abnormal pro-α chains prevent the formation of the required triple-helical conformation.

Page 37: Collagen

• Type I OI is called osteogenesis imperfecta tarda. The disease is the consequence of decreased production of α1 and α2 chains.

• It presents in early infancy with fractures secondary to minor trauma, and may be suspected if prenatal ultrasound detects bowing or fractures of long bones.

• Type II OI is called osteogenesis imperfecta congenita, and is the most severe. Patients die of pulmonary hypoplasia in utero or during the neonatal period.

Page 38: Collagen
Page 39: Collagen
Page 40: Collagen

References and Appendix

Page 41: Collagen

Cowan, R., Gaw, A., Murphy, M., & O'Reilly, D. S. (2013). Clinical Biochemistry, 5th Edition. USA: Churchill Livingstone Elsevier.

Respiratory Alkalosis - Medscape Reference emedicine.medscape.com

Page 42: Collagen
Page 43: Collagen